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Abstract: Passive reflective metasurfaces can possess per-

fect absorption conditions: Singular scattering anomalies at

which all impinging light is absorbed. Perfect absorption

is a common yet powerful metasurface design option with

applications in energy harvesting, sensing, and more. Less

common is the inclusion of optical gain to the system, which

can give rise to a singular condition for perfect amplifi-

cation. We analyze absorption and amplification singular-

ities in plasmon antenna metasurface etalons with gain

with a simple transfer matrix model. Our etalon follows

the Salisbury screen design: A metal ground plate spaced

by dielectric medium from an array of resonant plasmonic

scatterers. We include frequency dispersivemodels for gain

media anddiscuss the limitations of time reversal symmetry

arguments for relating gain singularity conditions (reflectiv-

ity poles) to the well-known perfect absorption conditions

(reflectivity zeros) of metasurface etalons. We show that

for metasurface etalons with both gain and loss, gain can

induce both perfect absorption and gain singularities, and

we describe topological constraints on their creation and

annihilation. Our findings have implications for the fields of

non-Hermitian photonics, parity-time symmetric scattering
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systems, and dynamically controllable active metasurface

pixels.

Keywords:metasurface; optical gain; singular optical res-

ponse

1 Introduction

Reflective metasurfaces are of considerable interest for

their ability to control the reflection amplitude, phase, and

absorption of optical waves [1]–[11]. A common geometry

is inspired by the radio frequency concept of Salisbury and

Dallenbach screens: Thin (patterned) layers at a carefully

chosen distance from ametal ground plate that achieve per-

fect absorption of impinging waves [10], [12], [13]. In optics,

this motif of metasurfaces at quarter wavelength (or simi-

lar) distances from amirror has led to advances in reflective

metasurface pixels [2], [5], [7], [9], and has been used to turn

intrinsically weakly absorbing layers like two-dimensional

(2D) materials into effective photodetectors [14]–[16]. The

seminal paper of Chong et al. relates perfect absorption to

complex frequency plane analysis of the scattering matrix

of photonic structures in terms of zeros and poles: The scat-

teringmatrix eigenvectorswith eigenvalues 0 and∞ [17]. In

fact, according to Krasnok et al. [18] the scattering response

of a system is completely determined by such zeros and

poles. By adding losses one can bring zeros from the upper

half complex frequency plane onto the real frequency axis.

Conversely, poles correspond to scattering resonances, and

when brought to the real frequency axis by gain engineer-

ing, they become amplification singularities [19]–[21]. This

understanding explains Salisbury and Dallenbach screens,

more general cases of coherent perfect absorption (CPA)

[18], [22]–[30], as well as of CPA lasing [18]–[20], [30]–[34].

Zeros and poles furthermore have a topological character

that expresses in the phase response [28]. Recently, active

tuning ofmetasurface response through the control of zeros

and poles has received interest in numerical studies. One

focus has been on the active control over absorption sin-

gularities using thermo- or electro-optical mechanisms [35],
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[36], while another has been on amplification singular-

ity tuning by means of optical gain [37], [38]. However,

actively tuned singular response of a plasmon metasur-

face Salisbury screen with optical gain has received little

attention.

In this work, we theoretically study perfect absorption

(zeros) and amplification singularities (poles) in amplify-

ing plasmon antenna metasurface etalons, extending the

Salisbury-screen analogon for perfect absorption in such

structures [10] to gain. The philosophy of the work is high-

lighted in Figure 1: While a passive metasurface etalon

(panel a)may host pairs of reflection zeroswewill show that

the introduction of gain can give rise both to zeros andpoles,

and we analyze topological constraints on these singulari-

ties. We develop a transfer matrix model [39] for metasur-

face etalons with loss and gain and address the emergence

of zeros and poles in dependence of (1) whether gain/loss is

included in the spacer layer or in themetasurface, and (2) in

the lattice case, how the gain is included in the meta-atoms.

Furthermore, we emphasize the importance of the numer-

ical models used for loss and gain. An appealing viewpoint

comes from the field of time-reversal and Parity-Time (PT)

symmetry, where nonresonant imaginary refractive index

(n′′) of equal magnitude but opposite sign are associated

with time-reversal, i.e., an interchange of loss and gain prop-

erties. This viewpoint implies simple relations between per-

fect absorption and gain singularity conditions. However,

we argue that the physics is crucially affected by the need

to account for the physical frequency dispersion in gain

media: A correct gain dispersion means that gain and loss

are not time-reversed equivalents through sign-inversion

of the imaginary part of the dielectric response. Finally,

we argue that Salisbury screens with gain and loss can

show real-frequency zeros and poles that are very close in

parameter space, which may be interesting for dynamically

controllable amplitude and phase metasurface pixels with

very large dynamic range.

2 Model

In thiswork,we consider semi-analyticalmodeling of ampli-

fyingmetasurface etalons inwhich plasmon particle lattices

are held in front of amirror, and inwhich gain is introduced,

either in the dielectric spacer or in the particle lattice. We

start by reviewing simple physical models for loss and gain

materials and scatterers, before recapitulating the transfer

matrix method to calculate the stack response.

2.1 Model for loss materials and scatterers

The canonical model for a plasmonic particle with loss [40]

starts with the Drude model for the free electron plasma,

yielding the complex-valued dielectric constant

𝜖Drude(𝜔) = 𝜖∞ −
𝜔
2
p

𝜔
2 + i𝜔𝛾 p

, (1)

where𝜔p is the plasma frequency, and 𝛾 p the Ohmic damp-

ing rate. When substituted into the Rayleigh expression for

the quasi-static electric dipole polarizability of a subwave-

length sphere of dielectric constant 𝜖 and radius r in a

host of dielectric constant 𝜖host (we use the convention p =
4𝜋𝜖host𝜖0𝛼E so that polarizabilities have units of volume),

one finds

𝛼0(𝜔) = r3
𝜖(𝜔)− 𝜖host

𝜖(𝜔)+ 2𝜖host
(2)

displaying the well-known localized surface plasmon reso-

nance at 𝜖(𝜔) = −2𝜖host. When 𝜖∞ = 𝜖host, this resonance is

exactly Lorentzian.

𝛼0 =
V𝜔2

0

𝜔
2
0
−𝜔

2 − i𝜔𝛾
. (3)

The particle resonance frequency 𝜔0 = 𝜔 p∕
√
3𝜖host and

damping rate follow straightforwardly from the Drude

parameters, while the oscillator strength is quantified by V

(a) (b)

Figure 1: Singular reflection in metasurface etalons with loss and gain. (a) For a lossy, plasmon metasurface in front of a mirror, hybridization

between the plasmon resonance and etalon resonances leads to pairs of perfect absorption conditions: Zeros in reflection accompanied by phase

singularities in a parameter space spanned by frequency and etalon spacing. (b) When optical gain is included both reflection zeros (⚬) and reflection
poles ( × ) can arise.
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(units of volume, equal to r3 for the Rayleigh sphere). For

strong scatterers, scattering into the far-field comes with

an additional loss channel. It is well known in literature

[41], [42] that a self-consistent theory for multiple scattering

requires to include a radiation damping factor i2∕3k3

𝛼dyn(𝜔) =
1

1∕𝛼0 − i2∕3k3 , (4)

where k = n𝜔∕c is the wave number of the light in the

medium surrounding the scatterer (n = √
𝜖host ) [41], [42].

The resulting ‘dynamic’ polarizability satisfies the opti-

cal theorem, meaning that scattering equals extinction at

zero Ohmic damping, while at non-zero Ohmic damping

the extinction exceeds scattering, with the deficit equal to

absorption. In this work, we start with parameters from

[28], whichmake Eqs. (2) and (4) accurately fit finite element

simulations of extinction and scattering of single nanorod

plasmon antennas in glass (n = 1.45) for polarization along

the long axis of the rods. These parameters in terms of

Eq. (3) read 𝜔0 = 2.4 × 1015 rad/s, damping rate 𝛾 p = 9.3 ×
1013 s−1 and V = 6.9 × 10−23 m3 for Au nanorods (100 × 50

× 40 nm3) in glass. We will vary V to control oscillator

strength. Figure 2a and b show the resulting dynamic polar-

izability of the lossy plasmon particles. The real part shows

the typical dispersive line shape, indicating the typical 𝜋

phase slip in scattering that occurs upon crossing the res-

onance. The imaginary part is a positive Lorentzian line

shape, and through the relation 𝜎ext = 4𝜋kIm𝛼dyn directly

indicates the resonance in the extinction cross section.

2.2 Extension to gain materials

Todescribe amplifying instead of lossy scatterers, it is tempt-

ing to simply reverse the sign of the damping rate, or equiv-

alently complex conjugate 𝜖. While such a transformation

has been argued to be equivalent to time reversal [43]–[48],

we note that special care is required because scattering by

a gainy particle is not the time-reverse of scattering by a

lossy particle. Scattering redistributes light from a single

input port (a plane wave) over all outgoing ports (outgoing

spherical wave) at a rate given by the radiation damping

term i2∕3k3. Time-reversing material loss into gain does

not also redefine the input and output ports in a scattering

problem,meaning that the radiation damping termdoes not

change sign. Given these subtleties, it is useful to inspect

gain susceptibility models and review the ramifications for

scattering.

A common model in the laser community [49] to

describe an inverted population of atoms in a dielectric

medium is to add the susceptibility 𝜒gain of an ensemble of

atoms in inversion to the background permittivity 𝜖b(𝜔) as

𝜖(𝜔) = 𝜖b(𝜔)+ 𝜒gain(𝜔) (5)

with a resonant Lorentzian lineshape

(a) (c) (e) (g)

(b) (d) (f) (h)

Figure 2: Response functions of lossy and gainy constituents of the plasmon metasurface etalons with gain. (a,b) Plot of Eq. (4): Real and imaginary

part of the dynamic polarizability of a single plasmon rod of V = 3 × 10−23 m3 (Lorentz model fitted to COMSOL simulation from Ref. [28]). (c,d) Plot of

Eq. (5): Real and imaginary permittivity of a model dielectric medium with a Lorentzian gain resonance frequency𝜔g = 𝜔p = 2.4 × 1015 rad/s, line

width 𝛾 p = 0.01𝜔g and population inversion parameter F = (0, 0.1, 0.2, 0.3, 0.4, 0.5). Note how compared to the plasmon dispersion not only the

imaginary but also the real part is flipped in sign. (e,f) Plot of Eq. (4) with Eq. (5). Dynamic polarizability of a plasmon antenna coupled to a resonant

gain bath according to the model of Manjavacas [50], effectively forming a combination of resonances (a,b) and (c,d). For increasing gain the sign of

the metal dispersion remains, but from F = 0.5, Im(𝛼dyn) flips sign. (g,h) Plot of Eq. (7): Reflectivity ra of a subdiffractive (a = 350 nm) gain plasmonic

metasurface in glass for increasing pump strength. Re[ra] flips sign as the singularity condition between F = 0.3 and F = 0.4 is traversed.
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𝜒gain(𝜔) = F
𝛾g

𝜔−𝜔g + i𝛾g
, (6)

where 𝜔g is the resonant frequency of the gain medium,

𝛾 g its line width, and F quantifies the density of excited

atoms (population inversion controlled by pump strength in

experiments). Thismodel has been proposed for 3- or 4-level

gain atoms [49]–[54]. Figure 2c and d plots Lorentzian sus-

ceptibility model 𝜒gain for atoms in glass, with 𝜔g = 𝜔p =
2.4 × 1015 rad/s and 𝛾 p = 0.01𝜔g for various pump strengths

F. Importantly, the gain not only makes the imaginary part

of the permittivity/polarizability negative, but also affects

the dispersion in the real part of the response function.

We note that a Drude scatterer can be transformed into an

amplifying resonant scatterer with valid gain dispersion (as

Figure 2c and d) not by 𝛾 → −𝛾 , as an intuitive time-reversal
argument would suggest, but instead by V → −V . Ref. [53]
explains this behavior on basis of a quantum mechanical

microscopic model of a 3-level atom upon pumping, from

which the authors derive the classical dynamic polariz-

ability of an atomic scatterer with gain. Below inversion,

the atom dynamic polarizability displays a lossy Lorentzian

polarizability, much like a plasmonic particle (panel a,b).

Upon reaching population inversion, the atom becomes

transparent. Crossing through transparency, the polariz-

ability goes through zero, flipping sign both in its imagi-

nary and real part. The sign flip in the imaginary part indi-

cates negative extinction cross sections, i.e., amplification.

The scattering cross sections 𝜎scatt = 8𝜋∕3k4|𝛼dyn|2 instead
remain positive.

Several works have proposed including gain into lossy

plasmonic scatterers [47], [48], [50], [54]–[60]. We follow

the description of Manjavacas [50], which implements

gain by taking the dielectric constant of a nanoparticle

as 𝜖(𝜔) = 𝜖Drude(𝜔)+ 𝜒gain(𝜔), and evaluating Eq. (2) and

Eq. (4). Figure 2e and f plot the real and imaginary part

of the polarizability at various gain levels F. For low gain

values, the polarizability is similar to that of the lossy

plasmonic particle, sharpening with increasing gain as the

intrinsic Drude loss is compensated. The dispersion then

goes through a condition of strong scattering and strong

positive extinction to a regime of negative extinction (net

gain). For such a compound particle, the dispersion in the

real part of polarizability does not flip sign.

Finally, we review how to convert the single particle

polarizability into metasurface reflectivity. To calculate ra
for periodic arrays of identical scatterers, one can use Ewald

lattice summation techniques that include retarded multi-

ple scattering interactions in the point dipole approxima-

tion [42], [61]. For lattices consisting of identical scatterers

specified by quasi-static polarizabilities 𝛼0, arranged in unit

cells of area A, the reflectivity in the non-diffractive regime

reads

ra(𝜔) =
2𝜋ik

A

1

1∕𝛼0(𝜔)− 2𝜋ik

A

. (7)

Eq. (7) contains only the imaginary contribution of the lat-

tice interaction term, as the real part induces a shift in

resonance frequency which we incorporate into 𝜔0 [28].

Interestingly, Eq. (7) replaces the single nanoparticle radia-

tion damping correction that is appropriate for the single

scatterer (Eq. (4)) with a collective lattice damping term

2𝜋ik∕A. This lattice damping term increases with antenna

density and signifies superradiant damping for coherently

radiating dipole arrays. [28]. In the limit of high areal den-

sity, the reflectivity approaches a perfectmirror ra(𝜔) = −1.
In Figure 2g and h, we examine complex reflectivity of a

plasmonic metasurface with gain included in 𝛼0, accord-

ing to the approach of Manjavacas [50]. The real value

of ra (Figure 2g) becomes increasingly negative with more

gain, until it reaches the singular condition 𝛼0 = A∕2𝜋ik
(between F = 0.3 and 0.4), at which point the gain com-

pensates the Ohmic and lattice radiation loss. At this point

the reflectivity flips sign to large positive amplitudes, before

converging to zero with further increase of F. Panel (h)

shows that near the singularity condition, the Lorentzian

curve of Im(ra) has the steepest slopes.

2.3 Metasurface etalon transfer matrix
model

To describe the complete response of the composite system

from the single material response just described, we use

a transfer matrix method laid out in Ref. [39]. We con-

sider normally incident radiation only. The transfer matrix

method as introduced in the seminal work [62] relates par-

allel electric and magnetic (E,H) fields at the front side of

a stack of a dielectric layer (z = 0) with those at the back

side (z = dstack) via multiplication of characteristic matrices

of individual layers: Mstack = MN ×MN−1…M2 ×M1 (with

m = 1, 2,…N enumerating the layers from front to back).

From the stack matrix Mstack, the complex reflection and

transmission amplitudes follow as(
t

ikt

)
= Mstack

(
1+ r

ik(1− r)

)
. (8)

Our stack will be composed of transfer matrices Md for

homogeneous layers of index n and thickness d, and a trans-

fer matrix for the metasurface Mmeta. Md is well known

in literature, but Mmeta should depend on ra and merits

careful attention. For non-diffractive metasurfaces,Mmeta is

obtained by assuming a zero thickness layer with reflection
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coefficient ra, and also assuming that both slabs immedi-

ately neighboring the metasurface have identical refractive

index [39]. Explicitly,Md andMmeta [39] read

Md =
⎛⎜⎜⎝

cos kd
1

k
sin kd

−k sin kd cos kd

⎞⎟⎟⎠ and

Mmeta(ra ) =
⎛⎜⎜⎝

1 0

2ikra
1+ ra

1

⎞⎟⎟⎠. (9)

The model does not allow for any diffraction channels, so

we only consider lattices with subdiffractive pitches. We

retrieve ra from Eq. (7).

Whileweuse the transfermatrixmethod for all calcula-

tions in this work, we note that for a simple two layer etalon

(one mirror, one metasurface) one can extract an analytical

Fabry–Perot formula [27], [28], [63]

rFPI =
ra + rm(1+ 2ra )e

2ik0nd

1− rarme
2ik0nd

. (10)

Here, rm denotes the back reflector reflection coefficient. In

this work, we use glass-backed goldmirrors with n = 0.25+
3.46i and thickness 50 nm or 20 nm, and dielectric spac-

ers of varying thickness and index n = 1.45. Solving Eq. (8)

with proper Md, these values yield reflection coefficients

rm = −0.5935− 0.6502i and −0.3066− 0.5126i, respectively.

Eq. (10) has been used in literature to explain the topological

constraints on perfect absorption conditions in absorbing

metasurface etalons [28].

3 Results

3.1 Gain equivalent of lossy metasurface

We now discuss the response of Salisbury screens that

include optical gain. We examine increasingly complex sce-

narios for metasurface etalons with gain, focusing on sin-

gular responses. The simplest case is presented in Figure 3:

Reflectivity of a standard etalon where a lossy mirror is

separated by a transparent spacer from a layer composed of

nanoparticleswhose response are definedby theLorentzian

Drudemodel (Eq. (3)).We compare the standard case of loss,

modeled by positive oscillator strength V shown in pan-

els (a-d), with the simplest self-consistent model of ampli-

fication of equivalent magnitude set by negative volume,

V →−V in panels (e-h). Parameters are chosen to closely

resemble the standard plasmonic Salisbury screen in Ref.

[28], sketched in Figure 1a. The left three columns of Figure 3

show reflectivity amplitude in a phase space (𝜔, d) spanned

by etalon spacing d and frequency 𝜔, with different panels

corresponding to successively higher antenna density (plots

labeledwith lattice pitch a =
√
A, assuming square lattices).

The rightmost column displays reflectivity phase. Through-

out thiswork,weuse color scales for |ra| that are linear from
0 to 1 (blue to white), and logarithmic for |ra| > 1 (white

(c) (d)

(h)(g)(f)(e)

(b)(a)

Figure 3: Transfer matrix calculations in (𝜔, d) space of an etalon with a regular Drude metasurface versus its amplifying equivalent. (a–c) Reflectivity

amplitude for metasurfaces of increasing particle density (decreasing square arrays pitch a listed as plot titles), assuming standard lossy plasmon

particles. At a = 200 nm, absorption zeros around the plasmon resonance appear, two of which are pointed out with a red ⚬ for clarity. In reflection
phase ((d), referenced to same structure without particles), the pairs of zeros appear as phase singularities of opposite topological charge±1.
(e–g) Response for the amplifying equivalent structure (V →−V in Eq. (2)). Amplification singularity pairs occur at a = 200 nm (indicated with×).
However, note that the response does not simply exchange loss for gain as also the dispersion around𝜔0 is inverted. Evaluated for V = 3 × 10−23 m3

and Au mirror thickness 50 nm.
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to red, clipped at ra = 102). Panels (a-d) show the case of a

standard lossy metasurface Salisbury screen. The response

is dominated by the hybridization of the antenna resonance

at 2.4 × 1015 rad/s with etalon resonance conditions, espe-

cially visible in (c): At thicknesses of approximately 250,

500 and 750 nm, hyperbolic white features curve from top

slightly rightward towards bottom. In between these etalon

conditions, the reflectivity amplitude drops with increasing

antenna density, signifying absorption. At a = 200 nm, the

value of ra has become large enough that points of perfect

absorption occur. They arise in pairs, and coincide with sin-

gularities in the reflection phase shown in panel (d) (phase

referenced to the phase pickup in absence of the particles).

In the parameter space spanned by 𝜔− d, phase singu-

larities arise in pairs of opposite charge ±1, indicating a

2𝜋 phase increment over a (counter)clockwise loop around

the singular points. These charges highlight the topological

nature of the singularity conditions.

Next, we turn to the amplifying counterpart (V →

−V) in Figure 3e–h, the geometry of which is sketched in

Figure 1b. At first glance, it appears that as loss is replaced

by gain, the absorption features in reflection are replaced by

enhanced reflection. At low antenna density the reflectivity

enhancement is modest (mimicking the finite absorption in

panels (a,b)), while above a threshold antenna density, the

gain metasurface etalon displays poles in reflectivity. These

emerge as the counterparts of perfect absorption in (c), and

likewise correspond to phase singularities (compare panel

h and d). While qualitatively the results for gain are clearly

analogous to the case of loss (points of singular behavior,

arising in pairs, exchanging zeros for poles), there is one

striking difference: For pairs of perfect absorption the red-

shifted (blue-shifted) singularity appears for spacing larger

(resp. smaller) than the etalon condition, but in the case

of gain this ordering is reversed. Associated with that, the

phase map (h) is mirrored in the line 𝜔 = 𝜔0, meaning

that for a given pair of singularities, not only the frequency

ordering is flipped, but also the topological charges. This

evidences that poles and zeros are not simply interchanged

when going from a lossy polarizability to an equivalent

gainy polarizability. The explanation is that the entire polar-

izability flips sign, i.e., both the real and imaginary parts,

as opposed to complex conjugating which is common in

some branches of literature on amplifying nanophotonics,

PT-symmetry and CPA-lasing [17], [18], [30], [31], [54], [64].

In the framework of the Salisbury screen, the approach

𝛾 →−𝛾 (leading to an amplifying but unphysical polariz-

ability) would interchange perfect absorption for perfect

amplification points, without rearranging the location of

the singularities in phase space. The fact that a correct

gain dispersion also changes the real part of the response

function is well-known in other fields, such as the field of

anomalous dispersion in gain media [51], [52], where the

effect is responsible for superluminal light propagation.

3.2 Gainy spacers in lossy etalons

Next, we explore systems that simultaneously have both

gain and loss. A first system one could envision is a standard

Salisbury screen (lossy plasmonic particles), but imbuing

the spacer medium with gain. We study the dependence

of the Salisbury screen response on the imaginary part of

the refractive index of the glass spacer layer in Figure 4,

ignoring dispersion in the gain. As a starting point we

take the case of Figure 3b: A Salisbury screen made with

a plasmon lattice that is not quite dense enough to cre-

ate points of perfect absorption if the spacer has neither

gain nor loss (reproduced as panel Figure 4d). To the left of

panel (d), in panels (a-c) we consider increasing loss, and to

the right, in panels (e-g), increasing gain. Spacer loss/gain

is modeled through a non-dispersive imaginary refractive

index n′′, while a constant n′ = 1.45 defines the real part.

For increasing spacer loss, we already notice for n′′ = 0.05

that absorption singularity-pairs emerge. Their frequency

separation increases with the amount of spacer loss (n′′)

and also with spacer thickness d. The latter effect is to be

contrasted with Salisbury screens with lossless spacer: If

there are singularities, they occur at all successive etalon

orders and at identical frequencies, see Figure 3c and d).

Turning to the case of gainy spacers in Figure 4e–g, ampli-

fication singularities appear for n′′ = −0.15. Amplification
is strongest at the etalon resonance conditions, and pockets

of absorption persist. It is obvious that zeros and poles

cannot simply be interchanged when n′′ → −n′′. Indeed,
it is immediately obvious that there is no time reversal

symmetry when inverting the sign of n′′ in the spacer, while

maintaining constant particle losses.

For standard plasmonic Salisbury screens, the topologi-

cal origin of perfect absorption points, and the necessity for

them to occur in pairs [28], can be explained by the simple

Fabry–Perot interference model Eq. (10). This analysis gen-

eralizes to the zeros and poles of amplifying metasurface

etalons. Zeros arise from the numerator, and occurwhen the

complex-valued quantities

z1(𝜔) =
−ra(𝜔)

1+ 2ra(𝜔)
and z2(𝜔, d) = rme

2ik(𝜔)nd (11)

are equal. Complex functions z1(𝜔) and z2(𝜔, d) are plotted

in Figure 4i for a lossless spacer. The quantity z1 is solely

dependent on the metasurface. When sweeping frequency

𝜔, z1 traces a circle in the complex plane, starting at the
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(a)

(h) (i) (j) (k)

(b) (c) (d) (e) (f) (g)

Figure 4: Response of metasurface etalons with non-dispersive loss or gain in the dielectric spacer. The metasurface comprises standard lossy

plasmon antennas. (a–g) Evolution with increasing loss resp. gain of the reflection amplitude. The reference case n′′ = 0 corresponds to panel (d).

Absorption singularities appear for n′′ ≥ 0.05, and are highlighted in (a) with red ⚬. Reflection poles only appear for n′′ ≤ −0.15, indicated in (g) with
red × for n′′ = −0.2. (h–i) resp. (j–k) Complex-plane construction of conditions for reflection zeros resp. poles. Orange (blue) curves correspond to z1
and p1 (resp. z2, p2). Panel (h) shows how a spacer absorption of n′′ = 0.15 generates intersections, i.e. perfect absorption points, which do not exist in

the case of zero spacer loss (panel i), owing to insufficient antenna density at the chosen a = 350 nm. Similarly, panel (k) shows the generation of

amplification singularity conditions, which only exist for sufficient spacer gain (here, n′′ = −0.2). Evaluated for pitch a = 350 nm, V = 3 × 10−23 m3

and Au mirror thickness 50 nm. Open black circles in (h,i) resp. (j,k) indicate rm resp. 1∕rm (starting point of z2 resp. p2 at d = 0), while the asterisks

indicate z1 resp. p1 at scatterer resonance𝜔 = 𝜔0. Zeros and pole conditions are indicated by the red circles and crosses.

origin for zero frequency, returning to it at infinite fre-

quency, while reaching its point farthest from the origin

when 𝜔 = 𝜔0, where z1 intersects the real axis. The circle

grows in radius with increasing oscillator strength V , reach-

ing infinite radius when ra(𝜔0) = −1∕2. At even stronger

scattering, the circle appears on the other side of the imagi-

nary axis. The quantity z2 instead does not depend on the

metasurface, but only on the combination of spacer and

mirror. For a lossless spacer it simply traces out a circle in

the complex plane of radius rm centered on the origin, both

as function of frequency 𝜔 and spacing d. For the lossless

example at hand, there is no crossing between z1 (orange

curve), and z2 (blue curve) and thus no zero reflection

points are expected. For somewhat larger oscillator strength

(increased radius ra), intersections will occur in pairs and

are revisitedwhen increasing the etalon thicknessd for each

revolution over the blue circle.

We now discuss the generalization to lossy spacers.

While themetasurface term z1 is left unchanged, the term z2
now changes froma circle of radius rm to a spiral that spirals

inward as the radius decreases with frequency𝜔 and etalon

spacing d. One turn of the spiral is traversed when n′k0d

corresponds to a 2𝜋 phase increment, while the change in

radius per turn of the spiral is governed by n′′. In panel 4h,

the spiral starts at the point rm corresponding to just the

mirror, and displays already the first round trip a first pair

of intersections, while the second turn generates a second

pair, etcetera. The intersections correspond to points of zero

reflection, and the frequency at which they occur can be

read off from z1, since each point on the orange circle corre-

sponds to a unique frequency. The matched etalon spacing

d can then be read off from z2, since each point on z2 corre-

sponds to a unique value of the product 𝜔d. The first two

intersections with z2 occur at frequencies comparatively

close to the plasmon resonance. The intersections at the

next higher etalon orders occur increasingly far from res-

onance. All these observations are in line with the transfer

matrix calculations of panel (a). In the case of amplification,

the spiral grows outwards, meaning that perfect absorption

conditions do not occur.

A similar analysis can be made for poles in the

reflectivity, for which we analyze the denominator of the

Fabry–Perot interference formula. Setting the denominator

to zero is equivalent to satisfying the condition p1(𝜔) =
p2(𝜔, d) for two complex valued quantities

p1(𝜔) = ra(𝜔) and p2(𝜔, d) = 1∕(rme2ik(𝜔)nd ), (12)

where again p1 only depends on the metasurface response,

and p2 only depends on the mirror and spacer. Now p1 trav-

els a clockwise circle in the complex plane with increasing
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frequency (panel 4j), centered on the negative real axis and

touching the origin. Again, the furthest point of p1 from the

origin occurs at plasmon resonance. For n′′ = 0, the term p2
(a circle of radius 1∕rm) has a much larger radius than p1,

and the system is very far from emergence of amplification

singularities. As gain is introduced (panel k in Figure 4),

the term p2 turns from a circle into an inward spiral. This

causes the occurrence of crossings, i.e., reflection poles. The

large mismatch in radius between p1 and p2 means that

significant gain or path length is required: In this example

crossings only occur at the second round trip. Higher order

intersections occur but only at points very far detuned from

plasmon resonance, out of the frequency range considered

in our plots. Again, all observations are in linewith the (𝜔, d)

map in panel (g). To summarize, when the time-symmetry

is explicitly broken, i.e., introducing loss/gain in the spacer

while keeping plasmon losses unchanged, very different

conditions for generating zeros and poles are predicted.

3.3 Both loss and gain in metasurfaces

We finally proceed to the scenario of metasurface etalons

with lossless spacers and a loss-gain metasurface, following

the model of Manjavacas, where the permittivity function

reads 𝜖(𝜔) = 𝜖Drude(𝜔)+ 𝜒gain(𝜔) [50]. Importantly, Re(𝛼)

does not immediately flip sign upon increasing population

inversion (Figure 2g and h). We take antenna volumes V =
2 × 10−23m−3 and assume the gain resonance 𝜔g to over-

lap with the plasmon resonance 𝑤0, and take a line width

𝛾 g = 0.01𝜔g . Figure 5 considers dense (a = 250 nm, panels

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

(p) (q) (r) (s) (t)

Figure 5: Response of metasurface etalons with gain-plasmon antennas, following the model of Manjavacas [50]. The spacer is lossless.

(a–e) Reflectivity amplitude for a dense metasurface (a = 250 nm) as function of increasing gain parameter F. For F = 0 the absorption singularity

pairs are far from the plasmon resonance. For increasing F the absorption singularities ⚬ approach the plasmon resonance𝜔0, and ultimately

disappear. (f–j) reflectivity amplitude of a dilute metasurface etalon (a = 400 nm), without absorption singularities in absence of gain. Absorption

singularities are induced by gain (⚬ in panel (h), and ultimately are replaced by amplification singularities at larger gain ( × in panel i).

(k–o) geometrical construction in the complex plane for reflectivity zeros and poles. Orange (blue) curves correspond to z1 and p1 (resp. z2, p2).

Intersections signify the occurrence of zeros (panel (m)) and poles (panel (s)). Evaluated for V = 2 × 10−23 m3 and Au mirror thickness 20 nm. Open

black circles in (k–o) resp. (p–t) indicate rm resp. 1∕rm (starting point of z2 resp. p2 at d = 0), while the asterisks indicate z1 resp. p1 at scatterer

resonance𝜔 = 𝜔0. Zero and pole conditions are indicated by the red circles and crosses.
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a–e) and dilute (a = 400 nm, panels f–j) lattices. For the

dense lattice at hand, Figure 5a shows that in the absence

of gain, absorption singularity pairs exist at frequencies

quite far away fromplasmon resonance. Increasing the gain

parameter F brings the pairs closer to the resonance, until

they disappear for F = 0.4. For the dilute lattice without

gain, no absorption singularities exist (panel f), but as F

increases (panels (g-j)), two absorption singularities emerge

(just below F = 0.1). They annihilate at F = 0.3, when two

gain singularities have emerged. Again, we can explain the

singularity behavior by searching for intersections of the

zero functions z1 and z2 in panels (a-e), and pole functions

p1 and p2 in panels (k-o). While for the loss/gain spacer case

(Figure 4), the terms z2 and p2 (blue curves) were modified

by loss/gain, here the changes occur in the metasurface

terms z1 and p1 (orange curves).

Focusing on the absorption zeros, if one starts with the

dilute metasurface, the circle generated by z1 is too small

to generate an intersection with the term z2 (blue circle of

radius rm). Upon pumping, loss compensation causes the

metasurface response z1 to grow in radius, creating a pair

of intersections (compare panels k,l,m). Optical gain thus

causes pairs of reflection zeros that will occur at all etalon

orders. For further increasing gain, the singularities disap-

pear (panel n) owing to the fact that z1 shrinks again. It

should be noted that the sharp, non-trivial dispersion causes

the z1 locus to deviate from the circular shapes that occur

for simple Lorentzian antennas. Turning to the occurrence

of poles one notices a similar evolution, with the locus of

p1 growing in radius in k, reaching a condition where two

singularities originate in pairs (panel s), while the gain sin-

gularities disappear for even stronger pumping. For both

the zero and pole construction, the trajectories of z1 resp.

p1 change the orientation at which they cross through the

real axis at critical F values. For the reflection zeros, this is

associated with Re[ra] crossing the value 1∕2 (flipping the
sign of z1), while for the poles, this reversal occurs when

Re[ra]) changes sign, which happens when the metasurface

by itself (in absence of the back reflector) goes through

its gain singularity (Figure 2g). In summary, in this type of

metasurface etalon the addition of gain can induce both

perfect absorption points and amplification singularities.

Singularities require a critical gain: They disappear both

when gain is too low and when gain is too large.

For the system with loss and gain, one may wonder if

zeros and poles can coexist - or even coalesce - in (𝜔, d)

space. In Figure 6, we focus on a small region in (𝜔, d) space,

and very small increments of F around the emergence of

gain singularities. For F = 0.26, the reflectivity amplitude

plot (panel a) displays two perfect absorption points, as sub-

stantiated by the two oppositely charged phase singularities

in the reflection phase (panel d). Here, z1 and z2 intersect,

(a) (b) (c)

(d) (e) (f)

Figure 6: Birth and annihilation of absorption and amplification singularities. We consider the dilute (a = 400 nm) amplifying metasurface etalon of

Figure 5. (a–c) and (d–f) Reflection amplitude and phase in a small part of𝜔− d parameter space for small increments of gain F. At F = 0.27 (panel

b,e), both absorption and gain singularities are present, while in panels (a,d) and (c,f) only zeros resp. only poles occur. Evaluated for V = 2 × 10−23 m3

and Au mirror thickness 20 nm.
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but not p1 and p2. When increasing gain only very slightly

to F = 0.27, also p1 intersects p2 near resonance, and two

amplification singularities co-exist togetherwith the perfect

absorption points (panels b, e). Another increment in gain

pushes the gain singularities away from each other, while

on a trajectory in between the gain singularities, the two

absorption singularities approach and annihilate (F = 0.28,

panels c,f). The co-existence of two types of singularities in

parameter space is reminiscent of Ref. [20]. One can ask if

this behavior is generic, or if one can construct conditions

in which the creation of the amplification singularity pair

exactly coincides with the annihilation of the absorption

singularity pair. Mathematically, the poles and zeros can

only exactly coincide in the case of a perfect etalon, with a

perfect mirror |rm| = 1, andwhen at the same time ra = −1.
The latter solution from Eq. (7) implies a static polarizabil-

ity 𝛼0(𝜔) = ∞, which requires not only the usual particle

plasmon resonance condition (Re[𝜖(𝜔)+ 2𝜖host] = 0) to be

fulfilled, but also perfect compensation of the plasmon loss

by the gain [65], [66].While this perfectmirror condition can

never be strictly achieved, for very high reflectivity mirrors

and antenna’s operated near the polarizability singularity

condition, the zero and pole may approach each other very

closely in parameter space.

4 Discussion

We analyzed the physics of absorption and amplification

singularities in reflectivity (in (𝜔, d) space) of plasmonic

metasurface etalons with amplifying constituents. Several

observations stand out. First, replacing plasmon antennas

with pure gain counterparts is not simply a time-reversal

operation in which loss singularities become gain singular-

ities. Two aspects are at play. First, for pure gain antennas

not only the imaginary part of polarizability dispersion flips

sign, but also the real part. Hence singularities appear at

the same equivalent oscillator strength (|V|), but not at the
same 𝜔− d combinations. Second, time-reversing a scat-

tering experiment is generally not equivalent to swapping

loss and gain rates, as radiation loss is not inverted in sign.

A further set of peculiar observations is that (A) gain can

induce perfect absorption, and (B) if gain induces poles in

reflection, these conditions of singular reflection only occur

at isolated (pairs of) 𝜔− d points, (C) these generally do

not persist indefinitely as gain is increased. The observation

that one requires critical gain, and that more gain removes

singular response, is reminiscent of the physics of critical

coupling: Loss, gain, and coupling rates need to be all care-

fully matched to obtain singular response.

One has to acknowledge that in this conceptual the-

ory work we have used gain parameters that cannot be

readily obtained in optics (our values imply gain coeffi-

cients up to g = 2 × 104 cm−1). Nonetheless we argue that

the phenomena may be realizable in experiments. Firstly,

high gain parameters can be achieved by for instance using

perovskite quantum dots [54]. Perovskite Mie scatterers

that demonstrate resonant net gain and room tempera-

ture lasing have been demonstrated in literature [67], quot-

ing g = 3 × 104 cm−1 as material gain coefficient. Secondly,

our model ignores near field enhancement effects that can

increase gain. Lastly, one could envision using waveguid-

ing geometries and local density of states enhancements

to make better use of material gain. Indeed, these mech-

anisms are routinely used in plasmon lattice lasers that

show modest lasing thresholds (mJ/cm2) at material gain

coefficients g ∼ 100 cm−2. We thus envision that in such

systems, just below lasing threshold, application possibili-

ties could open up as amplitude and phase tunable meta-

surface pixels, where each amplifying metasurface etalon

forms a single pixel. The possibility to bring the absorption

and amplification singularity pairs extremely close to each

other in parameter space means this system can be actively

tuned to switch between extreme amplitude enhancement

and de-enhancement in a very small window of parameters

(F, 𝜔, d).

An open question is what the actual experimental fin-

gerprint will be if you address the reflection poles in exper-

iment. We have evaluated a purely linear model which

should break down at the reflection pole conditions: The

actual description would need to include nonlinear effects

such as gain dynamics, saturation and depletion of the gain,

as well as noise [54]. To account for such effects, various

works employ rate equation models that incorporate both

the plasmonic lattice mode and the gain medium. For the

lattice interactions, either FDTD [68]–[71] or tight-binding

methods [72], [73] can be used, where both routes fol-

low density matrix methods to model the four-level gain

medium. Having access to lattice plasmons coupled to gain

with spatio-temporal resolution is of interest for the effect

of plasmonic near fields on the gain coefficient: The plas-

mon mode comes with deeply subwavelength spatial and

picosecond temporal signatures, and in Refs. [69], [70] it is

shown that this leads to highly local gain enhancements.

Although the plasmonic gain enhancements are beneficial

for the amplification of a probe pulse that harvests the

gain, they also lead to spatially/temporally varying gain sat-

uration and depletion of the amplified mode [69], [70]. It

remains an interesting but open question how such nonlin-

earities influence the dynamic behavior of light scattering
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and lasing near the zero and pole singularities considered

in this work. When operated just below lasing threshold, a

small signal of probe beam could trigger the onset of lasing

[69],whichwill occur on the pole singularity condition (𝜔, d)

of the linear model [18]. Otherwise, temporal pulse shaping

in the spirit of virtual gain might sidestep some of these

issues, by accessing the scattering matrix at frequencies

away from the real axis [18], [74]. Also, the nonlinear dynam-

ics could open interesting perspectives for these systems as

nonlinear, or self-oscillating optical elements [72], [73].

Acknowledgement: This work was part of the Dutch

Research Council (NWO) andwas performed at the research

institute AMOLF.

Research funding: None declared.

Author contributions: NGF performed model implemen-

tation, analysis, interpretation, and writing. GMK con-

tributed to model implementation, analysis, and interpre-

tation. PS assisted in interpretation and commented on

the manuscript. AFK contributed to model implementa-

tion, analysis, interpretation, cowriting themanuscript, and

overall supervision. All authors accepted the responsibility

for the content of the manuscript and consented to its sub-

mission, reviewed all the results, and approved the final

version of the manuscript.

Conflict of interest: Authors state no conflict of interest.

Data availability: This paper is not associated to mea-

sured data - all graphs are obtained by plotting the quoted

equations. AMATLAB code implementing the paper is avail-

able on request.

References

[1] N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla,

“Perfect metamaterial absorber,” Phys. Rev. Lett., vol. 100, no. 20,

p. 207402, 2008..

[2] X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and

frequency selective metamaterial with near-unity absorbance,”

Phys. Rev. Lett., vol. 104, no. 20, p. 207403, 2010..

[3] K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband

polarization-independent resonant light absorption using

ultrathin plasmonic super absorbers,” Nat. Commun., vol. 2, no. 1,

p. 517, 2011..

[4] N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso,

“A broadband, background-free quarter-wave plate based on

plasmonic metasurfaces,” Nano Lett., vol. 12, no. 12,

pp. 6328−6333, 2012..
[5] A. Pors and S. I. Bozhevolnyi, “Plasmonic metasurfaces for efficient

phase control in reflection,” Opt. Express, vol. 21, no. 22,

pp. 27438−27451, 2013..
[6] Y. Yao, et al., “Electrically tunable metasurface perfect absorbers

for ultrathin mid-infrared optical modulators,” Nano Lett., vol. 14,

no. 11, pp. 6526−6532, 2014..

[7] Y. Ra’di, C. Simovski, and S. Tretyakov, “Thin perfect absorbers for

electromagnetic waves: theory, design, and realizations,” Phys. Rev.

Appl., vol. 3, no. 3, p. 037001, 2015..

[8] F. Huang, et al., “Zero-reflectance metafilms for optimal plasmonic

sensing,” Adv. Opt. Mater., vol. 4, no. 2, pp. 328−335, 2016..
[9] B. Sima, K. Chen, X. Luo, J. Zhao, and Y. Feng, “Combining

frequency-selective scattering and specular reflection through

phase-dispersion tailoring of a metasurface,” Phys. Rev. Appl.,

vol. 10, no. 6, p. 064043, 2018..

[10] C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial

electromagnetic wave absorbers,” Adv. Mater., vol. 24, no. 23,

pp. OP98−OP120, 2012..
[11] F. Ding, Y. Yang, R. A. Deshpande, and S. I. Bozhevolnyi, “A review

of gap-surface plasmon metasurfaces: fundamentals and

applications,” Nanophotonics, vol. 7, no. 6, pp. 1129−1156, 2018..
[12] W. W. Salisbury, “Absorbent body for electromagnetic waves,” US

Patent, p. US2599944A, 1952.

[13] R. Fante and M. McCormack, “Reflection properties of the

Salisbury screen,” IEEE Trans. Antennas Propag., vol. 36, no. 10,

pp. 1443−1454, 1988..
[14] Y. Cai, J. Zhu, and Q. H. Liu, “Tunable enhanced optical absorption

of graphene using plasmonic perfect absorbers,” Appl. Phys. Lett.,

vol. 106, no. 4, p. 043105, 2015..

[15] J. R. Piper and S. Fan, “Total absorption in a graphene monolayer

in the optical regime by critical coupling with a photonic crystal

guided resonance,” ACS Photonics, vol. 1, no. 4, pp. 347−353, 2014..
[16] S. Kim, M. S. Jang, V. W. Brar, K. W. Mauser, L. Kim, and

H. A. Atwater, “Electronically tunable perfect absorption in

graphene,” Nano Lett., vol. 18, no. 2, pp. 971−979, 2018..
[17] Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent perfect

absorbers: time-reversed lasers,” Phys. Rev. Lett., vol. 105, no. 5,

p. 053901, 2010..

[18] A. Krasnok, D. Baranov, H. Li, M.-A. Miri, F. Monticone, and A. Alù,

“Anomalies in light scattering,” Adv. Opt. Photon., vol. 11, no. 4,

pp. 892−951, 2019..
[19] Z. J. Wong, et al., “Lasing and anti-lasing in a single cavity,” Nat.

Photonics, vol. 10, no. 12, pp. 796−801, 2016..
[20] C. Hang, G. Huang, and V. V. Konotop, “Tunable spectral

singularities: coherent perfect absorber and laser in an atomic

medium,” New J. Phys., vol. 18, no. 8, p. 085003, 2016..

[21] W. Y. Cui, J. Zhang, Y. Luo, X. Gao, and T. J. Cui, “Dynamic switching

from coherent perfect absorption to parametric amplification in a

nonlinear spoof plasmonic waveguide,” Nat. Commun., vol. 15,

no. 1, p. 2824, 2024..

[22] J. Zhang, K. F. MacDonald, and N. I. Zheludev, “Controlling

light-with-light without nonlinearity,” Light Sci. Appl., vol. 1, no. 7,

p. e18, 2012..

[23] R. Alaee, M. Farhat, C. Rockstuhl, and F. Lederer, “A perfect

absorber made of a graphene micro-ribbon metamaterial,” Opt.

Express, vol. 20, no. 27, pp. 28017−28024, 2012..
[24] M. Kang, Y. D. Chong, H.-T. Wang, W. Zhu, and M. Premaratne,

“Critical route for coherent perfect absorption in a Fano resonance

plasmonic system,” Appl. Phys. Lett., vol. 105, no. 13, p. 131103,

2014..

[25] M. A. Kats and F. Capasso, “Optical absorbers based on strong

interference in ultra-thin films,” Laser Photonics Rev., vol. 10, no. 5,

pp. 735−749, 2016..
[26] C. Menzel, J. Sperrhake, and T. Pertsch, “Efficient treatment of

stacked metasurfaces for optimizing and enhancing the range of



2328 — N. de Gaay Fortman et al.: Absorption and amplification singularities

accessible optical functionalities,” Phys. Rev. A, vol. 93, no. 6,

p. 063832, 2016..

[27] R. Alaee, M. Albooyeh, and C. Rockstuhl, “Theory of metasurface

based perfect absorbers,” J. Phys. D: Appl. Phys., vol. 50, no. 50,

p. 503002, 2017..

[28] A. Berkhout and A. F. Koenderink, “Perfect absorption and phase

singularities in plasmon antenna array etalons,” ACS Photonics,

vol. 6, no. 11, pp. 2917−2925, 2019..
[29] R. Colom, et al., “Crossing of the branch cut: the topological origin

of a universal 2𝜋-phase retardation in non-hermitian

metasurfaces,” Laser Photonics Rev., vol. 17, no. 6, p. 2200976,

2023..

[30] D. G. Baranov, A. Krasnok, T. Shegai, A. Alù, and Y. Chong,

“Coherent perfect absorbers: linear control of light with light,” Nat.

Rev. Mater., vol. 2, no. 1, pp. 1−14, 2017..
[31] Y. D. Chong, L. Ge, and A. D. Stone, “PT-symmetry breaking and

laser-absorber modes in optical scattering systems,” Phys. Rev.

Lett., vol. 106, no. 9, p. 093902, 2011..

[32] P. Bai, et al., “Simultaneous realization of a coherent perfect

absorber and laser by zero-index media with both gain and loss,”

Phys. Rev. A, vol. 94, no. 6, p. 063841, 2016..

[33] B. Baum, H. Alaeian, and J. Dionne, “A parity-time symmetric

coherent plasmonic absorber-amplifier,” J. Appl. Phys., vol. 117,

no. 6, p. 063106, 2015..

[34] Z. Gu, N. Zhang, Q. Lyu, M. Li, S. Xiao, and Q. Song, “Experimental

demonstration of PT-symmetric stripe lasers,” Laser Photonics Rev.,

vol. 10, no. 4, pp. 588−594, 2016..
[35] M. Elsawy, et al., “Universal active metasurfaces for ultimate

wavefront molding by manipulating the reflection singularities,”

Laser Photonics Rev., vol. 17, no. 7, p. 2200880, 2023..

[36] M. Li, L. Michaeli, and H. A. Atwater, “Electrically tunable

topological singularities in excitonic two-dimensional

heterostructures for wavefront manipulation,” ACS Photonics,

vol. 11, no. 9, pp. 3554−3562, 2024..
[37] Y.-R. Zhang, J.-Q. Yuan, Z.-Z. Zhang, M. Kang, and J. Chen,

“Exceptional singular resonance in gain mediated metamaterials,”

Opt. Express, vol. 27, no. 5, pp. 6240−6248, 2019..
[38] M. Chen, Z. Li, X. Tong, X. Wang, and F. Yang, “Manipulating the

critical gain level of spectral singularity in active hybridized

metamaterials,” Opt. Express, vol. 28, no. 12, pp. 17966−17978,
2020..

[39] A. Berkhout and A. F. Koenderink, “A simple transfer-matrix model

for metasurface multilayer systems,” Nanophotonics, vol. 9, no. 12,

pp. 3985−4007, 2020..
[40] C. Bohren and D. R. Huffman, Absorption and Scattering by Small

Particles, New York, John Wiley & Sons, 1983.

[41] P. de Vries, D. V. van Coevorden, and A. Lagendijk, “Point

scatterers for classical waves,” Rev. Mod. Phys., vol. 70, no. 2,

pp. 447−466, 1998..
[42] F. J. García de Abajo, “Colloquium: light scattering by particle

and hole arrays,” Rev. Mod. Phys., vol. 79, no. 4, pp. 1267−1290,
2007..

[43] M. A. K. Othman, V. Galdi, and F. Capolino, “Exceptional points of

degeneracy and PT symmetry in photonic coupled chains of

scatterers,” Phys. Rev. B, vol. 95, no. 10, p. 104305, 2017..

[44] X. Chen, W. Yue, R. Tao, P. Yao, and W. Liu, “Scattering

phenomenon of PT-symmetric dielectric-nanosphere structure,”

Phys. Rev. A, vol. 94, no. 5, p. 053829, 2016..

[45] X. Chen, H. Wang, J. Li, K.-Y. Wong, and D. Lei, “Scattering

asymmetry and circular dichroism in coupled PT-symmetric chiral

nanoparticles,” Nanophotonics, vol. 11, no. 9, pp. 2159−2167, 2022..
[46] C. W. Ling, K. H. Choi, T. C. Mok, Z.-Q. Zhang, and K. H. Fung,

“Anomalous light scattering by topological PT-symmetric particle

arrays,” Sci. Rep., vol. 6, no. 1, p. 38049, 2016..

[47] R. Kolkowski and A. F. Koenderink, “Lattice resonances in optical

metasurfaces with gain and loss,” Proc. IEEE, vol. 108, no. 5,

pp. 795−818, 2020..
[48] R. Kolkowski, S. Kovaios, and A. F. Koenderink, “Pseudochirality at

exceptional rings of optical metasurfaces,” Phys. Rev. Res., vol. 3,

no. 2, p. 023185, 2021..

[49] A. E. Siegman, Lasers, Mill Valley, United States, University Science

Books, 1986.

[50] A. Manjavacas, “Anisotropic optical response of nanostructures

with balanced gain and loss,” ACS Photonics, vol. 3, no. 7,

pp. 1301−1307, 2016..
[51] R. Y. Chiao, “Superluminal (but causal) propagation of wave

packets in transparent media with inverted atomic populations,”

Phys. Rev. A, vol. 48, no. 1, pp. R34−R37, 1993..
[52] A. Dogariu, A. Kuzmich, and L. J. Wang, “Transparent anomalous

dispersion and superluminal light-pulse propagation at a negative

group velocity,” Phys. Rev. A, vol. 63, no. 5, p. 053806, 2001..

[53] T. Savels, A. P. Mosk, and A. Lagendijk, “Light scattering from

three-level systems: the T matrix of a point dipole with gain,” Phys.

Rev. A, vol. 71, no. 4, p. 043814, 2005..

[54] A. Krasnok and A. Alù, “Active nanophotonics,” Proc. IEEE, vol. 108,

no. 5, pp. 628−654, 2020..
[55] A. A. Govyadinov, V. A. Podolskiy, and M. A. Noginov, “Active

metamaterials: sign of refractive index and gain-assisted

dispersion management,” Appl. Phys. Lett., vol. 91, no. 19, p. 191103,

2007..

[56] S. Campione, M. Albani, and F. Capolino, “Complex modes and

near-zero permittivity in 3D arrays of plasmonic nanoshells: loss

compensation using gain,” Opt. Mater. Express, vol. 1, no. 6,

pp. 1077−1089, 2011..
[57] S. Schwaiger, et al., “Gain in three-dimensional metamaterials

utilizing semiconductor quantum structures,” Phys. Rev. B, vol. 84,

no. 15, p. 155325, 2011..

[58] N. Arnold, K. Piglmayer, A. V. Kildishev, and T. A. Klar, “Spasers

with retardation and gain saturation: electrodynamic description

of fields and optical cross-sections,” Opt. Mater. Express, vol. 5,

no. 11, pp. 2546−2577, 2015..
[59] V. Caligiuri, L. Pezzi, A. Veltri, and A. De Luca, “Resonant gain

singularities in 1D and 3D metal/dielectric multilayered

nanostructures,” ACS Nano, vol. 11, no. 1, pp. 1012−1025,
2017..

[60] G. V. Kristanz, N. Arnold, A. V. Kildishev, and T. A. Klar, “Power

balance and temperature in optically pumped spasers and

nanolasers,” ACS Photonics, vol. 5, no. 9, pp. 3695−3703,
2018..

[61] S. Baur, S. Sanders, and A. Manjavacas, “Hybridization of lattice

resonances,” ACS Nano, vol. 12, no. 2, pp. 1618−1629, 2018..
[62] P. Yeh, “Optics of anisotropic layered media: a new 4 × 4 matrix

algebra,” Surf. Sci., vol. 96, no. 1, pp. 41−53, 1980..
[63] A. Kwadrin, C. I. Osorio, and A. F. Koenderink, “Backaction in

metasurface etalons,” Phys. Rev. B, vol. 93, no. 10, p. 104301,

2016..



N. de Gaay Fortman et al.: Absorption and amplification singularities — 2329

[64] S. Longhi, “PT-symmetric laser absorber,” Phys. Rev. A, vol. 82,

no. 3, p. 031801, 2010..

[65] N. M. Lawandy, “Localized surface plasmon singularities in

amplifying media,” Appl. Phys. Lett., vol. 85, no. 21, pp. 5040−5042,
2004..

[66] A. Veltri and A. Aradian, “Optical response of a metallic

nanoparticle immersed in a medium with optical gain,” Phys. Rev.

B, vol. 85, no. 11, p. 115429, 2012..

[67] E. Tiguntseva, et al., “Room-temperature lasing from mie-resonant

nonplasmonic nanoparticles,” ACS Nano, vol. 14, no. 7,

pp. 8149−8156, 2020..
[68] A. Fang, T. H. Koschny, and C. M. Soukoulis, “Self-consistent

calculations of loss-compensated fishnet metamaterials,” Phys.

Rev. B, vol. 82, no. 12, p. 121102(R), 2010..

[69] S. Wuestner, A. Pusch, K. L. Tsakmakidis, J. M. Hamm, and O. Hess,

“Gain and plasmon dynamics in active negative-index

metamaterials,” Phil. Trans. R. Soc. A., vol. 369, no. 1950,

pp. 3525−3550, 2011..
[70] O. Hess, J. B. Pendry, S. A. Maier, R. F. Oulton, and

K. L. Tsakmakidis, “Active nanoplasmonic metamaterials,” Nat.

Mater., vol. 11, no. 7, pp. 573−584, 2012..
[71] J. Cuerda, F. Rüting, F. J. García-Vidal, and J. Bravo-Abad, “Theory of

lasing action in plasmonic crystals,” Phys. Rev. B, vol. 91, no. 4,

p. 041118(R), 2015..

[72] J.-S. Wu, V. Apalkov, and M. I. Stockman, “Topological spaser,”

Phys. Rev. Lett., vol. 124, no. 1, p. 017701, 2020..

[73] N. de Gaay Fortman, R. Kolkowski, D. Pal, S. R. K. Rodriguez, P.

Schall, and A. F. Koenderink, “Spontaneous symmetry breaking in

plasmon lattice lasers,” Sci. Adv., vol. 10, no. 27, p. eadn2723, 2024..

[74] D. G. Baranov, A. Krasnok, and A. Alù, “Coherent virtual absorption

based on complex zero excitation for ideal light capturing,” Optica,

vol. 4, no. 12, pp. 1457−1461, 2017..


	1 Introduction
	2 Model
	2.1 Model for loss materials and scatterers
	2.2 Extension to gain materials
	2.3 Metasurface etalon transfer matrix model

	3 Results
	3.1 Gain equivalent of lossy metasurface
	3.2 Gainy spacers in lossy etalons
	3.3 Both loss and gain in metasurfaces

	4 Discussion


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (Euroscale Coated v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.7
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 35
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1000
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.10000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError false
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /DEU <>
    /ENU ()
    /ENN ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName (ISO Coated v2 \(ECI\))
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName <FEFF005B0048006F006800650020004100750066006C00F600730075006E0067005D>
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 8.503940
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /UseName
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [595.276 841.890]
>> setpagedevice


