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I. MIE SCATTERING THEORY

Mie solution to Maxwell equations describes the scattering of an electromagnetic plane wave by a homogeneous
sphere. [1] Consider a linearly-polarized (in x) plane wave whose wave vector k = kz is along z-direction, with electric
field given by Einc = E0e

ikzx̂. The scattered electric and magnetic fields can be written in terms of a vector harmonic
expansion

Es =

∞∑
n=1

En[ianN
(3)
e1n(k, r)− bnM

(3)
o1n(k, r)] (1a)

Hs =
k

ωµ

∞∑
n=1

En[anM
(3)
e1n(k, r) + ibnN

(3)
o1n(k, r)] (1b)

Here, Me
o mn and Ne

o mn are the electric and magnetic vectorial spherical harmonics. The subscripts label the even
(e) or odd (o) harmonics, m = 1 and n labels the order and the degree of the harmonic. n also indexes the order of the
multipole in the expansion. The superscript (3) indicates that the radial part of the generating functions are spherical

Hankel functions of the first kind. The electric field contribution for each multipole is given by En = inE0(2n+1)
n(n+1) . The

Mie coefficients an and bn depend on the size , shape and material of the illuminated particle.

an(ω) =
µm2

1[ρjn(ρ)]
′jn(ρ1)− µ1m

2[ρ1jn(ρ1)]
′jn(ρ)

µm2
1[ρhn(ρ)]′jn(ρ1)− µ1m2[ρ1jn(ρ1)]′hn(ρ)

(2a)

an(ω) =
µ1[ρjn(ρ)]

′jn(ρ1)− µ[ρ1jn(ρ1)]
′jn(ρ)

µ1[ρhn(ρ)]′jn(ρ1)− µ[ρ1jn(ρ1)]′hn(ρ)
(2b)

Here, µ and µ1 are magnetic permeability of the medium and the particle. jn and hn represent the spherical functions
of Bessel and Hankel of the first kind, respectively. ρ = kR and ρ1 = k1R with R being the radius of the sphere.
k = ω

cm is the wave vector outside the particle and k1 = ω
cm1 is the wave vector in the medium from the particle

material, m and m1 are the refractive indices of the medium and the particle.

II. TOPOLOGICAL MOMENTUM TEXTURE IN HIGHER ORDER MULTIPOLAR FIELD

We show the momentum texture in higher order multipolar fields to validate the characteristics of momentum
textures in the scattering fields of even-order and odd-order multipoles mentioned in the main text. As shown in
FIG. S1, the kinetic momentum field has a discontinuity around the most central region due to vanishing electric and
magnetic fields and a topological invariant cannot be quantified for even-ordered multipolar field e.g. (a4 = b4 = 1)
and (a6 = b6 = 1), while kinetic momentum skyrmions are realized for the pure odd-ordered multipoles except dipoles,
e.g. (a5 = b5 = 1) and (a7 = b7 = 1).
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FIG. S1. Momentum textures in higher order multipolar fields
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III. BOUNDARY DEFINITION

The ideal boundaries of skyrmions and merons can be theoretically determined based on the z-components of
the vectors: at the boundary, the z-component is −1 for skyrmions and 0 for merons. Furthermore, we ensure
that the values of P or po at the boundaries are sufficiently large to be measurable. We calculated |P|/max|P|
and |po|/max|po| through numerical simulation, setting 0.1% as a threshold value. This threshold implies that the
magnitudes of normalized P or po above 0.1% can be simultaneously detected, which satisfies contrasts in most
experimental conditions.
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(d)(c)
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FIG. S2. Boundary definition of topological quasiparticles. (a-d) The change of the magnitudes of normalized P or po

with respect to r in logarithmic coordinates. The black dashed lines represent the first radii where |P|/max|P| = 0.1%.

For four typical multipole sources, their corresponding merons’ boundaries are easy to define since |p| and |po| are
significantly larger than zero at merons’ boundaries, while skyrmions’ boundaries are harder to detect. For octupole
sources, the skyrmion number N within the boundary is 0.997, as shown in FIG. S2(c). For the mixed multipole, the
skyrmion number N within the boundary is 0.95, as shown in FIG. S2(d). This small error demonstrates that we can
detect the presence of skyrmions at a detection threshold of 0.1%.

IV. TUNING THE HELICITY

To further illustrate that we can control the helicity of the momentum texture by adjusting the phase difference of
the multipole sources, we use animations to demonstrate how the P and po textures change with the phase difference
of the dipole sources, as shown in FIG. S3. Same to the conclusion in the main text, the P textures have helicity, while
the po textures do not. It is worth noting that the change of P texture with respect to ξ is not azimuth inversion
symmetric. For example, when ξ = π/3 and ξ = −π/3, the corresponding textures are not inversion symmetric in the
azimuth angle. The asymmetry originates from the chirality of incident light.
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FIG. S3. Tunability of helicity. Please see Supplementary Movie 1 and Movie 2 for P texture animation and po texture
animation. The change of P and po textures with respect to phase difference ξ of the multipole sources a1,2 = b1,2 = 1 a3 =
b3 = eiξ when the incident light is circularly polarized Einc = E0e

ikz(x̂+ iŷ)
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V. THE SIMILARITY BETWEEN SAM AND POYNTING VECTOR TEXTURE

When the incident light is circularly polarized Einc = E0e
ikz(x̂+ iŷ), kinetic momentum textures are collinear with

SAM texture for the multipole source a3 = b3 = 1, a1,2,3 = b1,2,3 = 1 and a1,2 = b1,2 = 1, a3 = a4 = i, respectively, as
shown in FIG. S4
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FIG. S4. The textures of Poynting vector and SAM in multipole scattered field when the multipole sources are (a)
pure octupole (a3 = b3 = 1), (b) mixed multipole without phase difference (a1,2,3 = b1,2,3 = 1), (c) mixed multipole with
phase difference between different orders (a1,2 = b1,2 = 1 a3 = b3 = i)

[1] C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles (John Wiley & Sons, 2008).
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