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Abstract: Spatial inhomogeneity, temporalmodulation, and

engineered anisotropy of parameters of electromagnetic

media offer numerous opportunities for manipulating

light–matter interaction over the past decades. Here, we

investigate a scenario in which we deal with the tempo-

ral interface, hyperbolic anisotropy in the form of lay-

ered structures, and frequency dispersion. We theoreti-

cally investigate how amonochromatic uniformplanewave

– propagating in an unbounded, homogeneous, isotropic

dielectric medium – undergoes changes due to the rapid

temporal variation of suchmedium into ahyperbolic disper-

sive medium formed by the stack of thin metal–dielectric

bilayers, in which the metal follows the lossless Drude dis-

persion and the dielectric is assumed to be dispersionless.

We corroborate our analytical results by numerical simu-

lations. We observe several interesting phenomena, such

as conversion of the original frequency into three pairs of

frequencies, resulting in three sets of forward (FW) and

backward (BW) waves. We present the amplitudes and the

time-averaged Poynting vectors for such FW and BWwaves

and discuss some of the salient features of such temporal

interface.
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1 Introduction

Electromagnetic wave interaction with time-varying media

has recently gained considerable attention and grow-

ing interest [1]–[3]. This topic offers the notion of four-

dimensional (4D) metamaterials [4], wherein material

parameters such as relative permittivity can undergo rapid

changes in time, either independently or in conjunction

with spatial variations. Interest in spatiotemporal modu-

lation, mostly as applied to circuits, has roots dating back

to the 1950s [5]–[9], yet it has recently garnered signifi-

cant attention in various research groups worldwide. This

newfound interest is mainly due to its promising potential

for unconventional wave manipulation and a diverse range

of potential applications [1], [2], [4], [10]–[21] that include

artificial magnetic field for photons [22], optically induced

negative refraction [23], frequency conversion [24], ampli-

fication [25], [26], Doppler shift [27], [28], Fresnel drag [29],

camouflage [30], [31], and nonreciprocity [32]–[37] to name

a few.

A simple, while fundamental scenario one may devise

is a temporal interface. In analogy with a spatial inter-

face between two different semi-infinite media, a temporal

interface is defined when a spatially unbounded medium

in which a wave propagates is abruptly transformed in

time into another medium with different material param-

eters, e.g., when the relative permittivity of a medium is

sharply altered in time [7]. Unlike conventional spatial inter-

faces, temporal interfaces exhibit three distinctive proper-

ties: immutability of momentum (wave vector) accompa-

nied by a frequency shift, lack of electromagnetic energy

conservation, and generation of a backward wave, which,

due to causality, propagates in the medium after the tem-

poral interface [7], [38], [39]. These features have been

experimentally validated, for example, in plasma physics

[40], [41], with water waves [42], and in transmission lines

that operate at megahertz frequencies [43]. Also, accord-

ing to these fundamental characteristics and considering

complex electromagnetic systems, such as anisotropic and

bianisotropic media [44] and metasurfaces [45], a myriad of

possibilities and opportunities for manipulation of classical

and quantum fields have been uncovered. These advance-

ments encompass: the creation of “wiggler mode” [46]–[48],
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temporal aiming [12], direction-dependent wave manipula-

tion [49], inverse prism [50], antireflection temporal coat-

ings [51]–[53], polarization engineering [49], [54], [55] and

polarization-dependent analog computing [56], wave freez-

ing and thawing [57], [58], the transformation of surface

waves into free-space radiation [57], [59], photon-pair gen-

eration [60], [61], angular-dependent inhibition of photon

production [62], photon-pair destruction, and vacuum state

generation [61].

Despite the growing body of research in this area, the

sudden creation of hyperbolic media, resulting in a tempo-

ral interface, remains largely unexplored. Here, we extend

the notion of temporal interface to dispersive hyperbolic

media. Specifically, we explore how a monochromatic elec-

tromagnetic uniform plane wave undergoes changes when

a host medium, assumed to be a simple isotropic disper-

sionless dielectric (e.g., free space), is rapidly transformed

into a dispersive hyperbolic medium, formed by a stack

of many bilayers made of metal and dielectric layers. The

frequency dispersion of the hyperbolicmedium is taken into

account by considering theDrude dispersion for thosemetal

layers. In particular, we reveal that a temporal interface in

the presence of such anisotropy and frequency dispersion

causes the splitting of the initial frequency of the wave into

three pairs, which propagate mainly along the optical axes

of the crystal, exhibiting canalization.

The paper is organized as follows. In Section 2, we dis-

cuss the mechanism of the corresponding temporal inter-

face. In Sections 3 and 4, we explain the frequency conver-

sion and the evolution of electromagnetic fields as the result

of the temporal interface. In Section 5, we demonstrate

numerical simulation results, and, finally, in Section 6, we

conclude the work.

2 Description of the problem

To start, let us consider our hyperbolic medium as an

infinitely extended collection of identical bilayers, each

formed by a dielectric layer of thickness dd and relative

permittivity 𝜖d and a metallic layer of thickness dm and

relative permittivity 𝜖m. We assumed all these bilayers are

parallel with the xz− plane of a Cartesian coordinate sys-

tem,with its y axis being normal to these bilayers. According

to the effective medium theory, the elements of the relative

permittivity tensor of such a medium can be written [63] as

𝜖xx = 𝜖zz = f 𝜖m + (1− f )𝜖d, (1a)

𝜖yy =
1

(1− f )∕𝜖d + f∕𝜖m
, (1b)

with f = dm∕(dd + dm). Let us assume the relative permit-

tivity of the dielectric layers not frequency dispersive, and

the relative permittivity of metallic layers lossless Drude-

dispersive,

𝜖m = 𝜖∞ −
𝜔
2
p

𝜔
2
, (2)

where𝜔p is the plasma frequency and 𝜖∞ is the relative per-

mittivity at infinite frequency. Plugging Eqs. (2) into (1a) and

(1b) and assuming 𝜖d= 𝜖∞, we can get frequency-dependent
expressions for 𝜖xx , 𝜖yy, and 𝜖zz,

𝜖xx = 𝜖zz = 𝜖∞ −
𝜔
2
p,eff

𝜔
2
, (3a)

𝜖yy = 𝜖∞ −
𝜔
2
p,eff

𝜔
2 −𝜔2

0,yy

, (3b)

where

𝜔p,eff ≡ 𝜔p

√
f , (4a)

𝜔0,yy ≡ 𝜔p

√
1− f

𝜖∞
. (4b)

Dispersion in Eq. (3a) is of the Drude type, whereas disper-

sion in Eq. (3b) is of the Lorentzian type, with resonance

frequency 𝜔0,yy (Eq. (4b)). Interestingly, and as expected,

one can engineer effective media parameters by properly

selecting the relative thicknesses of the layers.

In the equations above, as mentioned, it is assumed

that 𝜖∞ = 𝜖d. This choice ensures that, when the plasma fre-
quency is zero, we have an isotropic nondispersive effective

medium 𝜖d (see Eqs. (3) and (4) when 𝜔p = 0). Clearly, as

shown, introducing a nonzero plasma frequency (𝜔p ≠ 0)

imparts dispersive and anisotropic properties to the effec-

tive medium. Thus, a sudden change in plasma frequency

presents a unique opportunity to establish a temporal inter-

face between two markedly distinct media. This is illus-

trated by Figure 1.

3 Frequency conversion

due to temporal interface

For simplicity, let us initially consider a monochromatic

uniformplanewavewith angular frequency𝜔1 propagating

inside a medium described by Eq. (2) but initially param-

eterized with a zero plasma frequency, which makes the

medium a simple isotropic and dispersionless dielectric. At

t = t0, we abruptly ionize the metallic layers by increas-

ing 𝜔p from zero to, say, 2𝜔1, making the medium both

anisotropic and frequency dispersive. Frequency 2𝜔1 is cho-

sen to show a large enough contrast of the effects, and, in
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Figure 1: Temporal interface between a simple isotopic medium and

a rapidly generated dispersive anisotropic medium: different colors of

the waves indicate different frequencies after temporal jump.⟨S1⟩, ⟨S21⟩, ⟨S22⟩, ⟨S23⟩ denote the time-averaged Poynting vectors of
the corresponding FW waves. We do also have time-averaged Poynting

vector for the BW waves (not shown here for the sake of brevity).

principle, it can be chosen arbitrarily. The dispersion rela-

tion for stationary (i.e., time-invariant) anisotropic media

with the electric field components in the x − y plane and the

magnetic field parallel with the z axis reads

k2
x

𝜖yy

+
k2
y

𝜖xx

= 𝜔
2

c2
, (5)

where the wave vector components kx and ky should be

conserved quantities across the temporal boundary at t =
t0. In the absence of material dispersion, this conservation

of wave vectors allows us to find, from Eq. (5), the new

converted frequency, 𝜔2, after t0 [12]. In the case of fre-

quency dispersive isotropic media, one obtains dispersion

relations from a transcendental equation, as discussed in

[64]. In the present work, however, we have a combina-

tion of anisotropy and frequency dispersion, requiring the

medium to be characterized by frequency-dependent 𝜖xx
and 𝜖yy, leading to another transcendental equation, which

reduces to

k2
x

𝜔
2
2
−𝜔2

0,yy

𝜖∞

(
𝜔
2
2
−𝜔2

0,yy

)
−𝜔2

p,eff

+ k2
y

𝜔
2
2

𝜖∞𝜔
2
2
−𝜔2

p,eff

= 𝜔
2
2

c2
. (6)

Due to anisotropy, the converted frequencies after t0, 𝜔2,

depend (through kx and ky) on the initial incidence angle

of propagation 𝜓 . Equation (6) can, therefore, be recast as

the following 6th-order characteristic equation

𝜔
2
2

(
𝜖∞𝜔

2
2
−𝜔2

p,eff

)[
𝜖∞

(
𝜔
2
2
−𝜔2

0,yy

)
−𝜔2

p,eff

]
− k2

x
c2
(
𝜔
2
2
−𝜔2

0,yy

)(
𝜖∞𝜔

2
2
−𝜔2

p,eff

)
− k2

y
c2𝜔2

2

[
𝜖∞

(
𝜔
2
2
−𝜔2

0,yy

)
−𝜔2

p,eff

]
= 0. (7)

In our lossless scenario, this expression can be made 3rd

order by considering 𝜔2
2
as the new variable, with each

of the three solution pairs ±𝜔2 indicating a forward- and

a backward-propagating wave, which hereafter will be

denoted as FW and BW waves, respectively.

It is interesting to note that a temporal interface in

an unbounded dispersionless media (either isotropic or

anisotropic) only shifts the incident frequency, resulting in

a single pair of FW and BW waves with a single converted

frequency (see, e.g., [7], [12]). It has also been shown that

in lossless isotropic medium with Lorentz dispersion, one

obtains two positive solution pairs [64], providing two pairs

of FW and BW waves with two converted frequencies. In

our specific scenario here, which involves anisotropy and

frequency dispersion, we observe the emergence of three

solution pairs. Figure 2(a) shows the polar plots of con-

verted frequencies after the temporal jump as a function

of the direction of propagation angle of the initial wave 𝜓 .

Propagation along the axes is equivalent to propagation in

a medium with the corresponding Lorentz or Drude dis-

persion. Specifically, propagation along x axis (𝜓 = 0 and

𝜓 = 𝜋) or y axis (𝜓 = 𝜋∕2 and 𝜓 = 3𝜋∕2) is equivalent to
propagation in amediumwith permittivity 𝜖yy (see Eq. (3b))

or 𝜖xx (see Eq. (3a)), respectively. Figure 2(a) shows three fre-

quencies for all 𝜓 except of 𝜓 = m𝜋∕2 with m is arbitrary

integer number, where the amplitude of one of the three

pairs of FW and BWwaves is zero. More will be said below.

Figure 2(b)–(d) shows the xx and yy elements of rela-

tive permittivity tensors of the medium after the temporal

interface, as evaluated for each of the three converted fre-

quencies. (The 𝜖zz is the same as 𝜖xx .) It is evident that the

medium retains its anisotropic nature; however, for each

of the frequencies, the nature of anisotropy is different.

For 𝜔2,1 and 𝜔2,2, the components of the permittivity tensor

exhibit opposite signs, indicating a hyperbolic nature of the

medium. In contrast, at frequency 𝜔2,3, all components of

the permittivity tensor are positive (and less than unity),

implying that the anisotropy at this frequency is of elliptic

type. Additionally, at frequencies 𝜔2,1 and 𝜔2,2, permittivity

tensors have different negative components, i.e., 𝜖xx,1 and

𝜖yy,2 are negative for 𝜔2,1 and 𝜔2,2, respectively, indicating

that the isofrequency curves of the material for these two

frequencies are rotated by 𝜋∕2.

3.1 Band topology

From the previous, one can see that 𝜔2,2(𝜓 = 𝜋∕2) and
𝜔2,3(𝜓 = 0) result from pure Drude and Lorentz dispersion,

respectively, and thus 𝜔2,1(𝜓 = 0) is the second solution

pair expected from a Lorentzian response (as shown in
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Figure 2: Converted frequencies and relative permittivity values after temporal interface: (a) polar plots of the normalized converted frequencies

versus incidence angle, after sudden temporal transition from isotropic medium to anisotropic hyperbolic medium, assuming dd = dm,𝜔p = 2𝜔1,

and 𝜖∞ = 1. (b) and (c) Effective relative permittivity in x and y directions for different converted frequencies in (a): (b) hyperbolic medium𝜔2,1,

(c) hyperbolic medium𝜔2,2, (d) elliptic medium at𝜔2,3. Note that the circles represent vanishing coupling to the corresponding mode.

[64], 𝜔2,3 > 𝜔1 can be connected to the resonant frequency

𝜔0,yy > 𝜔1, whereas 𝜔2,1 < 𝜔1 approaches the solution in

a nondispersive time interface [7]). On the other hand,

𝜔2,1(𝜓 = 𝜋∕2) = 0 gives us the missing “wiggler” mode

from the Drude plasma. For arbitrary 𝜓 , these three pure

frequencies are hybridized into three different solutions,

considering that sum of them squared is a conserved quan-

tity independent of 𝜓 , reduced when 𝜖∞ = 1 to:

𝜔
2
2,1
+𝜔2

2,2
+𝜔2

2,3
= 𝜔2

1
+ (1+ f )𝜔2

p
. (8)

The dispersion diagram of the new homogenized mate-

rial in Figure 3(a) reveals three distinct frequency bands. (i)

A hyperbolic lower band in the range [0, min(𝜔0,yy, 𝜔p,eff)].

(ii) A mid band in the range [𝜔p,eff , 𝜔p], which is elliptic

(hyperbolic) below (above) resonance 𝜔0,yy. (This requires

that 𝜔0,yy > 𝜔p,eff , only satisfied if dm < dd; otherwise, if

𝜔0,yy < 𝜔p,eff , a bandgap opens between the first and the

second bands. In Figure 3(a), dm = dd, so this band is only

hyperbolic and there is no gap underneath. Coincidentally,

moreover, 𝜔0,yy = 𝜔p,eff equate the surface plasmon fre-

quency𝜔p∕
√
2 of the actual metallic layers.) (iii) An elliptic

upper band above 𝜔p. In this figure, the cylinder’s sur-

face encompasses all the possible angular directions of the

initial wave in vacuum, so its intersection with the three

bands provides the necessary momentum matching condi-

tion (such three intersections (blue, red, and yellow lines)

are precisely the curves in Figure 2(a)). Moreover, the inter-

section of the dispersion surface with the horizontal planes

𝜔 = 𝜔2,l (chosen here for 𝜓 = 𝜋∕4) yields the three corre-
sponding isofrequency contours (black curves).

Instead of the material dispersion in its final state,

Figure 3(b) superimposes the isofrequency contours that

correspond to each of the 𝜔2,l eigenstates, as they increase

with increasing plasma frequency (from 0 to its final value

after the transition) for a fixed propagating angle (𝜓 =
𝜋∕4). Each of the three surface contours𝜔2,l is plottedwith a

different colormap and shows how the second bandmakes a

transition fromhyperbolic to elliptic in its excited frequency

𝜔2,2 when dm < dd (we here choose dm = dd∕2). In the limit
of 𝜔p →∞, 𝜔2,1 → [0,

√
1− f𝜔1] depending on 𝜓 , 𝜔2,2 →√

f𝜔p, and 𝜔2,3 → 𝜔p, which satisfies Eq. (8).

Now that the interplay between 𝜔1∕𝜔p and f has

been visualized, further insight is gained by noticing that

𝜔2,2(𝜓 = 0) = 𝜔p,eff , i.e., at 𝜓 = 0 this mode of zero field

amplitude becomes the effective bulk plasmon resonance

𝜖xx,2 = 0, which is thus not coupled onto. Likewise,𝜔2,3(𝜓 =
𝜋∕2), of zero field amplitude also, becomes

√
𝜔
2
p,eff

+𝜔2
0,yy

(which is simply 𝜔p when 𝜖∞ = 1) and, therefore, 𝜖yy,3 = 0.

However, the described behavior holds as long as f < 1− 𝜅2

(below resonance, i.e., 𝜔1 < 𝜔0,yy) and f > 1+2𝜅2−
√
1+4𝜅4

2
, 𝜅

being 𝜔1∕𝜔p. Right at the upper threshold for f , 𝜔2,2 and

𝜔2,3 become degenerate and equal to 𝜔p when 𝜓 = 𝜋∕2
(Figure 3(c), left panel). Above this threshold, the incident

wave does couple to 𝜔2,3 when 𝜓 = 𝜋∕2, but instead there
is no coupling to 𝜔2,2 when 𝜓 is either 0 or 𝜓 = 𝜋∕2. In the
limit f → 1, coupling to 𝜔2,2 vanishes for all directions: the

Lorentz mode 𝜔2,3 plays the role of an effective isotropic

plasma, since 𝜔0,yy → 0, and 𝜔2,1 → 0 describes the associ-

ated DC mode for all 𝜓 . Similarly, at the lower threshold,

𝜔2,1 and 𝜔2,2 coalesce into 𝜔p,eff (Figure 3(c), right panel).

Below this threshold, when 𝜓 = 0, there is no coupling to

𝜔2,1 but there is to𝜔2,2. Taking the limit f → 0 (no temporal

boundary at all), there is only FW coupling to 𝜔2,2 → 𝜔1,

regardless of 𝜓 , given that
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(a) (b)

(c) (d)

Figure 3: Dispersion topology of the homogenized hyperbolic material. (a) Dispersion surface of the three bands when dm = dd : from momentum

conservation, their intersection with𝜔1 light in vacuum (cylindrical surface) reveals the excited states after the temporal interface; corresponding

isofrequency plots are indicated in black for 𝜓 = 𝜋∕4. (b) Continuum of isofrequency contours (dm = dd∕2) that correspond with the blueshifting
evolution of the excited states𝜔2,l as the plasma frequency goes from 0 to 2𝜔1. Each𝜔2,l renders a different surface, with its own colormap. The black

isofrequency contours indicate a transition from hyperbolicity to ellipticity within the second band (𝜔2,2). The zenithal view of the inset shows how

the forbidden directions of the first and second bands are perpendicular. (c) Coalescence of excited states from bands 2 and 3 when 𝜓 = 𝜋∕2 (left),
and from bands 1 and 2 when 𝜓 = 0 (right). This happens when f = 1− 𝜅2 (e.g., dm = 3dd for𝜔p = 2𝜔1) and f = 1+2𝜅2−

√
1+4𝜅4

2
, respectively,

with 𝜅 = 𝜔1∕𝜔p. (d) Time evolution of the FW amplitudes when a perfectly abrupt step-function temporal interface is replaced by a deeply subcycle

sigmoid function, with 𝜓 = 1◦: during this transition, the matched wave in band 2 (red) first feels a hyperbolic medium and grazes the corresponding

forbidden direction, so it is barely coupled to. As𝜔p keeps increasing, the medium becomes elliptic in the new excited portion of band 2 (out-of-plane

dielectric tensor element shown in the inset), and the wave amplitude |A2| begins to increase before tunneling out to band 1 (this tunneling effect is
explained in Section 5).

𝜔2,1 → 0, 𝜔2,2 → 𝜔1, 𝜔2,3 → 2𝜔1. (9)

In short, the incoming wave feels vacuum at𝜔2,2 in the new

mediumparameterized by𝜔p,eff → 0 and𝜔0,yy → 2𝜔1, again

assuming 𝜖∞ = 1. This vacuum limit is different if, e.g., one

recovers dd = dm and makes 𝜔p → 0, in which case

𝜔2,1 → 0, 𝜔2,2 → 0, 𝜔2,3 → 𝜔1. (10)

In such scenario, the incoming wave couples to the new

medium – where the resonance frequency 𝜔0,yy now also

vanishes – through 𝜔2,3. These limiting cases boil down to

the vanishing width of the first and second bands as f → 0

and f → 1, respectively.

From Figure 3(a) and (b), propagation of the𝜔2,2 eigen-

mode is forbidden along the x direction in its hyperbolic

phase. In order to see this elliptic-to-hyperbolic transition,

we choose dm = dd∕2 and 𝜓 = 1◦ and solve the temporal

transition in the eigenstate basis versus time, assuming a

subcycle sigmoid function of transition rateR for the param-

eterization of the time-varying 𝜔p. As seen in Figure 3(d),

only after the transition of 𝜖yy,2 from positive to negative,

at t ≈ −2∕R (see inset), does the FW mode amplitude |A2|
(red dashed) begin to increase (a detailed derivation of the

complex field amplitudes is found in the next section).

4 Field amplitudes after temporal

interface

To get a better insight of the wave phenomena after the

abrupt emergence of anisotropy, one needs to determine

amplitudes of the fields after the temporal jump. The fields

after an abrupt temporal interface consist of the three pairs

of FW and BW waves. To determine their six amplitudes,
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we need to have six independent temporal boundary condi-

tions. From our homogenizedmodel of anisotropy in Eq. (2),

the second-order nature of the time-varying Drude and

Lorentzian response in the form of two separate second-

order differential equations for the x and y components of

the polarization density vector P and electric field vector E

can be written as

dP2
x
(t)

dt2
= 𝜖0𝜔2

p,eff
(t)Ex(t), (11a)

dP2
y
(t)

dt2
+𝜔2

0,yy
(t)Py(t) = 𝜖0𝜔2

p,eff
(t)Ey(t), (11b)

where 𝜖∞ is assumed to be unity. Therefore, temporal conti-

nuity of Px and Py and their time derivatives at the temporal

interface is implied. Together with temporal continuity of

electric and magnetic flux densities, D = 𝜖0E+ P and B =
𝜇0H, we have a set of six temporal boundary conditions.

Worth mentioning that continuity of Dx and Dy yields the

same equations (as an aside, it is worth noting that the

temporal continuity of P and D automatically guarantees

the temporal continuity of E). Let us assume that before the

temporal jump at t = t0, we have

H1 = ze j𝜔1te− jk⋅r
, (12a)

E1 =
1

𝜖0𝜔1𝜖r,1

(−xky + ykx )e
j𝜔1te− jk⋅r

, (12b)

D1 =
1

𝜔1

(−xky + ykx )e
j𝜔1te− jk⋅r

, (12c)

dP1
dt

= j
𝜖r,1 − 1

𝜖r,1

(−xky + ykx )e
j𝜔1te− jk⋅r

, (12d)

where subscript “1” indicates the quantities before t0. For

the sake of simplicity, let us assume t0 = 0, then quantities

after t0 are denoted with subscript “2” and they can be

written as

H2 = ze− jk⋅r
3∑
l=1

(
Ale

j𝜔2,l t − Ble
− j𝜔2,l t

)
, (13a)

E2 =
e− jk⋅r

𝜖0

3∑
l=1

(
−x

ky

𝜖xx,l

+ y
kx
𝜖yy,l

)

× 1

𝜔2,l

(
Ale

j𝜔2,l t + Ble
− j𝜔2,l t

)
, (13b)

D2 = e− jk⋅r
3∑
l=1

(−xky + ykx )

× 1

𝜔2,l

(
Ale

j𝜔2,l t + Ble
− j𝜔2,l t

)
, (13c)

dP2
dt

= je− jk⋅r
3∑
l=1

(
−x

ky(𝜖xx,l − 1)

𝜖xx,l

+ y
kx(𝜖yy,l − 1)

𝜖yy,l

)
×
(
Ale

j𝜔2,l t − Ble
− j𝜔2,l t

)
. (13d)

Using equations in (12) and (13) and the six temporal

boundary conditions, one can write the following expres-

sions:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 1 −1 1 −1
1

𝜔2,1

1

𝜔2,1

1

𝜔2,2

1

𝜔2,2

1

𝜔2,3

1

𝜔2,3

1

𝜔2,1𝜖xx,1

1

𝜔2,1𝜖xx,1

1

𝜔2,2𝜖xx,2

1

𝜔2,2𝜖xx,2

1

𝜔2,3𝜖xx,3

1

𝜔2,3𝜖xx,3

1

𝜔2,1𝜖yy,1

1

𝜔2,1𝜖yy,1

1

𝜔2,2𝜖yy,2

1

𝜔2,2𝜖yy,2

1

𝜔2,3𝜖yy,3

1

𝜔2,3𝜖yy,3

𝜖xx,1 − 1

𝜖xx,1

−𝜖xx,1 − 1

𝜖xx,1

𝜖xx,2 − 1

𝜖xx,2

−𝜖xx,2 − 1

𝜖xx,2

𝜖xx,3 − 1

𝜖xx,3

−𝜖xx,3 − 1

𝜖xx,3

𝜖yy,1 − 1

𝜖yy,1

−
𝜖yy,1 − 1

𝜖yy,1

𝜖yy,2 − 1

𝜖yy,2

−
𝜖yy,2 − 1

𝜖yy,2

𝜖yy,3 − 1

𝜖yy,3

−
𝜖yy,3 − 1

𝜖yy,3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⋅

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A1

B1

A2

B2

A3

B3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

1

𝜔1

1

𝜔1𝜖r,1

1

𝜔1𝜖r,1

𝜖r,1 − 1

𝜖r,1

𝜖r,1 − 1

𝜖r,1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (14)

Here, each line of the matrix from top to bottom cor-

responds to continuity of Bz, Dx (or Dy, same equation), Ex

(or Px), Ey (or Py),
dPx
dt

and
dPy

dt
, respectively. Solving this

system of equations provides field amplitudes for FW and

BW waves. Figure 4(a) and (b) shows linear plots of field

amplitudes as a function of the direction of propagation

angle 𝜓 . Figure 4(c) and (d) shows the amplitude and direc-

tion of the time-averaged Poynting vector of FW and BW

for each converted frequency. Directions of arrows indicate

the direction of the Poynting vector. Colored contours and

length of the arrows indicate the amplitude of the Poynting

vector of the corresponding frequency branch.
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Figure 4: Field amplitudes and time-averaged Poynting vectors after the temporal interface: field amplitudes for (a) FW waves, Al , and (b) BW waves,

Bl ; (c) time-averaged Poynting vector of FW for each converted frequency as well as the initial Poynting vector divided by 2; (d) time-averaged Poynting

vector of BW for each converted frequency as well as the initial Poynting vector divided by 10. (Since the Poynting vectors for FW and BW waves are

small compared to S1, in order to show their details, we scale down S1 in the figure.)

From Figures 2 and 4, one can make several observa-

tions: First – for the limiting cases𝜓 = 0 and𝜓 = 𝜋∕2 (and
obviously also for 𝜓 = 𝜋 and 𝜓 = 3𝜋∕2), only two sets of
wave have nonzero amplitudes, since A2 = B2 = 0 at𝜓 = 0

(and 𝜓 = 𝜋) and A3 = B3 = 0 at 𝜓 = 𝜋∕2 (and 𝜓 = 3𝜋∕2).
This results in zero time-averaged Poynting vector S2,2 for

FW and BW waves for 𝜓 = 0 (and 𝜓 = 𝜋) and S2,3 for 𝜓 =
𝜋∕2 (and𝜓 = 3𝜋∕2). For all other angles of propagation, we
always get three pairs of FW and BW waves. Second – the

first set for 𝜔2,1 is always nonzero, i.e., A1 ≠ 0 and B1 ≠ 0

for all 𝜓 . Third – for the first converted frequency branch,

while 𝜖xx,1 becomes negative (and infinitely large for 𝜓 =
𝜋∕2 (and𝜓 = 3𝜋∕2)), the correspondingwave always exists
and its converted frequency 𝜔2,1 approaches zero for 𝜓 =
𝜋∕2 (and 𝜓 = 3𝜋∕2), which essentially means DC field.

However, we note that while the field amplitudes A1 and

B1 at angle 𝜓 = 𝜋∕2 (and 𝜓 = 3𝜋∕2) are not zero, the x

component of the electric field is zero since the expres-

sion𝜔2,1𝜖xx,1 in the denominator approaches infinitely large

value as 𝜔2,1 approaching zero at 𝜓 = 𝜋∕2 (and 𝜓 = 3𝜋∕2)
(see Eqs. (13a) and (13b)). Effectively for 𝜓 = 𝜋∕2 (and 𝜓 =
3𝜋∕2), we have a Drude medium, where the first solution

is a DC (effectively “frozen”) magnetic field (while the xx

element of relative permittivity for this set is infinitely neg-

ative, thus behaving as a perfect electric conductor causing

the x component of the electric field to be zero) and the

second solution is a propagating wave. Fourth, it is worth

noting that for waves propagating along𝜓 = 𝜋∕2 (and𝜓 =
3𝜋∕2), the medium after the temporal jump behaves as a

Drude medium (with A1 ≠ 0, B1 ≠ 0, A2 ≠ 0 and B2 ≠ 0),

but for waves propagating along 𝜓 = 0 (and 𝜓 = 𝜋), the
mediumbehaves as a Lorentzianmedium (withA1 ≠ 0,B1 ≠

0,A3 ≠ 0 andB3 ≠ 0). For all other angles, after the temporal

jump, the medium behaves as a medium with a dispersion

not resembling solely Drude or Lorentzian type, with all

three pairs of amplitudesA1 ≠ 0,B1 ≠ 0,A2 ≠ 0,B3 ≠ 0,A3 ≠

0, and B3 ≠ 0. Finally, the Poynting vector in Figure 4(c)

and (d) demonstrates another interesting insight on the

wave properties. One notices that for all three converted

frequencies, the corresponding energy flows mainly along

the optical axes, which can be attributed to a certain level

of canalization of energy in this system. We point out that

along the directions 𝜓 = 𝜋∕2 and 𝜓 = 3𝜋∕2, the Poynting
vector for the converted frequency𝜔2,1 (which is near zero)
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is identically zero (since the x component of the electric

field is zero for this set). Therefore, the blue-color plots of

the Poynting vector in Figure 4(c) and (d) have a zero value

along those directions, but attain nonzero values when the

direction of propagation deviates from 𝜓 = 𝜋∕2 and 𝜓 =
3𝜋∕2 with its flow being primarily along the x axis.

5 Numerical simulation

One may argue that, rigorously speaking, the continuity

of the homogenized dP∕dt adopted above might still be,

at least in principle, open to debate for the following rea-

sons: (i) it is true that, within each metal layer with the

Drude dispersion, a temporal discontinuity in the plasma

frequency leads to temporally continuous nonhomogenized

dP∕dt when the Drude current response follows; (ii) it

is also clear that Eq. (11) correctly models the homoge-

nized anisotropic response once 𝜔p (and thus 𝜔p,eff and

𝜔0,yy) is time-invariant. But the assumption that these same

equations are still indeed valid across the time interface,

when 𝜔p(t) varies in time, should be tested. To the best of

our knowledge, a theory of time-varying homogenization in

the presence of dispersion has not been done yet. If Eq. (11)

were not to be exact (in the following we prove they are),

different temporal boundary conditionsmight be applicable

for the homogenized quantities. In light of this, in order

to validate our analytic derivations, we numerically solve

homogenized model described by Eq. (11) and the actual

nonhomogenized problem with deeply subwavelength

Drude layers. We present the results only for the latter case,

since the results for the former case of homogenized model

are identical with the analytical results, if the layers are thin

enough (∼ 𝜆∕103 in our case). Regardless of the model, the
in-plane momentum kx allows for a dimensionality reduc-

tion, so only y needs to be parameterized. We can thus

write

Hz(x, y, t) = H̃z(y, t)e
− jkxx, (15)

with phasor H̃z(y, t) = e j𝜔1te− jk y y before the temporal tran-

sition, in an unbounded vacuum. We can thus focus on

the time evolution of the k-phasors, which abides by the

curl equations

⎛⎜⎜⎜⎝
0 −𝜕y − jkx

𝜕y 0 0

jkx 0 0

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
H̃z

Ẽx

Ẽ y

⎞⎟⎟⎟⎠
=

⎛⎜⎜⎜⎝
−𝜇0 0 0

0 𝜖0 0

0 0 𝜖0

⎞⎟⎟⎟⎠𝜕t
⎛⎜⎜⎜⎝
H̃z

Ẽx

Ẽ y

⎞⎟⎟⎟⎠+
⎛⎜⎜⎜⎝
0

J̃x

J̃ y

⎞⎟⎟⎟⎠,
(16)

and the nonhomogenized time-varying current response

𝜕t J̃x∕y = 𝜖0𝜔2
p
(y, t)Ẽx∕y, (17)

Figure 5: Comparison of analytical and numerical results. (a–c) Show magnetic field (Hz), x and y components of electric field (Ex and Ey ), and x and y

components for polarization density (Px and Py ) obtained analytically and numerically. Insets in (a–c) highlight continuity of the plotted quantities

across the temporal interface. (d) Electric field Ey along y axis when x = 0 (e− jkx x dependence, as seen in Eq. (15)), which exhibits discontinuities, and

its homogenized version ⟨Ey⟩ (resulting from y-averaging over a distance of 𝜆∕100 or, equivalently, about 10 unit cells) agreeing with effective
medium theory.
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where 𝜔2
p
(y, t) is nonzero only inside the Drude layers,

depending on y. Using finite differences in both y and t

and a Yee grid, Eqs. (16) and (17) can be solved in leapfrog

fashion [65]. Figure 5 shows the temporal evolution of the

fields at x = y = 0 when 𝜓 = 𝜋∕4, with perfect overlap

of the analytic and numerical curves, demonstrating that

our assumption of temporal continuity used above for the

homogenized quantities is indeed valid. An exceedingly

small unit cell of a = 𝜆∕103 (y step of a∕200) is chosen
in order to keep the spectral content within the long-

wavelength portion of the first band in the dispersion dia-

gram, such that the homogenization behind our analytic

expressions is applicable. (Anyhow, regardless of a, we

should point out that out-of-plane momentum ky is par-

tially conserved too, in that H̃z(y+ a, t) = e− jk yaH̃z(y, t) at

all times. That is, the crystal momentum – i.e., the portion

of ky within the first Brillouin zone – is conserved, and any

temporal variation of this crystal, as long as it is structured

in y with a periodicity, will only contribute to the total out-

of-planemomentumwith integermultiples of the reciprocal

lattice vector 2𝜋∕a. The solution could thus be expanded as
a Blochwave, or else, as in our case, one can simply simulate

one unit cell in the finite-differences solver by imposing

the Bloch boundary condition.) Accordingly, the numerical

curves for Ey and Px∕y, discontinuous across the successive

air/metal interfaces, follow from y-averaging over a fewunit

cells. Figure 5(d) illustrates these discontinuities in Ey(t =
6T) near y = 0.

Finally, the effects of the finite switching time and

loss have been studied and reported in Figure 6. Panels (c)

(a) (b)

(e)

(c) (d)

Figure 6: Impact of finite switching times and loss. (a) Evolution of the three eigenfrequencies as𝜔p rises from 0 to 2𝜔1 versus time (normalized to

the inverse of the sigmoid’s transition slope R), assuming 𝜓 = 89◦ and dm = dd . When𝜔p satisfies f = 1− (𝜔1∕𝜔p )
2,𝜔2,2 and𝜔2,3 become nearly

degenerate (see black circle in the figure) and strongly interact: given that the initial mode𝜔2,3 in its final state is short-circuited by the metal–air

interfaces, complete interband transition takes place from the third to the second level, as shown in panels (c) and (d). (b) Dielectric tensor elements

of modes 2 and 3: at the degeneracy point, both out-of-plane permittivities 𝜖yy,2 and 𝜖yy,3 (dashed lines) become epsilon-near-zero (ENZ).

(c) and (d) Temporal change of the FW (solid lines) and BW (dashed lines) field amplitudes for two different switching times: quasi-instantaneous

(R = 100∕T , panel (c)) and slow (R = 1∕T , panel (d)). As R decreases, so does temporal reflection, with backward propagation tending to disappear.
Still, the longer time of interaction between the two degenerate modes 2 and 3 favors frequency mixing down to mode 1 (DC), for which FW or BW

waves lose their propagation character: we rather have a stationary pattern (dictated by the original wavenumber) that slowly oscillates in time.

(e) Effect of adding some loss to the Drude model of the metallic layers: the evolution of the magnetic field phasor (x = y = 0) for several values

of the nonradiative electron collision rate 𝛾 shows, over the first periods, very similar results to the ideal lossless material discussed so far.

The decaying character of the (now complex) frequencies𝜔2,l is nonetheless very clear after a few periods in the lossiest case, for which the actual

metallic layer has a dielectric function of roughly−0.02i at the ENZ condition.
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and (d) illustrate how, as we reduce the rate of change R

of the plasma frequency, which follows an arbitrarily fast

(though continuous) sigmoid – particularly, the results in

panel (c) are already very close to the previous analytic

results for a perfectly abrupt time boundary – both tem-

poral reflection (BW terms) and frequency splitting tend to

decrease, as expected from the adiabatic limit picture. In

contrast, evidently, the allowed frequencies across the tran-

sition (panel (a)), and therefore their associated permittivity

tensors (panel (b)) are only function of 𝜔p and not of the

rate R. Panel (e) depicts the temporal decay of the waves,

following the imaginary part of the eigenfrequencies, when

the Drude model of the metallic layers in Eq. (2) is extended

with a damping term 𝛾 .

6 Conclusions

In summary, we have extended the notion of temporal

interfaces to hyperbolic frequency dispersive media. Par-

ticularly, our analysis focused on a temporal interface

between vacuum and a layered structure that exhibits

hyperbolic properties. The interplay between anisotropy

and frequency dispersion in this system was analyzed,

which, together with a temporal interface, resulted in the

splitting of the original wave into three different frequency

pairs. We discussed the topological features in the disper-

sion of the effective time-varying anisotropic medium and

its final properties at the new (converted) frequencies and

noticed that it leads to energy canalization, i.e., propaga-

tion of power primarily along optical axes of the structure.

Finally, full-wave simulations were conducted to corrobo-

rate our theoretical findings.

On the experimental side, several implementation sce-

narios can be envisioned. One possibility involves a peri-

odic arrangement of dielectric and semiconductor layers,

optically pumped to induce a temporal interface. The dielec-

tric and semiconductormaterials must be carefully selected

so that the optical pumping leaves one medium unaf-

fected while reconfiguring the other. As an alternative to

the optical approach, one could consider a low-frequency,

two-dimensional geometry – such as a metasurface. For

instance, a hyperbolic metasurface operating at radio fre-

quencies could be realized using lumped elements and

switches, providing a feasible platform for proof-of-concept

experiments.
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