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Abstract: Forty-five years after the initial attempts — first
by Efimov—Khitrov in 1979, then by Brendel-Bormann in
1992 - we present a comprehensive, causal, and physi-
cally consistent framework for modeling the dielectric func-
tion with inhomogeneous (non-Lorentzian) broadening,
where scattering becomes frequency- or time-dependent.
This theoretical framework is based on spectral diffusion,
described in the frequency domain by a complex probability
density function and in the time domain by a matching
characteristic function. The proposed approach accurately
models the lineshapes resulting from multiple broadening
mechanisms and enables the retrieval of intrinsic homo-
geneous linewidths as well as inhomogeneous disorder-
controlled material dispersion features. To implement the
new general dispersion function in time-domain Maxwell
solvers, we have designed a constrained minimax-based
semi-analytical approximation method (MiMOSA) that gen-
erates the shortest possible numerical stencils for a given
approximation error. Application examples of exact and
approximate MiMOSA models include the Gauss—Lorentz
oscillator; Gauss—Debye relaxation, and Gauss—Drude con-
ductivity. Although this study primarily focuses on the opti-
cal domain, the resulting models, which account for the
Doppler shift, are equally applicable to other wave prop-
agation phenomena in disordered dispersive media in a
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1 Introduction

The fundamental understanding and predictive modeling of
the broadening of the spectral line in optical systems require
careful consideration of homogeneous and inhomogeneous
mechanisms. These processes play crucial roles in deter-
mining the optical response of materials and are essential
for understanding spectroscopic measurements and laser
physics [1].
Homogeneous Broadening (HB). HB represents broaden-
ing mechanisms that affect all atoms or molecules in a
system identically, arising primarily from the finite life-
time of excited states through the energy-time uncertainty
principle, AEAt ~ A, [2]. In the statistical sense, the HB
process is intimately connected to the Cauchy distribution
(also referred to as Cauchy-Lorentz or Lorentz, Eq. (12)).
This distribution arises naturally from the solution of the
quantum-mechanical equation of motion for a damped
oscillator, which models the atomic transition. The Cauchy
distribution’s “heavy tails” (with slower decay than a Gaus-
sian) reflect the fundamental nature of the uncertainty
principle. The Cauchy distribution belongs to the class
of stable distributions. Thus, in the presence of several
HB mechanisms associated with the same transition fre-
quency €, a sum of coherent Cauchy-distributed variates
Y ; Cauchy(€2, y;) matches distribution of Cauchy(€2, }’; 7,),
preserving the location parameter €2, as depicted in
Figure 1(a). The resulting absorption spectrum follows a
Lorentzian lineshape 1/(1 + x?) with a resonant frequency
Q and a half-width-at-half-maximum (HWHM) given by y =
Zivi

The most fundamental example of HB is a natural line
broadening (¥ ) due to the finite lifetime of excited
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Figure 1: Broadening mechanisms in ordered and disordered media.
(a) Ordered materials have a structured molecular or engineered
arrangement, with a Lorentzian lineshape of absorption €” () [3];

(b) disordered materials, with lineshapes combining homogeneous
(Lorentzian, y) and inhomogeneous (e.g., Gaussian, o) broadening, are
largely inaccessible to time-domain nanophotonics due to the lack of
efficient and physics-consistent models; examples: random
metasurfaces, semi-continuous metal films, perovskites [4], MXenes [5],
defects in oxides [6]. The peak decompositions are illustrative
approximations rather than mathematically precise representations.

states. Additional HB mechanisms include pressure broad-
ening (¥ onision) 1IN gases [7], where collisions interrupt
the phase of atomic oscillations, and phonon scattering
(¥ phonon) 1IN solids, which contributes to dephasing pro-
cesses [8]. Using the stability of the Cauchy distribution, the
total homogeneous linewidth is expressed as ¥y = ¥ pawural +
Y coltision yphonon'

In the modeling sense, this simplest class of dis-
persion assumes that individual sources of electromag-
netic response (e.g., electrons) follow identical equations
of motion, with the total macroscopic model achieved via
multiplication by the volume-averaged number of sources.
Inhomogeneous Broadening (IB). In contrast to HB, IB
creates distinct subgroups of atoms or molecules with differ-
ent resonant frequencies, fundamentally altering the opti-
cal response of the material system [9]. For example, in
quantum dots, this phenomenon manifests itself through
size distribution effects [10]. At the same time, in amor-
phous materials, it is caused through local structural vari-
ations modifying the electronic density of states [11], and in
gas-phase systems through the IB-inducing thermal motion
[12]. For example, IB plays a crucial role in modifying
the optical response of quantum and nanoscale systems.
In quantum cascade lasers, IB impacts emission prop-
erties, with the linewidth enhancement factor introduc-
ing phase-amplitude coupling that affects frequency comb
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formation [13]. At the quantum well level, studies have
shown that interface roughness and well width fluctua-
tions can lead to a significant broadening of intersubband
absorption bands, with spectral hole burning experiments
revealing the interplay between homogeneous and inho-
mogeneous contributions [14]. These IB effects have impor-
tant implications for device design, as demonstrated in
early work exploring intersubband scattering and coher-
ent phenomena [15]. The fundamental understanding of
IB mechanisms, presented, for example, in the work on
quantum well structures [16], remains crucial to engi-
neering and optimizing the performance of quantum and
nanophotonic devices. In addition, optical materials can
have intrinsic natural and fabrication defects, disorder,
or amorphous structure. For example, in nanoplasmonic
systems, IB arises from geometric variations in fabri-
cated structures — even small polydispersity in parameters,
such as plasmonic nanorod dimensions, can dramatically
alter the optical spectra of their ensembles compared to
individual elements! [19]. IB also occurs in natural crys-
tals such as lithium niobate, where asymmetric infrared
absorption arises from multiple anharmonic decay paths
of phonon-polaritons into low-frequency phonons [20].
Finally, in photonics and plasma physics, individual carriers
undergo a Doppler shift due to the Maxwellian distribution
of their velocities [12]. As a result, real measured spectra
deviate from the ideal Lorentzian absorption lineshape,
1/(1 + x?), since the observed absorption peaks include two
broadening mechanisms — homogeneous (y) and inhomo-
geneous (o, e.g., Gaussian), Figure 1(b). Retrieving both
broadening components (y and o) is essential for captur-
ing the underlying physics and tailoring the response, and
requires physically consistent non-Lorentzian permittivity
models.

Currently, to account for diverse IB effects with non-
Lorentzian lineshapes, most ellipsometry fitting software
relies on empirical frequency-domain approximations [21],
[22]. Common examples include the pseudo-Voigt profile
[23], which approximates the convolution of Lorentzian and
Gaussian broadening functions (16b) with a weighted sum,
and Kim’s model [24]-[26], which uses an empirical FD a-
switch of the form y(w) = y exp[—a(w — Q)?/y?| in place

1 It is apparent that the statistical nature of structural disorder in
materials plays a crucial role in determining the volume-averaged
effects of IB [17]. In crystalline materials, the correlation length of
the structural disorder (£) compared to the optical wavelength (4)
determines the strength of IB, where the volume-averaged effect scales
approximately as (¢/ )} for short-range disorder [18].
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of a true convolution. Additional models include spline-
based approaches (e.g., Bsplines and Psemi), piecewise-
smooth “stitched” absorption models (e.g., Tauc-Lorentz
and Cody-Lorentz), Tanguy oscillator [27]-[30]. Although
these models are Kramers-Kronig (KK) consistent (¢’ is
derived via inverse Hilbert transform of €”’), they gener-
ally lack an exact physically meaningful time-domain (TD)
representation.? Two exceptions with well-defined causal
TD form are: (1) the Gaussian oscillator with characteristic
(decay) function (CF) ¢(t) = e~°'¢/2 (included in Table A);
and (2) critical point models with decay function ¢(t) ~
e rHw-DInt _ 5 generalization of the Lorentzian (u = 1)
response (not included in Table A).

Modern Experimental Techniques. The comprehensive
understanding, along with predictive and efficient numer-
ical modeling of broadening mechanisms, have profound
implications for ultra-fast laser physics [31], nanopho-
tonic devices [32], and quantum technologies [33]. Recent
advances in experimental techniques [34] continue to
reveal new aspects of these fundamental processes and
revolutionize our ability to study broadening mecha-
nisms through the single-molecule [35], ultrafast [36] two-
dimensional [37], and coherent multidimensional [38] spec-
troscopic techniques. These methods enable direct obser-
vation of individual quantum systems, provide temporal
resolution of broadening dynamics, and separate homo-
geneous and inhomogeneous contributions. Novel spectro-
scopic methods [39] and advances in single-molecule detec-
tion [40] drive the development of new efficient numerical
schemes that can further elucidate the complex interplay
between diverse broadening phenomena and their role in
areas ranging from plasma physics to emerging quantum
technologies.

Numerical Modeling in the Time Domain (TD). The first
TD models of HB dispersion were coupled with the classi-
cal finite-difference time-domain (FDTD) approximations of
the Maxwell equations in the 1990s [41], [42]. Since then,
multiple discretization techniques based on auxiliary dif-
ferential equations (ADE) [43], [44], recursive convolution
(RC) [45]-[48], and Z-transform [49] have been developed.
These methods assumed the classical Lorentz, Drude, and
Debye dispersion models, where the dielectric function
was given as a rational function in the FD, resulting in a

2 KK consistency does not by itself guarantee causality.
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set of exponential terms in the TD and ordinary differential
equations with constant coefficients.

To date, efficient TD approximation schemes have been
unavailable for simulations of dielectric functions that do
not belong to the classical rational class. In some cases,
the traditional non-Lorentzian empirical FD models are not
even causal.

The present work addresses this problem for a broad
class of natural and artificial materials with non-Lorentzian
dispersion, where statistical averaging of individual sources
results in convolved integral models. The approach begins
with a causal exact description compatible with TD, where
a fundamental dispersion formula is derived for an arbi-
trary absorption probability profile (Section 2). Section 3
expands the general formula into dispersion models for var-
ious broadening functions, yielding standard Lorentzian-
type models (e.g., Lorentz, Debye, Drude) and new causal
models based on Gaussian and Voigt profiles. All the models
are summarized in Appendix A, Table A.

The implementation of new non-Lorentzian disper-
sion models in time-domain solvers (e.g., FDTD) is devel-
oped using a minimax-optimized semi-analytical approxi-
mation (MiMOSA), initially demonstrated for a causal Gaus-
sian oscillator model [50]; here, we generalize and extend
this approach to the Gauss-Lorentz, Gauss—Drude, and
Gauss—Debye models (Section 3.4).

2 Methods

2.1 Probability formalism for dispersion

This section aims to formulate the material dispersion
through the concept of photon absorption probabilities (or
broadening functions®) G,(x), enabling generalization of clas-
sical dielectric laws from Lorentz broadening to arbitrary
distributions. We start with a representation of complex

3 The proper time-domain (TD) formulation of line broadening is
not obvious [24]. Here, we define permittivity broadening functions
G;(x) based on classical Lorentz, Debye, and Drude permittivity mod-
els grounded in the quantum mechanical differential TD equations
of motion. After the unbroadened model is established by taking the
limit y; — 0%, the broadening function is introduced so its Cauchy
case (Gi(x) = w1/ (X2 + yiz)) restores the classical response, and its
delta-function case (G;(x) = 6(x)) reduces to the unbroadened model.
Once validated, G;(x) can be any other valid probability density function,
including Gaussian and Voigt; see similar broadening definition in Refs.
[26], [51].
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relative permittivity in the time and frequency domains,
connected via the Fourier transform? (FT, F)

_ e o =
e(t) = £,6(t) + . o(t) + Zi;(l(t) (1)

) 3 1 .
fw) =€, + %o [mS(w) - ﬁ] n Z 7i(@), (@b

where, for generality, standard high-frequency permittivity
(e4,) and conductivity terms (with DC electric conductivity
o) are assumed [53].

The dispersion terms },(w) are defined as ideal
unbroadened susceptibilities j{?(m) convolved (broadened
by) absorption probabilities G;(x), which must be valid Prob-
ability Density Functions (PDFs) [54], i.e., nonnengative with
full probability support, G;(x) > 0 and /% G,(x)dx =1,

Zil@) = (27 +G;)(w)
=/)??(w—X)Gi(x;ui,af,...)dx. %))
—o0 N———

PDF

Each PDF G;(x) is parameterized by the mean (y;), variance
(aiz), and/or other higher-order statistical moments and
parameters. For now, we assume symmetric distributions,
G;(—x) = G;(x), and zero means, y; = 0, so that the center
frequency of susceptibility doesn’t change with broadening.

In the time domain, obtained via the inverse FT and
applying the convolution theorem, Eq. (2) reads

xi() = )(io(t)/ G;(x)e™dx, 3)
>

(1), CF

where the symmetric broadening functions G;(x) contribute
through its characteristic functions (CF) ¢;(t) [54]. Standard

4 Here g, is the vacuum permittivity, while #(x) and 6(x) and are the
Heaviside and delta functions, w is the angular frequency. The hat
() and the tilde (*) denote forward and inverse Fourier-transformed
functions, while the real and imaginary parts of a complex-valued
function are indicated by primes, e.g., ¥’ = Rly] and y” = Jiyl.
The Fourier transform (FT) follows the physics convention F{ f(t)} =
flw) = [ f(Dewtd [52].

Frequency domain poles on real axis, 1/(w — Q) (Q € R), are inter-
preted in the sense of the Cauchy principal value (P); complemented
with their Hilbert transform (HT) pair, —z6(w — ), they make a
Kramers—Kronig (KK)-consistent complex susceptibility term, equiva-
lent to lossless limit according to the Sokhotski—Plemelj theorem

P —wé(w — Q) = lim

1 1
w—-Q =0t —Q+1y’

In the literature, the delta-function term is often omitted if the pole is
outside the frequency range of interest.
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CF propertiesinclude boundedness and zero-centered unity,
|@;(®)] <1and ¢;(0) = 1; moreover, if the PDF is symmetric,
its CF is real-valued.

As a clear example, we reformulate the classical
Lorentz oscillator using the proposed formalism

at) = i sin(€2t) 6(¢)

5 et (4a)
20 @ (1), CF
5 _ f
1) = wh — @ = 2yw
(4b)

- f 1oy
Qz_wz ﬂa)2+}/2 )

(-
g g

@) G,(w), PDE

Here f,y are oscillator’s strength and damping parameters,

while Q and o, = \/Q* — y? are resonance and natural
frequencies; G, (x) and ¢, (x) are known PDF and CF of the
Cauchy-Lorentz distribution [54], see Eq. (12); delta func-
tions in 7°(w) are omitted for simplicity*.

Substituting the general form of the unbroadened sus-
ceptibilities ;(io(.) from Eq. (6), derived later in Section 3.1,
into Eqgs. (2) and (3) we obtain the fundamental dispersion
relation®

1O = (1 @)

F
—

= a;¢0,(8) sin(Q;t — ¢p;) O(1) (5a)
Zi@) = (77 +G) (@)
= ThiedG(w— Q) — e PGw+Q)],  (5h)

where G;(x) = G;(x) + 1H{G;(x)} is the complex PDF incor-
porating the Hilbert transform (HT, H) of G;(x) as the imagi-
nary part, and represents broadening, while [a;, ¢;, €;] are
the amplitude, phase and resonant frequency parameters of
the ideal unperturbed transition (see Figure 2).

Equation (5) represents a powerful theoretical frame-
work that generates physically consistent permittivity mod-
els for any probability distribution with known complex
PDFs G;(x) and CFs ¢;(t).° In Section 3, we show how to use
the general formula (5) for common broadening functions
— Lorentz, Gauss, and mixed Gauss—Lorentz (Voigt), and

5 The general form of unbroadened susceptibility ;(l."(.) (Eq. (6)) is
initially derived as a lossless limit of arbitrary rational susceptibility
function. After the fundamental dispersion relation (5) is established,
;(1,0(.) itself becomes a trivial special case of Eq. (5) when G;(x) = 6(x) +
i(rx)~ and @;(t) = 1.

6 Tables of PDFs, CFs, and Hilbert transforms can be found in standard
probability theory literature.
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Figure 2: Real and imaginary parts of susceptibility 7 (w) (or conductivity &(w)) for different broadening functions: zero broadening (ZB), Lorentzian
homogeneous broadening (HB) and Gaussian inhomogeneous broadening (IB) with different types of dispersion: (ab) oscillator, (cd) relaxation,

(ef) conductive media, according to the newly derived formulas in this work.

different dispersion types — oscillator, relaxation and con-
ductive media. A comprehensive summary of all cases and
formulas, highlighting new (derived in this work) and estab-
lished known models, is provided in Table A (Appendix A).

2.2 Analytical constraints

Time-domain modeling requires the dielectric function to
be physically consistent, ensuring analyticity in the upper
half-plane, causality, time-reversal symmetry (T-symmetry),
Kramers—Kronig (KK) consistency, passivity and proper
decay at infinity to satisfy the sum rule.

Causality of the total permittivity (e(t) =0,Vt < 0) in
Eq. (1a) is ensured as long as the unbroadened functions
)(l.o(t) are causal; e.g., general form (5a) is causal.
T-symmetry and KK-consistency. The real and imaginary
parts of each term in (1b) satisfy the time-reversal symmetry
yil—w) = )??‘(a)) and are related via the Hilbert transform
(HT, H), ensuring KK consistency,

A

V4

H{en} =0, H{né(w)} =™, H{}]} = 7/
For symmetric distributions G;(x) = G;(—x), convolution (2)
holds these properties, provided the unbroadened functions

f(?(a)) satisfy them; e.g., this holds in the general form (5b)
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since HT commutes with convolution and anticommutes
with reflection implying G;(—x) = G (x).

Sum rules. In ultrafast TD modeling, physically accurate
high-frequency asymptotic behavior is important. As o —
oo, total permittivity in Eq. (1a) should approach a free
electron gas behavior: (a) £’(w) ~1— w% /@?, with (b) the
imaginary part decaying faster than 1/w, wé"' (w) — 0, [51],
[55], [56].

Condition (b) yields the sum rule Y .a; sin¢; = oeeo‘l,
requiring that all contributions to 1/ from non-zero phase
(¢; # 0) terms (e.g., conductivity, Debye, or phase-relaxed
Lorentz) cancel out. This sum rule is unaffected by broad-
ening and holds as long as satisfied for the unbroad-
ened permittivity. Moreover, the MiMOSA approximation
(Section 3.4) also conserves the sum rule (b) exactly, since
i ja{ sin q’){ = Y,a; sin ¢; follows from combining con-
jugate pole pairs in Eq. (25) and constraint Y’ ]-Bf =12,

Condition (a) in Voigt multi-term dispersion model

(16) is satisfied asymptotically, in both exact and MiMOSA
models, as &'(w) —1= O(w2), assuming &, = 1 (often
relaxed over a finite frequency ranges). The exact con-
stant (wp) is defined by the sum rule wlzj = Y>.a,(€; cos ¢; +
¥; sin ¢;) which, in general, can depend on homogeneous
broadening y; (if non-zero phases ¢; are involved) but
remains unaffected by inhomogeneous broadening o;. For
zero-phase systems (Vi ¢; = 0), the MiMOSA approxima-
tion (Section 3.4) also preserves this sum rule exactly,
Zizja{(Q{ cos qﬁ{ + yij sin qb{) = »,a;€2;, see Eq. (25) for
validation.
Passivity of the total permittivity (¢”(w) > 0,Vw > 0) is
easy to ensure in the general formulation (5b) by the
passivity of individual terms, provided that all phases
are zero (¢; = 0) and the broadening functions G;(x) are
bell-shaped.” When non-zero phases (¢; # 0) are present,
individual terms may locally exhibit gain, compensated by
other terms in the total sum. A representative class of exam-
ples are MiMOSA models in Section 3.4, where coupled oscil-
lators with conjugate poles maintain overall passivity® (see
also Figure 5 in [50]).

7 Here, a bell-shaped PDF G(x) refers to a single peak PDF, symmetric
about its mean (in our case, 4 = 0): G(4 — x) = G(u + x), 9,G(x) > 0 for
x < pand 0,G(x) < 0 for x > p.

8 In MiMOSA models, small approximation errors to passivity may
arise when homogeneous broadening (y;) is absent, though they decay
exponentially with the number of poles. It is standard practice to
restore passivity by adding a small numerical dissipation, such as
homogeneous broadening (y) or conductivity (c,).
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3 Results

The new probability-based dispersion relation (5) extends
classical (homogeneously broadened) dispersion models
— Lorentz oscillator, Debye relaxation, and Drude conductiv-
ity — to the general case of Voigt (Gauss—Lorentz) broaden-
ing and other distributions. We first derive the unbroadened
case (Section 3.1), then validate the fundamental formula
(5) with homogeneous (Lorentz) broadening (Section 3.2)
and present new models for inhomogeneous (Gaussian and
Voigt) broadening in Section 3.3.°

3.1 Zero broadening (ZB)

ZB represents an idealized scenario with infinitely narrow
spectral lines (G(x) = 6(x)) and infinite transition lifetimes.
In the class of rational functions, the general form of a
single-term unbroadened model is derived by taking the
limit y — 07 in the HB case (11) resulting in

220 = (1°0,) () = a sin(Qt — ) 6()

e el
w+Q w-—Q

(6a)

2@ = (2 Go)w) = § |

+ 22?6 - Q) —e o+ Q). D)

with [a, ¢, Q] being the amplitude, phase and oscillation
frequency parameters.

The ZB formula (6) is consistent with the fundamental
dispersion equation (5), where a delta function distribution
is used as the PDF,

Gol0) = 600, Go0 =800+ . g =1 (7

and represents zero scattering y = 0+.1
The phase parameter ¢ in (6) (also known as the loss
angle) mixes the real and imaginary parts and allows
the transition between two orthogonal cases: (¢ =0,
Q >0) representing a classical oscillator and

(¢ = -5, Q= 0) corresponding to a relaxation in the

9 In this section, the single-term susceptibility means an individual
term y = y;, with index i omitted for brevity, while the multi-term
susceptibility refers to the total sum y = Y, y;.

10 The ZB case (6) represents the limit y — 0% of the HB case (11),
under the assumption of constant amplitude a. When amplitude
depends on y (as in the Drude susceptibility), this limit yields a different
result (10b). To maintain a unified formalism, broadening in the Drude
case is introduced in the conductivity function: 6(®@) = 6y(w) * G(x).
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time domain. The two cases of the ZB formula (6), along
with a case for conductive media, are addressed below.
Lossless Lorentz oscillator (¢p = 0, > 0), also called the
Sellmeier model [57], has quadratically decaying real part
and delta functions in absorption

F
—_—

22(t) = a sin(Qt) 0(t)

N [1(9)
7(w) = in

m'a (8)
= (6@ —Q) = 50+ Q).

Lossless Debye relaxation (¢ =
DC conductivity term [58]

—7,Q=0), is simply a

0 (4y _ I _ _1
22,0 = af(0) @) = a[zé@) - ] ©

Lossless Drude model (¢ = —g,Q =0,a=¢gy@?, y(.) >
0(.)) is handled as a Debye case (9) but with a switch from
susceptibility y(.) to conductivity o(.),">1?

F
—

op(t) = £o@0(t)

83(@) = £y} [r6() - ], (102)

a)}z) [_a)i — s (w)].

0 2 F 20
) =tw0t) —  Fplw)= 3

(10b)

Here w, is a plasma frequency - a characteristic point

P
where the lossless Drude permittivity e(w)=1- Z—IZZ’
switches from metallic to dielectric behavior [59].

The delta function terms in (6b), often omitted in the
literature, represent degenerate distributions of zero width
and play a key role in the convolution formalism. When the
ZB model (6b) is convolved with a PDF G(x), the absorption
of an oscillator (¢ = 0) is directly linked to the function G(x)
as

7M@) = (7Y «G)w) = “7”[6(@ — Q)= Glw+ Q).

This is why, for example, a Gaussian distribution produces
a Gaussian lineshape in the absorption. In the case of
relaxation/conduction, the lineshape (of }(w) or 6(w)) is

11 Traditionally, the Drude model is represented through susceptibil-
ity function y(.) as a case of an overdamped Lorentz oscillator with
zero natural frequency (@, = 0 or = 1y), where one of the two real
polesisatzero and corresponds to a DC conductivity. This holds only for
the HB case, but is unphysical for ZB and IB cases, while the definition
through conductivity function ¢(.) (10a) with post-conversion to y(.)
applies universally to all broadening cases (ZB, HB, and IB) of Eq. (5).
12 Conductivity and susceptibility functions are conventionally
related through conversion formulas: é&(w) = —wwey}(®),
() = 40, y®, x(t) = salfola(r)dr (see, e.g., [53]).
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zero-centered and is rotated by ¢p =
part to the real part, e.g., 7’
Figure 2.

—7 from the imaginary
(w) = arG(w), as shown in

3.2 Homogeneous broadening (HB)

HB represents the natural linewidth broadening that affects
all atoms or molecules equally, due to the finite lifetime
t = y~1 of excited states (uncertainty principle [2]). The gen-
eral form of single-term HB dispersion, also known as the
critical point model [60], represents an arbitrary rational
function®

270 =(x"@)®

7?
—

= ae™"* sin(Qt — ¢) O(t) (11a)
()= (7"+G.)(w)
a e e'd
2 o+ +Q w+iy-Qf (1)

The HB case (11) can be derived by either convolving
(“blurring”) the ideal unbroadened susceptibility }°(w) in
(6) with the Cauchy-Lorentz PDF G, (x), or substituting com-
plex function G, (x) into the general formulation (5), where

1
TX+1y’

GL(X 0,y)= gL( )_

2 2°
+ (12)

Q) = eI,
As expected, the parameter substitutions (outlined in paren-
thesis) reduce the general HB formula (11) to the classical

Lorentz [61], Debye [62], and Drude [59] dispersion models,
as shown below.

Lorentz  oscillator <gb =0,Q=1/w} - L a= é

y = 2) is conventionally formulated with doubled

broadening I" = 2y, the natural frequency w, = 1/ QF 4 2
instead of resonance frequency €2, and oscillator strength
f = aQ instead of amplitude a,

e, F
Ho=Le sn@oon - "
STy — f
2 (@)= ) — @ — 1l

13 Fourier transform of a real function y(t) can be always approx-
imated as a rational function of argument s = —iw with real coeffi-
cients. We assume no multiple poles and zero limit at infinity (as the
constant term €, is detached), so partial fraction decomposition of
7(w)isasum ofreal poles (relaxations) and/or complex conjugate pole
pairs (phase-relaxed oscillators) };(w).
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Debye relaxation (¢ = —g,Q =0,a= %, y = %) con-
ventionally uses parameters of relaxation time z = y ! and
permittivity jump Ae = ar,

Ae
1— 1wt

T Ae _t F ar
XD = <& 01t) —  Jplw) = (14)
Drude model (¢ = —%, Q=0,a= eowf), x()=0()) is
classically parameterized by the plasma frequency w, and
broadening y and is obtained as the Debye case of the con-
ductivity function!

13
ol(0) = eyl 70 S =T, s

2
PAOE %(1— e

2

2
[0 T

—_ 15b
1wy + w? (15b)

(@) =—

In the Drude case, convolution with unbroadened suscep-
tibility (10b) is unphysical but valid for its unbroadened
conductivity function (10a), with y() restored from o(.)
afterward.’

3.3 Inhomogeneous broadening (IB)

IB arises from statistical distribution of microscopic reso-
nant frequencies € affected by local environmental vari-
ations and the Doppler shift* As a result, the observed
spectral broadening deviates from the ideal Lorentzian
lineshape to a mix of both - natural lifetime-based (HB)
defined by y and statistical (e.g., Gaussian) broadening
defined by variance o2 (Figure 1), leading to the general
Gauss-Lorentz model

X7 = (2°or06) ()

e (16a)
=ae """ sin(Qt — P oy —
j,}’s"(a)) = ()A(O * GL % GG)(CO)
ety LH I —Q

>

2012 g [ @+ +Q
oV2

where w(z) is the Faddeeva (Kramp) function [63].

14 Gaussian IB essentially represents the Doppler shift effect, when
the particles “see” the wavelength differently according to the
Maxwellian distribution of the velocities [12].
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The IB formula (16) is obtained as a convolution of the
unbroadened response 7°(w) with both the Cauchy PDF (G,
see Eq. (12)) and the Gaussian PDF (G) defined by

_2 w(L)
Gex;0,08) = &2 G = 2/
G o\ 2rx ¢ o\ 27w an
@g(t) = e/,

corresponding to the time-dependent scattering y(t) =
ot /2. In the presence of multiple broadening mechanisms,
the probability theory for the sum of random variables dic-
tates that the PDFs are convolved, while their CFs are multi-
plied,” and so the IB formula (16) can also be obtained from
the general formula (5) using the Gauss—Lorentz (Voigt)
PDF/CF

GeL(X;7,0) = (Gp, % Gg)(X)
1 X+ 1y
= Rw ,
c\2rx ( a2 >

1 w X+1y
o\r 0'\/5 '

Q’GL(t) — (Q,L Q’G)(t) — e—r\tle—gm/z,

(18)
GaL(X) =

where the scattering function has both — the constant and
the linear correction terms, y(t) = y + o2t/2.16

The new Voigt formula is consistent with all limiting
cases: o — 0% gives classical Lorentzian models (11), y — 0%
gives pure Gaussian lineshape typical for strong disorder,
while o,y — 0% gives the ZB case (6). These transitions are
easy to see through the general formula (5) and distributions
equations (7), (12), (17) and (18)."

As before, we simplify the general IB formula (16) for
the oscillator, relaxation, and conductivity cases, specifying
the corresponding parameter substitutions.

Gauss-Lorentz oscillator (¢ =0, Q = \/wé - 1;, a= é
y = g) with strength f, natural frequency @, and two (HB
and IB) broadening parameters I', ¢ reads

15 Both operations (+ and -) are commutative and associative, e.g.,
(x°%Gy) %G, = x°# (G, %Gy) = x° % (G, +G,), (under suitable inte-
grability conditions).

16 Higher orders terms in the scattering function y(¢) are also possible
with other (non-Gaussian) distributions.

17 Note that in the Gaussian limit (y = 0%) of all equations with IB
parameter o, the arguments of the Faddeeva function w(x) become
real, so that the real and imaginary parts of w(x) can be separated
as w(x) =e ¥ + 2—’”F(x), where F(x) is the Dawson function. In the
Lorentzian limit (6 = 0%), large argument formulas are useful: w(z) ~

, —
'_orerfc(z) = e Zw(iz) ~ £—.

21 z

N
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e f o 2t . F
X (t)=§e 2" 2 sin(Qt) 8(t) —

255°)

510 () = lf\/; O-\/E

L 2v/26Q o+ +Q
‘w< oV2 )

The first causal Gaussian oscillator model (I' = 0%) was
derived in 2006 [64] using a causality tip from [65]. The first
attempts to formulate the Gauss—Lorentz model date back
to the late 1970s [66], with a later reproduction [67] usu-
ally referred to as the Brendel-Bormann (BB)-model. Unfor-
tunately, the non-causal BB model, incompatible with TD,
remains broadly adopted by experimentalists to fit material
responses to infra-red light, e.g., [68]-[70]. Causal correc-
tions with logarithmic terms, rational approximations, and
ongoing discussions of the physical validity of the BB model
can be found in Refs. [71]-[73].

Our new Gauss—Lorentz (GL) model (19) fixes all the
issues with the previous BB formulation [67] (see the details
in Appendix B). When ¢ — 0%, the GL formula gives the clas-
sical Lorentz model with 1/(1+ x?) absorption lineshape,
(13). The case of I' - 0* gives a causal Gaussian oscilla-
tor with exp[—x®In2] absorption lineshape!’ [64], while
the mixed case (I', o > 0) yields the Voigt profile — a new
causal formulation with a time-dependent scattering func-
tiony(t) = y + ot /2, first mentioned by Kim et al. [24], [25],
and consistent with [74].

Gauss—Debye relaxation (¢ = —7,Q =0,a = %, y=1)
with the IB parameter ¢ additionally to the standard relax-
ation time 7 and permittivity jump Ae reads

(19)

o2 F
ro="5 00 L

AT Aer/m o+t
(o) = w .
Ze GT\/E < 6\/2 )

The limits ¢ — 0% and y — 0% give the classical Debye (14)
and a new Gauss relaxation model, respectively.'”

The Gauss—Debye model (20) has not been shown in the
literature. Known generalizations to the Debye relaxation
— the Cole—Cole, Cole-Davidson, and Havriliak—Negami
models [75], [76] — remain inaccessible to efficient TD simu-
lations, and will be addressed in future work.
Gauss-Drude model (¢ = —g, Q=0 a= Eowff 7))~
o()) with IB broadening parameter ¢ additionally to the
plasma frequency w, and HB y reads

(20)
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c 2 n t—ﬁ F
op % (t) = gowie™" 2 00 —

C"lzg \/; w+1y (21a)
w l
V2 V2

6

Y0 () =
b (@) =g

oves

y,zy(t)= ez}:Tzz
erfe(
(0\/5> F
o) —
2
— erfc r+ot (21b)
(%)
1y 1
rw| ——= p(w)
o | ONT <a¢5>5
I (w) = -2 :
V2 _1 (et
1w o-\/ﬁ |

The limits ¢ — 0% and y — 0% give the classical Drude
model (15b) and a new Gauss conductive model, respec-
tively.” The derivation is based on the broadening for-
malism (Section 2) for the conductivity function. Compar-
ing classical Drude model (15b) to the new Gauss conduc-
tivity model (21b), we observe lineshape change and find
that disordered analogue of classic conductivity eowf) /v, s

500’120 \/E /(o \/5). In the TD, linear argument of the exponen-
tial decay in o(t) becomes quadratic, and in y(t) changes to
a complementary error function (erfc).

Corrections to the classical Drude model have been
widely studied, including empirical frequency-domain for-
mulations with fractional derivatives, effective mass param-
eter, and modified scattering functions [77]. However, the
causal Gauss—Drude model introduced here has never been
presented.

Figure 2 illustrates the final Voigt formula (16) for three
cases of broadening — ZB, HB (¢ = 0*) and IB (y = 0%) for
three types of dispersion: oscillator, relaxation, and conduc-
tive media. HB and IB curves are matched at the peak maxi-
mum and full-width-half-maximum (FWHM) of the real (for
relaxation) or imaginary (for oscillator) parts, demonstrat-
ing the deviation of the “heavy-tail” Lorentzian lineshape
ﬁ from the Gaussian lineshape e=**!"2, For conductive
media, the DC conductivity (6(0)) and a plasma crossover
point (@ = @, ) are matched.

These plots effectively illustrate the physical interpre-
tation of the complex PDF G(x) = G(x) + tH{G(x)}. For an
oscillator with zero phase (¢ = 0), the real part of G(x)



4186 = L.]. Prokopeva and A. V. Kildishev: Inhomogeneous broadening in the time domain

defines the absorption spectrum (7" (w)), producing sym-
metric peaks G(w + ), while the imaginary part gener-
ates KK-consistent terms H {G }(w + Q) in }’(w). When the
phase ¢ is nonzero, the real and imaginary parts of the
susceptibility become mixed. In the case of relaxation (¢ =
—x/2), ¥’ and }" are effectively swapped, and the two res-
onant peaks coalesce into a single peak. The conductive case
is identical to the relaxation case, with the susceptibility
function }(w) replaced by the conductivity function 6(w).

3.4 Minimax approximation (MiMOSA)

When the broadening function G(x) is non-Lorentzian, the
general dispersion formula (5) falls outside of the class
of the rational functions of argument s = —iw, and can-
not be immediately translated into auxiliary differential
equations, making it challenging to construct short dis-
cretization stencils and coupling to time-domain solvers,
such as FDTD. The solution for efficient TD implementation
of non-Lorentzian dispersion was first developed for a pure
Gaussian oscillator [50], and employs minimax optimization
to generate the shortest possible time stencil for a given
error (MiMOSA).

Derivation of MiMOSA (Mini-max optimized semi-
analytical approximation) models for a general dispersion
formula (5) starts with a minimax rational approximation'®
of the complex PDF G(x) = G(x) + tH{G(X)},

o V27 Gzo V27 = 0) = w(z)

n .
BJ

~ w'(z) = — . 22
(2) ;(_m_a (22)

For example, for the Voigt distribution (18), the approxi-

mation coefficients [B/ s C’] are calculated for the Faddeeva

function w(z), with n being the number of approximation

poles, Figure 3(c),?

(n=2) B“? =0.28209 ¥ 10.47633,
C? = —0.82576 + 10.57178;
23)
(n=3) B = —0.18872 F 0.28646:, B® = 0.94163,

C'? = ~1.00160 =+ 11.03731, C* = —1.05117.

18 Constraints are imposed on parity, pole positioning, and the sum
rule, with the objective function optimized using the minimax criterion
on the real axis. Restoring the complex-valued approximation with the
Hilbert transform and then analytically continuing the approximation
to the upper half-space gives the complex PDF approximation.

19 Notation: we use upper case for approximation constants ();
the lower index (;) is reserved for dispersion terms numbering,
Egs. (1-3, 5).
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Substituting the approximation (22) into the general
susceptibility formula (5) gives a set of FDTD-compatible
analytically derived dispersion terms

() = ag(t) sin(Qt — ¢)6(t)
~ Nt = Z e 't sin(th - d)f>0(t) —i—>
j=1

() = % [e?G(w—Q) — e (w+Q)]

n e—zqﬁ’ eld)f

~ ) = N _
s (w)_jz;{ 2 [a)+1yf+§2j a)+zyf—§2j]7
(24)
where parameters [@/, q’)j, Qj, yJ] are directly connected
to the parameters of the exact single-term model
[a,p, Q,7,0] (5) and the approximation constants

[Bj, Cj] in (22) as

@ = av/z|B],

¢’ = ¢ — Arg(B)),

- . 25)
yi =y —RICs V2,

Q' =Q+7J[CeV2

The MiMOSA model (24)-(25) retains the single-oscillator
form[78], with only its envelope modified by approximation
(compare to the exact susceptibility y(t)),

() = ae—ﬂ(\/;mz Bjecj"ﬁt) sin(Qt — ¢)0().
j=1

~
~(t)

(26)
This identity arises by substituting coefficients (25) into the
time-domain expression (24) and combining the conjugate
pole pairs. It ensures that the model remains physically
consistent, without introducing nonphysical oscillations.
Due to the equioscillation theorem [79], the mini-
max solution provides the shortest rational polynomial
approximation (corresponding to most compact numeri-
cal stencil), with the approximation error spread evenly
across the entire frequency domain. In the Voigt case
G\/EQ(ZO‘\/E;)/ = 0) = w(z), the error converges expo-
nentially with number of poles (n) throughout the upper
half-plane [50]. As a result, even two poles (n = 2) already
give a few percent error, which is sufficient for many appli-
cations, such as initial optimization or ellipsometry charac-
terization. Using three poles (n = 3) drives the FD relative
error below 1%, making the approximation indiscernible
from the experimental data (see Appendix C for details).
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The MiMOSA models (24) fit the class of rational func-
tions that can be coupled efficiently to the TD Maxwell’s
solvers. Detailed ADE and RC numerical schemes for this
class of dispersion can be found in Refs. [50], [80], [81] for
second-order accurate TD solvers, and in Refs. [82]—[84] for
higher-order schemes. We recommend using the universal
compact scheme, which minimizes computational cost per
dispersion term and enables easy switching between dif-
ferent second-order accurate ADE and RC formulations. An
FDTD code implementing six such schemes is available in
Ref. [50].

Compared to the approximations derived in the 1950s
by reincarnating the minimax methods for rational polyno-
mials and the more recent literature on the rational approxi-
mations to Faddeeva/Kramp/plasma dispersion function (or
their real/imaginary parts) [85]-[102], our MiMOSA method
achieves impressive <1 % error with just 2-3 terms (and
thus the minimal number of additional equations in the
numerical model), while preserving the necessary analyti-
cal properties of the dielectric function including causality
and the sum rules.

A related computational approach has been recently
proposed in Ref. [103], where an ab initio integral dispersion
formulation is presented and subsequently transformed
into a rational function through a quadrature approxima-
tion, thereby preserving the physical meaning of the main
model parameters. However, no alternative approximation
technique achieves the same minimal number of additional
equations as MiMOSA for a given maximal error across the
entire upper half-space.

4 Conclusions

This work advances the field of computational nanopho-
tonics by introducing a general theoretical framework to
model inhomogeneous broadening in disordered, defect-
containing, and amorphous materials based on the absorp-
tion probability density functions G(x). The new formula-
tion employs a complex absorption probability density, ¢ =
G(x) +1H{G(x)}, in the frequency domain and a match-
ing characteristic function ¢(t) = /[, G(x)e™ dx in the time
domain.

Application examples of the theory include Gauss-—
Lorentz oscillator, Gauss—Debye relaxation, and Gauss—
Drude conductivity models for the characterization and pre-
dictive modeling of inhomogeneous broadening effects in
linear and nonlinear regimes and provide a critical fix to
the noncausal Brendel-Bormann model (see Appendix B for
comparison). The complete set of newly derived dispersion
models is presented in Table A, Appendix A.
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The exact generalized permittivity formulation is then
used to obtain the efficient, best-possible minimax-based
approximation (MiMOSA) models that enable (1) integral-
and special-function-free permittivity calculation; (2)
efficient FDTD implementation with a minimal set of
the additional equations; and (3) ellipsometry fitting
and lineshape retrieval. The MiMOSA implementation
ensures efficient simulation while maintaining the desired
controlled accuracy and analytical constraints.

The near-term work includes extending our approach
to nonsymmetric distributions (e.g., the Fermi-Dirac distri-
bution), and next-order corrections in the scattering func-
tion y(t) = y + 62t/2 + - -+, as well as developing the time-
domain approximations to the widely used empirical non-
symmetric models, including the Tauc(Cody)-Lorentz dis-
persion [27], [28] (Figure 2(a) and (b)). The proposed for-
mulation for arbitrary probability density functions can
become a foundational model for inhomogeneous broaden-
ing analysis. Its ability to retrieve broadening information
through minimax coefficients and fitting to experimental
data can provide invaluable insights into the lifetime-based
width, local environments, and the nature of disorder in
materials, thus improving our understanding of their fun-
damental properties [104].

Our approach extends naturally to anisotropic and bi-
anisotropic materials involving full electromagnetic ten-
sors, as well as to nonlinear models such as saturable
Lorentz and multilevel carrier kinetics solvers, where the
non-Lorentzian lineshapes can now be accurately imple-
mented in FETD, DGTD, FVTD or FDTD solvers. Although this
result focuses primarily on optical materials and nanopho-
tonics, its implications extend broadly to wave propaga-
tion across various disciplines, including microwave elec-
tromagnetics, acoustics, electronics, magnonics, biosensing,
seismology, astrophysics, and quantum information tech-
nologies, where our newly developed MiMOSA method effi-
ciently accounts for inhomogeneous broadening in disper-
sive media.
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Appendix A: Table of susceptibility
models with arbitrary broadening

Table A presents the Fundamental Dispersion Model (shown
in the dark green cell) for any rational unbroadened
dispersion function y°() broadened by an arbitrary
Probability Density Function (PDF) G(x). Special cases of
#°() are listed in the columns: Oscillator — difference of
two complex conjugate or real poles (column 3), Relaxation
— one real pole (column 4), Conductivity — difference of
two real poles, one of which is zero (columns 5). Special
cases of the broadening function G(x) are listed in the
rows: the most general case is Any Broadening (row 2) with
given Characteristic Function (CF) ¢(t) = f_foG(x)e”“dx
and complex PDF G(x) = G(x) + tH{G(x)}, followed by the
Voigt profile (row 3), and its subcases — pure Gauss and
pure Lorentz (Cauchy) broadening (rows 4-5), then the
unbroadened case G(x) = 6(x) (row 6). In the time domain,
broadening means multiplication of the unbroadened
susceptibility y°(t) by the CF ¢(t). In the frequency domain,
this translates to the convolution of }°(w) with the PDF
G(x), which can be expressed in terms of the complex PDF
G(x). Each cell represents a special case of the fundamental
model (dark green cell), obtained by substitution of
la, p, Q,y,cl-parameters (shown in the header) and
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[@(t), GO)]-functions (shown in column 1). The cell color
legend is as follows: light red indicates agreement with
long-established classical models, while greenish cells
denote formulations newly introduced in this work. The
medium green cell corresponds to a recent result (obtained
both here and in Ref. [74]) that provides an important
correction to the well-known noncausal Brendel-Bormann
model (see Appendix B for details).

New general model (this work) that generates all special cases in
the table

New special case (this work and [74]) that removes the issues with
the previously known formulations: [66], [67], [71], [72]

New special cases (this work) that are not documented in the
literature

The special cases that match established and classical models
from the literature: [57]-[62], [64]

The general model is parameterized by the time-domain
phase ¢, amplitude a, resonance frequency €2, and broaden-
ing (o, y) parameters, yielding simple formulas. The phase
parameter ¢ allows to account for a critical point (CP)
model [60], and toggles between two orthogonal cases: a
relaxation (¢) = —n/2) with one real pole s, = —y, and an
oscillator (¢p = 0) with two poles s, , = —y + 1Q, where Q =

\/ @ — v* and s = —w is polynomial argument. Two poles
are either complex conjugates (y < w,) or both real (y >
@,); the latter is called an overdamped oscillator. If one
real pole is zero (w, = 0), the model represents conductivity
case. To correctly take the limits y — 0% and ¢ — 0% in the
general model columns, use the following tips:

y — 07 for x € R, the real and imaginary parts separate as w(x) = e+ 2—\/1_F(x). (Ala)
7
72
o — 0% for large argument use w(z) ~ L and erfc(z) = e‘zzw(zz) & € . (A.1b)
z\/7 z\/m
y = 0%, 6 — 0": use the Sokhotski — Plemelj theorem to obtain Zero Broadening formulas. (A1)

Oscillator (¢ = 0, Q > 0) is usually defined by the natu-

ral frequency w,, broadening I', and oscillator strength f,

asin y(w) = sz—mr In the time domain, it represents
0

either an oscillator (if the resonance frequency is real,

Q=/o} - I'?/4 € R), or a difference of two exponential

decays (overdamped oscillator), otherwise (I'/2 > wy).

Relaxation (¢p = —x /2, = 0) corresponds to exponen-
tial decay in the time domain. Its amplitude is classi-
cally characterized by a permittivity jump Ae at w =0,
with the fall rate defined by the relaxation time 7, as in
7o) = 2¢_ 1n the zero broadening limit y = 1 - 07,

1-wt’

this parametrization becomes ill-defined, so a DC electric
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Table A: Susceptibility ¥ (w) = (2° = G)(w) for different unbroadened dispersion 3°(w) (columns) and broadening functions G(x) = SRIC(x)] (rows).
For conductivity, 8(w) = (8° = G)(w), then restore y(t) = eo‘%ta(r)dr.
X°(t) GENERAL MODEL OSCILLATOR RELAXATION CONDUCTIVITY
JoF X°(t) = asin (Qt — ¢) 0(t) X°(t) = asin (Qt) 6(t) X°(t) = ab(t) () = af(t)
a¥(t)
® ¢ €[0,27) } ¢ —0,Q— ¢%*g79%0 ¢—>—%,Q—>0
® , e (RyoUR
and - ol aﬁi’,y%, aquﬁ,v 1 a = ewp, x() = o(.)
G(x) Q 2 T £ T
ANY FUNDAMENTAL Model ANY Oscillator ANY Relaxation ANY Conductivity
Broadening [this work] [this work] [this work] [this work]
CF: 4(t) X(t) = ap(t)sin(Qt — 9)0(t) | x(t) = ap(t)sin(Qt)O(t) x(t) = ap(t) 0(t) o(t) =ap(t)6(t)
P 5 Q) G Q) 6(w) = TaG(w)
wa| €6 (w— wa| G (w—
PDF: X = — % =— % = =l [
o) [R@I==5 Le—zw )| *= Lg (w+ m] W) =gl S
R(w) = (-weg)  6(w) (w#0)
VOIGT GAUSS-LORENTZ Model |GAUSS-LORENTZ Oscillator GAUSS-DEBYE Relaxation GAUSS-DRUDE Model
(y>0,0>0) [this work] [this work and [74]] [this work] [this work]
() = X1 (t) = () = Lot NOEE—EESOT a(t) = cowle 1= F (1)
RN x sin (Qt — ¢) 0(t) x sin (Qt) 0(t) i b(w) = gowi/T <w + w)
Vi Vi Be Vi e
1 e _aym . . 1f . _ Ae r
= X0 (w) = X(w) X(w) = —— w2
o0 = 2072 20012 “WTon () = DV o
] Py <W+W Q) +z§7(l - w+ar! U‘/—
/2 < a2 o2 erfc( \/5)
ety (W x oves e
/2 w+z2+Q ferfc<v+gt>
a2
vy
Ve oy cavi|™{o7g)
X(w) = 5 _iw<w+ry>
w a2
GAUSS GAUSS Model GAUSS Oscillator GAUSS Relaxation GAUSS Conductivity
(v=0,0>0) [this work] [Meneses 2006] [this work] [this work]
0,0 . — e Ac 5242 _ U(‘ 70 t _ 9) G,
el 00 —ae xO) =288 | xt=Ze B o(t) = cawle=20(1)
plt)=e""2 ¥ sin (Qf — #) 8(2) Vrln2 T (W) =
x sin (wot) 0(t) 2
g _ 1 ~ . €202
($) = 0'\/% Xo,d(w) = G X(w) :w+w X(W) iuﬂ Eowy, 5 +&F w
Xw( @ ) 97L¢F<w+ ) oA F(Q\/E = 0) Go /T e Vi \ov2
A R R I | oo () 1
V2| _ep(w=2 v 4(2@2@) e a2l -
22 = x(t) oV/2 erfc<g—t> (5
] e (w;anﬂ A o—4mn2 (ool NG
T20VE|_ i e Y. Lt e
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conductivity parameter is used instead, o, = £0A£1‘1, for
the Gaussian and zero broadening cases.

Conductivity (¢p = —x /2, Q =0, y() — o()) is character-
ized by the plasma frequency w, and collision rate y, as

oA _ ot @[ 1
in y(w) = ~Fhe =7 [Tw - y_lw], (w # 0). An alterna-

tive (equivalent) definition using the conductivity func-

Eowé I . .

—— n conductive media,
broadening is applied to the conductivity function 6(w)
rather than to the susceptibility ¥(w), as is done in
non-conductive cases (this ensures that the zero pole
remains unbroadened); thus the substitution y(.) — o() is

used.

tion is 6(w) = —iwey y(w) =

Appendix B: Correction to
the Brendel-Bormann (BB) model

Efimov and Khitrov [66] and later Brendel and Bormann
[67] postulated that the following convolution integral intro-
duces the Voigt (Gauss—Lorentz) broadening to the classical
Lorentz oscillator,

+0oo
A 1 f
Zep(@) = G\/E/ X2 — @? — 1wl

X exp<—(x_w°)2>dx.

27 (B.2)

This integral can be solved in terms of Faddeeva functions,
as shown in Rakic et al. [68],

. _afyr 1 a(w) — w,
O o ve ) [w( )

alw) + w,
+w| T2 %0 )|
(25
alw) = Vo' + 107,

While the BB model (B.2) and (B.3) can be useful in specific
cases of experimental frequency-domain spectroscopy, e.g.,
[68], it is inherently non-causal. This drawback restricts its
utility primarily to spectral fitting applications and makes it
unsuitable for time-domain simulations. The properties of
the BB model and possible corrections have been discussed
in the literature up to today, [71]-[73].

In this work, we have built a physically consistent
formalism for susceptibility functions broadened by any
absorption probability G(x), including Voigt profile. First,
we express the Lorentz oscillator with strength f, natural

(Ja(w) > 0). (B3)

DE GRUYTER

frequency w,, and (homogeneous) broadening y =T/2 in
the time and frequency domains,

n®=Lersin@on -

@)= S = S — 2
)(L(w)_co%—wz—leY’ (Q_ 0 y). ®H

Second, we write the Gaussian probability density function
(PDF) and corresponding characteristic function (CF), both
characterized by the variance ¢?,

2

PDF: G(x;u =0,0%) = et (B.5a)
o\2rn
+oo
&2 2
CE: o(t) = / G(x)eMdx=e"z". (B.5h)

Note that we assume zero mean (u = 0) which keeps the
resonance frequency Q of the oscillator unshifted.

In the time domain, the Gauss—Lorentz model is a mul-
tiplication of the Lorentz oscillator (B.4) by the Gaussian CF
(B.5h),

X = ée‘” sin(Qt)0(t) e =

A

J
g Gaussian CF
Lorentz

_f —rt ey
= L sin(Qt)0(t) e’ ezt (B.6)

—— Cauchy CF Gaussian CF

Sellmeier

which can also be viewed as a lossless Lorentz (Sellmeier)
oscillator broadened by both Cauchy and Gaussian distribu-
tions. This aligns with the general principle from probability
theory: the CF of the sum of two random variables is a prod-
uct of individual CFs, while the PDF of the sum is a convolu-
tion. Equation (B.6) preserves causality (note the term 6(t))
and leads to an inhomogeneous time-dependent scattering
function y(¢) = y + 6%t/2, where higher order correction
terms are possible for other broadening functions G(x), as
predicted by Kim et al. [24].

In the frequency domain, according to the convolution
theorem, such multiplication corresponds to the integral

Zel@) = (¥ +G)(@)

+00
/ 1
= e =2 dx.
/wg—(a)—x)z—Zz(a)—x)y ovVor
— 00\ ~~ /o /

Lorentz ¥ (w—x) Gauss PDF G( x;0,62)

(B.7)
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Decomposing the Lorentzian into single poles (with a;(z) =
Q* + y?) gives

f - I 1

oy —(@—=xP?=2(w-xX)y 22|o+1y—x+Q
_ 1

w+iy—x—Q|

making substitution x — —x in the integral for the first pole,
and then (x + Q) — x for both poles, gives the final integral
(where I" = 2y)

+o0

Yol@) = 1 /1 f
o over) Q xX*—w*— il +T%/4

X exp(—(x_?)z>dx,

7 (B.8)

and its closed-form expression in terms of the Faddeeva
functions

Xe (@)=

lf\/;i w w+i['/2-Q
oV2 2Q V2

—w w+i[/2+Q
V2

fyr 1 w alw) — w,
/2 2aw) /2

+ w(a(a)) + @ )] , alw) = Vo* + 10l
V2

, (B.9)

(@) =

(B.10)

Comparison of the GL model (B.9) with the BB model (B.3)
(duplicated in (B.10) for convenience) indicates two key dif-
ferences:

1. The resonance and natural frequencies are confused,
Q # w,. For a mildly damped oscillator I" <« @, this

can be a close approximation, Q = 4/ a)g -T? /4~ w,.

Similarly, for high enough frequencies @ > I', we have
@) = \J(@+ /2 +T* /4~ 0 +1T/2.

2. The BB model uses a sum of the Faddeeva functions
instead of a difference. For the Lorentzians, the sum
and difference are identical,

alimataral=alata-aral

For the Voigt profile, same identity does not hold, i.e.,

2[w(a—§2)+w(a+9)] # é[w(a—Q)—w(a+Q)].
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Only with a negligible Gaussian width, ¢ < T, the
Voigt profile simplifies to a Lorentzian, and the sum
can approximate the difference, which can be shown
using the asymptotic formula of large arguments,
w(z) ~ 172771, As a result, the BB model (B.3) can
be useful for Gaussian broadening analysis but only
becomes close to the true GL formula for feebly damped
(I' <« wy) and feebly Gaussian (o < I') oscillators over
higher frequency ranges (o > I'). The BB model (B.3)
violates causality, which makes it unusable in time-
domain simulations. Instead, the Gauss—Lorentz (GL)
model (B.8) and (B.9) should be used for spectral analy-
sis and simulations, especially in the time domain.

The new GL model is causal (y ¢ (t) = 0 Vt < 0), has the cor-
rect symmetry fq (—o) = ¥, (@), preserves the Lorentz
plasma sum rule: 7¢ (w) ~ —f/w® as @ — oo, and has
correct pure Lorentz (¢ — 0%) and pure Gaussian (y — 0%)
limits, as follows from properties of the Faddeeva function
(w(-2) = w*(z*) and w(z) ~ r~/%z71).

Appendix C: Equioscillation
theorem and MiMOSA method

The minimax optimization technique utilized in the
MiMOSA method traces its historical origins to the 19th
century work of Pafnuty Tchebycheff (Chebyshev) [79].
The equioscillation theorem, also known as the Chebyshev
alternation theorem, represents a fundamental principle in
approximation theory. It states that, when approximating
a continuous function, the optimal uniform (minimax)
rational approximation of degree [M,N] exhibits a
distinctive pattern: the approximation error attains its
maximum absolute value at least M + N + 2 times across
the interval. At these extremal points, the error alternates
precisely in signand has equal magnitude, hence the
term “equioscillation”. This evenly distributed alternation
of maximal error is the defining feature of the optimal
solution in the minimax sense, see Figure 3(a).

The MiMOSA method starts by finding such optimal
minimax rational approximation for the Hilbert transform
of the probability function H{G(x)} along the real axis,
with a sum rule constraint imposed at infinity. This choice
is motivated by the fact that while the absorption 7" (w)
may lack a rational asymptote at infinity (e.g., Gaussian
absorption decays as e=*/20%), its Hilbert transform decays
as y'(w) ~ —Z—‘zg according to the sum rule (Section 2.2).

Figure 3(a) illustrates the minimax concept and its
advantages over non-minimax approximation methods.
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Figure 3: Minimax approximation error. (a) Error distribution of a minimax rational approximation and a non-minimax technique (Padé, [92]) for the
Dawson function F(x), both using four poles (n = 4). The minimax approximation exhibits a characteristic equioscillating error - uniformly spread with
alternating sign and constant magnitude and achieving optimal accuracy across the domain. The non-minimax (Padé) method shows lower error near
the origin and at infinity but significantly higher (9% larger) global maximum error than the minimax. (b) Exponential convergence of the maximum
relative error with increasing number of poles (n) for both the Dawson function and the Hilbert-reconstructed Faddeeva function approximations.
With each additional pole, we observe an error reduction of roughly one order of magnitude. (c) Dawson’s approximation error for coefficients (23).

Shown is a relative error of the sum-rule-constrained
4-pole (n = 4) minimax rational approximation of the Daw-
son function (F(x) = F,(x)), featuring (4n — 1) equioscillat-
ing peaks (in agreement with the alternation theorem). As
a non-minimax reference, we include a 4-pole Padé approx-
imation [92], a method that has recently gained popularity
in computational modeling [100]. While the Padé approxi-
mation achieves higher precision near x = 0 and at infinity,
its global maximum error in this example is 9 times larger
(4.5e-3) than that of the minimax approximation (0.5e-3). In
time-domain simulations, particularly those involving ultra-
fast phenomena, broadband accuracy is essential, making
the minimax approach optimal for achieving the best over-
all accuracy with a fixed number of poles n.

Figure 3(b) demonstrates that the maximum
relative error of the Dawson function approximation,
m)?x|Fn(x) /F(x) —1| decreases exponentially with the
number of poles n. Furthermore, reconstructing the real
part via the Hilbert transform,

wy(z) =

\/;

yields an approximation of the Faddeeva function w(z) with
approximately the same maximum relative error across the
entire upper half-plane,

(1F(2) + HHF(2)}),

wy(z) 1‘

zec,Jz1z0| wW(z)

Each additional pole reduces the error by roughly an order
of magnitude, highlighting the rapid convergence of the min-
imax approximation.

Described properties are essential to the efficiency of
MiMOSA permittivity models for the following reasons:

— Optimal error distribution. MiMOSA models use min-
imax rational approximations to uniformly minimize
error across the spectral domain, ensuring consistent
broadband accuracy without localized degradation.

- Minimal number of poles. High accuracy (better than
1%) can be achieved with just 2—3 poles, significantly
reducing computational cost. A smaller number of
poles translates into the shortest possible time-domain
stencil in the FDTD update equations, which is critical
for fast and memory-efficient time-domain simulations.

— Physically consistent formulation. The semi-analyt-
ical derivation with built-in constraints (e.g., causal-
ity, sum rules, Kramers—Kronig consistency) ensures
that MIMOSA models maintain the structure and inter-
pretability of a single oscillator. Unlike overfitted multi-
parameter models, the compact form of MiMOSA
improves fitting stability and gives physical meaning to
each parameter.

Appendix D: Abbreviations and
functions

PDF - Probability density function, G(x); it is nonnegative
(G(x) > 0) and has full probability support ( / G(x)dx = 1).

Examples: Cauchy/Lorentz G;(x) = %m and Gauss
Goln) = e
G - 6\7258 o .

Complex PDF — Probability density function with added
Hilbert transform as an imaginary part, G(x) = G(x) +
IH{G(x)}. Examples (u = 0): Cauchy/Lorentz G, (x) = ~ '

y—ix
_ 1 X
and Gauss Gg(x) = mw(g—ﬁ )
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[s+]
CF - Characteristic function, ¢(t) = / G(x)eXtdx; it is

—o0
bounded (|¢(t)| < 1) and zero-centered (¢(0) = 1); more-
over, if the PDF is symmetric, its CF is real-valued. Examples
(4 = 0): Cauchy/Lorentz ¢ (t) = e77!l and Gauss @g(t) =
e—62t2/2_

sPDF - standard PDF, g(x) = G(x; u =0, o?=1) - a nor-
malized PDF, with the argument centered and stretched
such that: the mean is zero (¢ =0) and variance is
one (o =1) leading to G(x; u,c?) = % g("—T") Examples:

Cauchy/Lorentz g; (x) = ;’2—:1 and Gauss g;(x) = \/%e"‘z/ 2,
Lineshape, I(x) — a normalized distribution with the argu-
ment centered and stretched and the amplitude scaled so
that: the peak is centered at zero with maximum of 1
and half-width-half-maximum (HWHM) of 1. Examples:
Cauchy/Lorentz [ (x) = - and Gauss [g(x) = e In 2

CP — Critical point model, known in the semiconductor lit-
erature [60].

FT - Fourier

[ f(tede.
IFT - Inverse Fourier transform (F~1), F~1{f(w)} = f(t) =
2n)! [ flw)e “dew.

—0o0

A

PO} = flw) =

transform  (F),

HT - Hilbert transform (H), H{f(x)} = z7'P [ il_t;dt.

IHT - Inverse Hilbert transform (M), H7Y{f(x)} =
—H{f(x)}.

TD - Time domain.

FD - Frequency domain.

ZB — Zero broadening (y = 0%, 6 = 0*).

HB - Homogeneous broadening (y > 0,6 = 0%).

IB — Inhomogeneous broadening (y > 0,5 > 0).

The Faddeeva (or Kramp) function, w(z) = e~Zerfc(—iz) =
e ? + %F(z), [63].

The Dawson function (or Dawson integral), F(x)=
Jyfet¥de = n{ Ve | = VIS0l x R,
Conductivity function 6(w) = —we, 7 (), o(t) = g,y (0),
y(t) = 60_1/0t0'(1)d1'.

The Dirac delta function, 6(x).

The Heaviside step function, 6(t).
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