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Abstract: Forty-five years after the initial attempts – first

by Efimov–Khitrov in 1979, then by Brendel–Bormann in

1992 – we present a comprehensive, causal, and physi-

cally consistent framework formodeling the dielectric func-

tion with inhomogeneous (non-Lorentzian) broadening,

where scattering becomes frequency- or time-dependent.

This theoretical framework is based on spectral diffusion,

described in the frequency domain by a complex probability

density function and in the time domain by a matching

characteristic function. The proposed approach accurately

models the lineshapes resulting from multiple broadening

mechanisms and enables the retrieval of intrinsic homo-

geneous linewidths as well as inhomogeneous disorder-

controlled material dispersion features. To implement the

new general dispersion function in time-domain Maxwell

solvers, we have designed a constrained minimax-based

semi-analytical approximation method (MiMOSA) that gen-

erates the shortest possible numerical stencils for a given

approximation error. Application examples of exact and

approximate MiMOSA models include the Gauss–Lorentz

oscillator, Gauss–Debye relaxation, and Gauss–Drude con-

ductivity. Although this study primarily focuses on the opti-

cal domain, the resulting models, which account for the

Doppler shift, are equally applicable to other wave prop-

agation phenomena in disordered dispersive media in a
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1 Introduction

The fundamental understanding and predictivemodeling of

the broadening of the spectral line in optical systems require

careful consideration of homogeneous and inhomogeneous

mechanisms. These processes play crucial roles in deter-

mining the optical response of materials and are essential

for understanding spectroscopic measurements and laser

physics [1].

Homogeneous Broadening (HB). HB represents broaden-

ing mechanisms that affect all atoms or molecules in a

system identically, arising primarily from the finite life-

time of excited states through the energy-time uncertainty

principle, ΔEΔt ∼ ℏ, [2]. In the statistical sense, the HB

process is intimately connected to the Cauchy distribution

(also referred to as Cauchy–Lorentz or Lorentz, Eq. (12)).

This distribution arises naturally from the solution of the

quantum-mechanical equation of motion for a damped

oscillator, which models the atomic transition. The Cauchy

distribution’s “heavy tails” (with slower decay than a Gaus-

sian) reflect the fundamental nature of the uncertainty

principle. The Cauchy distribution belongs to the class

of stable distributions. Thus, in the presence of several

HB mechanisms associated with the same transition fre-

quency Ω, a sum of coherent Cauchy-distributed variates∑
i Cauchy(Ω, 𝛾 i) matches distribution of Cauchy(Ω,∑i 𝛾 i),

preserving the location parameter Ω, as depicted in

Figure 1(a). The resulting absorption spectrum follows a

Lorentzian lineshape 1∕(1+ x2) with a resonant frequency

Ω and a half-width-at-half-maximum (HWHM) given by 𝛾 =∑
i 𝛾 i.

The most fundamental example of HB is a natural line

broadening (𝛾natural) due to the finite lifetime of excited
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Figure 1: Broadening mechanisms in ordered and disordered media.

(a) Ordered materials have a structured molecular or engineered

arrangement, with a Lorentzian lineshape of absorption 𝜀′′(𝜔) [3];

(b) disordered materials, with lineshapes combining homogeneous

(Lorentzian, 𝛾 ) and inhomogeneous (e.g., Gaussian, 𝜎) broadening, are

largely inaccessible to time-domain nanophotonics due to the lack of

efficient and physics-consistent models; examples: random

metasurfaces, semi-continuous metal films, perovskites [4], MXenes [5],

defects in oxides [6]. The peak decompositions are illustrative

approximations rather than mathematically precise representations.

states. Additional HB mechanisms include pressure broad-

ening (𝛾collision) in gases [7], where collisions interrupt

the phase of atomic oscillations, and phonon scattering

(𝛾phonon) in solids, which contributes to dephasing pro-

cesses [8]. Using the stability of the Cauchy distribution, the

total homogeneous linewidth is expressed as 𝛾 = 𝛾natural +
𝛾collision + 𝛾phonon.

In the modeling sense, this simplest class of dis-

persion assumes that individual sources of electromag-

netic response (e.g., electrons) follow identical equations

of motion, with the total macroscopic model achieved via

multiplication by the volume-averaged number of sources.

Inhomogeneous Broadening (IB). In contrast to HB, IB

creates distinct subgroups of atoms ormoleculeswith differ-

ent resonant frequencies, fundamentally altering the opti-

cal response of the material system [9]. For example, in

quantum dots, this phenomenon manifests itself through

size distribution effects [10]. At the same time, in amor-

phous materials, it is caused through local structural vari-

ations modifying the electronic density of states [11], and in

gas-phase systems through the IB-inducing thermal motion

[12]. For example, IB plays a crucial role in modifying

the optical response of quantum and nanoscale systems.

In quantum cascade lasers, IB impacts emission prop-

erties, with the linewidth enhancement factor introduc-

ing phase-amplitude coupling that affects frequency comb

formation [13]. At the quantum well level, studies have

shown that interface roughness and well width fluctua-

tions can lead to a significant broadening of intersubband

absorption bands, with spectral hole burning experiments

revealing the interplay between homogeneous and inho-

mogeneous contributions [14]. These IB effects have impor-

tant implications for device design, as demonstrated in

early work exploring intersubband scattering and coher-

ent phenomena [15]. The fundamental understanding of

IB mechanisms, presented, for example, in the work on

quantum well structures [16], remains crucial to engi-

neering and optimizing the performance of quantum and

nanophotonic devices. In addition, optical materials can

have intrinsic natural and fabrication defects, disorder,

or amorphous structure. For example, in nanoplasmonic

systems, IB arises from geometric variations in fabri-

cated structures – even small polydispersity in parameters,

such as plasmonic nanorod dimensions, can dramatically

alter the optical spectra of their ensembles compared to

individual elements1 [19]. IB also occurs in natural crys-

tals such as lithium niobate, where asymmetric infrared

absorption arises from multiple anharmonic decay paths

of phonon–polaritons into low-frequency phonons [20].

Finally, in photonics and plasma physics, individual carriers

undergo a Doppler shift due to the Maxwellian distribution

of their velocities [12]. As a result, real measured spectra

deviate from the ideal Lorentzian absorption lineshape,

1∕(1+ x2), since the observed absorption peaks include two

broadening mechanisms – homogeneous (𝛾) and inhomo-

geneous (𝜎, e.g., Gaussian), Figure 1(b). Retrieving both

broadening components (𝛾 and 𝜎) is essential for captur-

ing the underlying physics and tailoring the response, and

requires physically consistent non-Lorentzian permittivity

models.

Currently, to account for diverse IB effects with non-

Lorentzian lineshapes, most ellipsometry fitting software

relies on empirical frequency-domain approximations [21],

[22]. Common examples include the pseudo-Voigt profile

[23], which approximates the convolution of Lorentzian and

Gaussian broadening functions (16b) with a weighted sum,

and Kim’s model [24]–[26], which uses an empirical FD 𝛼-

switch of the form 𝛾(𝜔) = 𝛾 exp
[
−𝛼(𝜔−Ω)2∕𝛾2

]
in place

1 It is apparent that the statistical nature of structural disorder in

materials plays a crucial role in determining the volume-averaged

effects of IB [17]. In crystalline materials, the correlation length of

the structural disorder (𝜉) compared to the optical wavelength (𝜆)

determines the strength of IB, where the volume-averaged effect scales

approximately as (𝜉∕𝜆)3 for short-range disorder [18].
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of a true convolution. Additional models include spline-

based approaches (e.g., Bsplines and Psemi), piecewise-

smooth “stitched” absorption models (e.g., Tauc–Lorentz

and Cody–Lorentz), Tanguy oscillator [27]–[30]. Although

these models are Kramers–Kronig (KK) consistent (𝜀′ is

derived via inverse Hilbert transform of 𝜀′′), they gener-

ally lack an exact physically meaningful time-domain (TD)

representation.2 Two exceptions with well-defined causal

TD form are: (1) the Gaussian oscillator with characteristic

(decay) function (CF) 𝜑(t) = e−𝜎
2t2∕2 (included in Table A);

and (2) critical point models with decay function 𝜑(t) ∼
e−𝛾t+(𝜇−1) ln t – a generalization of the Lorentzian (𝜇 = 1)

response (not included in Table A).

Modern Experimental Techniques. The comprehensive

understanding, along with predictive and efficient numer-

ical modeling of broadening mechanisms, have profound

implications for ultra-fast laser physics [31], nanopho-

tonic devices [32], and quantum technologies [33]. Recent

advances in experimental techniques [34] continue to

reveal new aspects of these fundamental processes and

revolutionize our ability to study broadening mecha-

nisms through the single-molecule [35], ultrafast [36] two-

dimensional [37], and coherent multidimensional [38] spec-

troscopic techniques. These methods enable direct obser-

vation of individual quantum systems, provide temporal

resolution of broadening dynamics, and separate homo-

geneous and inhomogeneous contributions. Novel spectro-

scopic methods [39] and advances in single-molecule detec-

tion [40] drive the development of new efficient numerical

schemes that can further elucidate the complex interplay

between diverse broadening phenomena and their role in

areas ranging from plasma physics to emerging quantum

technologies.

Numerical Modeling in the Time Domain (TD). The first

TD models of HB dispersion were coupled with the classi-

cal finite-difference time-domain (FDTD) approximations of

the Maxwell equations in the 1990s [41], [42]. Since then,

multiple discretization techniques based on auxiliary dif-

ferential equations (ADE) [43], [44], recursive convolution

(RC) [45]–[48], and Z-transform [49] have been developed.

These methods assumed the classical Lorentz, Drude, and

Debye dispersion models, where the dielectric function

was given as a rational function in the FD, resulting in a

2 KK consistency does not by itself guarantee causality.

set of exponential terms in the TD and ordinary differential

equations with constant coefficients.

To date, efficient TD approximation schemes have been

unavailable for simulations of dielectric functions that do

not belong to the classical rational class. In some cases,

the traditional non-Lorentzian empirical FD models are not

even causal.

The present work addresses this problem for a broad

class of natural and artificial materials with non-Lorentzian

dispersion, where statistical averaging of individual sources

results in convolved integral models. The approach begins

with a causal exact description compatible with TD, where

a fundamental dispersion formula is derived for an arbi-

trary absorption probability profile (Section 2). Section 3

expands the general formula into dispersionmodels for var-

ious broadening functions, yielding standard Lorentzian-

type models (e.g., Lorentz, Debye, Drude) and new causal

models based on Gaussian and Voigt profiles. All the models

are summarized in Appendix A, Table A.

The implementation of new non-Lorentzian disper-

sion models in time-domain solvers (e.g., FDTD) is devel-

oped using a minimax-optimized semi-analytical approxi-

mation (MiMOSA), initially demonstrated for a causal Gaus-

sian oscillator model [50]; here, we generalize and extend

this approach to the Gauss–Lorentz, Gauss–Drude, and

Gauss–Debye models (Section 3.4).

2 Methods

2.1 Probability formalism for dispersion

This section aims to formulate the material dispersion

through the concept of photon absorption probabilities (or

broadening functions3)Gi(x), enabling generalization of clas-

sical dielectric laws from Lorentz broadening to arbitrary

distributions. We start with a representation of complex

3 The proper time-domain (TD) formulation of line broadening is

not obvious [24]. Here, we define permittivity broadening functions

Gi(x) based on classical Lorentz, Debye, and Drude permittivity mod-

els grounded in the quantum mechanical differential TD equations

of motion. After the unbroadened model is established by taking the

limit 𝛾 i → 0+, the broadening function is introduced so its Cauchy

case (Gi(x) = 𝛾i𝜋
−1∕

(
x2 + 𝛾2

i

)
) restores the classical response, and its

delta-function case (Gi(x) = 𝛿(x)) reduces to the unbroadened model.

Once validated,Gi(x) canbe any other validprobability density function,

includingGaussian andVoigt; see similar broadening definition in Refs.

[26], [51].
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relative permittivity in the time and frequency domains,

connected via the Fourier transform4 (FT,  )

𝜀(t) = 𝜀∞𝛿(t)+
𝜎e
𝜀0
𝜃(t)+

∑
i

𝜒i(t)

←←←←←←←←←←←→ (1a)

𝜀̂(𝜔) = 𝜀∞ + 𝜎e
𝜀0

[
𝜋𝛿(𝜔)− 1

𝚤𝜔

]
+
∑
i

𝜒̂ i(𝜔), (1b)

where, for generality, standard high-frequency permittivity

(𝜀∞) and conductivity terms (with DC electric conductivity

𝜎e) are assumed [53].

The dispersion terms 𝜒̂ i(𝜔) are defined as ideal

unbroadened susceptibilities 𝜒̂0
i
(𝜔) convolved (broadened

by) absorption probabilitiesGi(x), whichmust be valid Prob-

ability Density Functions (PDFs) [54], i.e., nonnengative with

full probability support, Gi(x) ≥ 0 and ∫ ∞
−∞Gi(x)dx = 1,

𝜒̂ i(𝜔) =
(
𝜒̂0
i

∗Gi
)
(𝜔)

=
∞

∫
−∞

𝜒̂0
i
(𝜔− x)Gi

(
x;𝜇i, 𝜎2

i
,…

)
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

PDF

dx. (2)

Each PDF Gi(x) is parameterized by the mean (𝜇i), variance(
𝜎2
i

)
, and/or other higher-order statistical moments and

parameters. For now, we assume symmetric distributions,

Gi(−x) = Gi(x), and zero means, 𝜇i = 0, so that the center

frequency of susceptibility doesn’t change with broadening.

In the time domain, obtained via the inverse FT and

applying the convolution theorem, Eq. (2) reads

𝜒i(t) = 𝜒0
i
(t)

∞

∫
−∞

Gi(x)e
𝚤xtdx

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
𝜑i(t), CF

, (3)

where the symmetric broadening functionsGi(x) contribute

through its characteristic functions (CF) 𝜑i(t) [54]. Standard

4 Here 𝜀0 is the vacuum permittivity, while 𝜃(x) and 𝛿(x) and are the

Heaviside and delta functions, 𝜔 is the angular frequency. The hat

( ⋅̂) and the tilde ( ⋅̃) denote forward and inverse Fourier-transformed

functions, while the real and imaginary parts of a complex-valued

function are indicated by primes, e.g., 𝜒 ′ =R[𝜒 ] and 𝜒 ′′ = I[𝜒 ].
The Fourier transform (FT) follows the physics convention { f (t)} =
f̂ (𝜔) = ∫ ∞

−∞ f (t)e𝚤𝜔tdt [52].

Frequency domain poles on real axis, 1∕(𝜔−Ω) (Ω ∈ ℝ), are inter-
preted in the sense of the Cauchy principal value ( ); complemented
with their Hilbert transform (HT) pair, −𝜋𝛿(𝜔−Ω), they make a

Kramers–Kronig (KK)-consistent complex susceptibility term, equiva-

lent to lossless limit according to the Sokhotski–Plemelj theorem


1

𝜔−Ω − 𝚤𝜋𝛿(𝜔−Ω) = lim
𝛾→0+

1

𝜔−Ω+ 𝚤𝛾
.

In the literature, the delta-function term is often omitted if the pole is

outside the frequency range of interest.

CF properties include boundedness and zero-centered unity,|𝜑i(t)| ≤ 1 and𝜑i(0) = 1; moreover, if the PDF is symmetric,

its CF is real-valued.

As a clear example, we reformulate the classical

Lorentz oscillator using the proposed formalism

𝜒L(t) =
f

Ω sin(Ωt) 𝜃(t)
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

𝜒0(t)

e−𝛾t

⏟⏟⏟
𝜑L(t), CF


←←←←←←←←←←←→ (4a)

𝜒̂L(𝜔) =
f

𝜔2
0
−𝜔2 − 2𝚤𝛾𝜔

=
(

f

Ω2 −𝜔2

)
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

𝜒̂0(𝜔)

∗

(
1

𝜋

𝛾

𝜔2 + 𝛾2

)
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

GL(𝜔), PDF

. (4b)

Here f , 𝛾 are oscillator’s strength and damping parameters,

while Ω and ω0 =
√
Ω2 − 𝛾2 are resonance and natural

frequencies; GL(x) and 𝜑L(x) are known PDF and CF of the

Cauchy–Lorentz distribution [54], see Eq. (12); delta func-

tions in 𝜒̂0(𝜔) are omitted for simplicity4.

Substituting the general form of the unbroadened sus-

ceptibilities 𝜒0
i
(.) from Eq. (6), derived later in Section 3.1,

into Eqs. (2) and (3) we obtain the fundamental dispersion

relation5

𝜒i(t) =
(
𝜒0
i
𝜑i

)
(t)

= ai𝜑i(t) sin(Ωit − 𝜙i ) 𝜃(t)

←←←←←←←←←←←→ (5a)

𝜒̂ i(𝜔) =
(
𝜒̂0
i

∗Gi
)
(𝜔)

= 𝚤𝜋ai
2

[
e𝚤𝜙ii(𝜔−Ω)− e−𝚤𝜙ii(𝜔+Ω)

]
, (5b)

where i(x) = Gi(x)+ 𝚤{Gi(x)} is the complex PDF incor-
porating the Hilbert transform (HT,) of Gi(x) as the imagi-

nary part, and represents broadening, while [ai, 𝜙i, Ωi] are

the amplitude, phase and resonant frequency parameters of

the ideal unperturbed transition (see Figure 2).

Equation (5) represents a powerful theoretical frame-

work that generates physically consistent permittivity mod-

els for any probability distribution with known complex

PDFs i(x) and CFs 𝜑i(t).
6 In Section 3, we show how to use

the general formula (5) for common broadening functions

– Lorentz, Gauss, and mixed Gauss–Lorentz (Voigt), and

5 The general form of unbroadened susceptibility 𝜒0
i
(.) (Eq. (6)) is

initially derived as a lossless limit of arbitrary rational susceptibility

function. After the fundamental dispersion relation (5) is established,

𝜒0
i
(.) itself becomes a trivial special case of Eq. (5) when i(x) = 𝛿(x)+

𝚤(𝜋x)−1 and 𝜑i(t) = 1.

6 Tables of PDFs, CFs, andHilbert transforms can be found in standard

probability theory literature.
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Figure 2: Real and imaginary parts of susceptibility 𝜒̂ (𝜔) (or conductivity 𝜎̂(𝜔)) for different broadening functions: zero broadening (ZB), Lorentzian

homogeneous broadening (HB) and Gaussian inhomogeneous broadening (IB) with different types of dispersion: (ab) oscillator, (cd) relaxation,

(ef) conductive media, according to the newly derived formulas in this work.

different dispersion types – oscillator, relaxation and con-

ductive media. A comprehensive summary of all cases and

formulas, highlighting new (derived in this work) and estab-

lished known models, is provided in Table A (Appendix A).

2.2 Analytical constraints

Time-domain modeling requires the dielectric function to

be physically consistent, ensuring analyticity in the upper

half-plane, causality, time-reversal symmetry (T-symmetry),

Kramers–Kronig (KK) consistency, passivity and proper

decay at infinity to satisfy the sum rule.

Causality of the total permittivity (𝜀(t) = 0,∀t < 0) in

Eq. (1a) is ensured as long as the unbroadened functions

𝜒0
i
(t) are causal; e.g., general form (5a) is causal.

T-symmetry and KK-consistency. The real and imaginary

parts of each term in (1b) satisfy the time-reversal symmetry

𝜒̂ i(−𝜔) = 𝜒̂∗
i
(𝜔) and are related via the Hilbert transform

(HT,), ensuring KK consistency,

{𝜀∞} = 0, {𝜋𝛿(𝜔)} = 𝜔−1, 
{
𝜒̂ ′
i

}
= 𝜒̂ ′′

i
.

For symmetric distributions Gi(x) = Gi(−x), convolution (2)
holds these properties, provided the unbroadened functions

𝜒̂0
i
(𝜔) satisfy them; e.g., this holds in the general form (5b)
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since HT commutes with convolution and anticommutes

with reflection implying i(−x) = ∗
i
(x).

Sum rules. In ultrafast TD modeling, physically accurate

high-frequency asymptotic behavior is important. As 𝜔→

∞, total permittivity in Eq. (1a) should approach a free

electron gas behavior: (a) 𝜀̂′(𝜔) ∼ 1−𝜔2
p
∕𝜔2, with (b) the

imaginary part decaying faster than 1∕𝜔, 𝜔𝜀̂′′(𝜔)→ 0, [51],

[55], [56].

Condition (b) yields the sum rule
∑

iai sin𝜙i = 𝜎e𝜀
−1
0
,

requiring that all contributions to 1∕𝜔 from non-zero phase

(𝜙i ≠ 0) terms (e.g., conductivity, Debye, or phase-relaxed

Lorentz) cancel out. This sum rule is unaffected by broad-

ening and holds as long as satisfied for the unbroad-

ened permittivity. Moreover, the MiMOSA approximation

(Section 3.4) also conserves the sum rule (b) exactly, since∑
i

∑
ja

j

i
sin 𝜙

j

i
= ∑

iai sin𝜙i follows from combining con-

jugate pole pairs in Eq. (25) and constraint
∑

jB
j = 𝜋−1∕2.

Condition (a) in Voigt multi-term dispersion model

(16) is satisfied asymptotically, in both exact and MiMOSA

models, as 𝜀′(𝜔)− 1 = (𝜔−2 ), assuming 𝜀∞ = 1 (often

relaxed over a finite frequency ranges). The exact con-

stant (𝜔p) is defined by the sum rule𝜔2
p
= ∑

iai(Ωi cos𝜙i +
𝛾i sin𝜙i ) which, in general, can depend on homogeneous

broadening 𝛾 i (if non-zero phases 𝜙i are involved) but

remains unaffected by inhomogeneous broadening 𝜎i. For

zero-phase systems (∀i 𝜙i = 0), the MiMOSA approxima-

tion (Section 3.4) also preserves this sum rule exactly,∑
i

∑
ja

j

i

(
Ω j

i
cos 𝜙

j

i
+ 𝛾

j

i
sin 𝜙

j

i

)
= ∑

iaiΩi, see Eq. (25) for

validation.

Passivity of the total permittivity (𝜀′′(𝜔) ≥ 0,∀𝜔 ≥ 0) is

easy to ensure in the general formulation (5b) by the

passivity of individual terms, provided that all phases

are zero (𝜙i = 0) and the broadening functions Gi(x) are

bell-shaped.7 When non-zero phases (𝜙i ≠ 0) are present,

individual terms may locally exhibit gain, compensated by

other terms in the total sum. A representative class of exam-

ples areMiMOSAmodels in Section 3.4, where coupled oscil-

lators with conjugate poles maintain overall passivity8 (see

also Figure 5 in [50]).

7 Here, a bell-shaped PDF G(x) refers to a single peak PDF, symmetric

about itsmean (in our case,𝜇 = 0):G(𝜇 − x) = G(𝜇 + x), 𝜕xG(x) ≥ 0 for

x < 𝜇 and 𝜕xG(x) ≤ 0 for x > 𝜇.

8 In MiMOSA models, small approximation errors to passivity may

arise when homogeneous broadening (𝛾 i) is absent, though they decay

exponentially with the number of poles. It is standard practice to

restore passivity by adding a small numerical dissipation, such as

homogeneous broadening (𝛾) or conductivity (𝜎e).

3 Results

The new probability-based dispersion relation (5) extends

classical (homogeneously broadened) dispersion models

– Lorentz oscillator, Debye relaxation, andDrude conductiv-

ity – to the general case of Voigt (Gauss–Lorentz) broaden-

ing andother distributions.Wefirst derive the unbroadened

case (Section 3.1), then validate the fundamental formula

(5) with homogeneous (Lorentz) broadening (Section 3.2)

and present new models for inhomogeneous (Gaussian and

Voigt) broadening in Section 3.3.9

3.1 Zero broadening (ZB)

ZB represents an idealized scenario with infinitely narrow

spectral lines (G(x) = 𝛿(x)) and infinite transition lifetimes.

In the class of rational functions, the general form of a

single-term unbroadened model is derived by taking the

limit 𝛾 → 0+ in the HB case (11) resulting in

𝜒0(t) =
(
𝜒0𝜑0

)
(t) = a sin(Ωt − 𝜙) 𝜃(t)


←←←←←←←←←←←→ (6a)

𝜒̂0(𝜔) =
(
𝜒̂0 ∗G0

)
(𝜔) = a

2

[
e−𝚤𝜙

𝜔+Ω − e𝚤𝜙

𝜔−Ω

]

+ 𝚤𝜋a

2

[
e𝚤𝜙𝛿(𝜔−Ω)− e−𝚤𝜙𝛿(𝜔+Ω)

]
, (6b)

with [a, 𝜙, Ω] being the amplitude, phase and oscillation

frequency parameters.

The ZB formula (6) is consistent with the fundamental

dispersion equation (5), where a delta function distribution

is used as the PDF,

G0(x) = 𝛿(x), 0(x) = 𝛿(x)+ 𝚤

𝜋x
, 𝜑0(t) = 1, (7)

and represents zero scattering 𝛾 = 0+.10

The phase parameter 𝜙 in (6) (also known as the loss

angle) mixes the real and imaginary parts and allows

the transition between two orthogonal cases: (𝜙 = 0,

Ω > 0) representing a classical oscillator and

(𝜙 = −𝜋

2
,Ω = 0) corresponding to a relaxation in the

9 In this section, the single-term susceptibility means an individual

term 𝜒 = 𝜒 i, with index i omitted for brevity, while the multi-term

susceptibility refers to the total sum 𝜒 = ∑
i 𝜒 i.

10 The ZB case (6) represents the limit 𝛾 → 0+ of the HB case (11),

under the assumption of constant amplitude a. When amplitude

depends on 𝛾 (as in theDrude susceptibility), this limit yields a different

result (10b). To maintain a unified formalism, broadening in the Drude

case is introduced in the conductivity function: 𝜎̂(𝜔) = 𝜎̂0(𝜔)∗G(x).
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time domain. The two cases of the ZB formula (6), along

with a case for conductive media, are addressed below.

Lossless Lorentz oscillator (𝜙 = 0, Ω > 0), also called the

Sellmeier model [57], has quadratically decaying real part

and delta functions in absorption

𝜒0
L
(t) = a sin(Ωt) 𝜃(t)


←←←←←←←←←←←→

𝜒̂0
L
(𝜔) = aΩ

Ω2 −𝜔2
+ 𝚤𝜋a

2

[
𝛿(𝜔−Ω)− 𝛿(𝜔+Ω)

]
.

(8)

Lossless Debye relaxation (𝜙 = −𝜋

2
,Ω = 0), is simply a

DC conductivity term [58]

𝜒0
De
(t) = a𝜃(t)


←←←←←←←←←←←→ 𝜒̂0

De
(𝜔) = a

[
𝜋𝛿(𝜔)− 1

𝚤𝜔

]
. (9)

Lossless Drude model (𝜙 = −𝜋

2
,Ω = 0, a = 𝜀0𝜔

2
p
, 𝜒 (.)→

𝜎(.)) is handled as a Debye case (9) but with a switch from

susceptibility 𝜒 (.) to conductivity 𝜎(.),11,12

𝜎0
D
(t) = 𝜀0𝜔

2
p
𝜃(t)


←←←←←←←←←←←→

𝜎̂0
D
(𝜔) = 𝜀0𝜔

2
p

[
𝜋𝛿(𝜔)− 1

𝚤𝜔

]
, (10a)

𝜒0
D
(t) = t𝜔2

p
𝜃(t)


←←←←←←←←←←←→ 𝜒̂0

D
(𝜔) = 𝜔2

p

[
− 1

𝜔2
− 𝚤𝜋𝛿′(𝜔)

]
.

(10b)

Here 𝜔p is a plasma frequency – a characteristic point

where the lossless Drude permittivity 𝜀(𝜔) = 1− 𝜔2
p

𝜔2

switches from metallic to dielectric behavior [59].

The delta function terms in (6b), often omitted in the

literature, represent degenerate distributions of zero width

and play a key role in the convolution formalism. When the

ZB model (6b) is convolved with a PDF G(x), the absorption

of an oscillator (𝜙= 0) is directly linked to the function G(x)

as

𝜒̂ ′′(𝜔) = (𝜒̂0′′
∗G)(𝜔) = a𝜋

2
[G(𝜔−Ω)− G(𝜔+Ω)].

This is why, for example, a Gaussian distribution produces

a Gaussian lineshape in the absorption. In the case of

relaxation/conduction, the lineshape (of 𝜒̂ (𝜔) or 𝜎̂(𝜔)) is

11 Traditionally, the Drude model is represented through susceptibil-

ity function 𝜒 (.) as a case of an overdamped Lorentz oscillator with

zero natural frequency (𝜔0 = 0 or Ω = ı𝛾), where one of the two real

poles is at zero and corresponds to aDC conductivity. This holds only for

the HB case, but is unphysical for ZB and IB cases, while the definition

through conductivity function 𝜎(.) (10a) with post-conversion to 𝜒 (.)

applies universally to all broadening cases (ZB, HB, and IB) of Eq. (5).

12 Conductivity and susceptibility functions are conventionally

related through conversion formulas: 𝜎̂(𝜔) = −𝚤𝜔𝜀0𝜒̂ (𝜔),
𝜎(t) = 𝜀0𝜕t𝜒 (t), 𝜒 (t) = 𝜀−1

0
∫ t

0
𝜎(𝜏 )d𝜏 (see, e.g., [53]).

zero-centered and is rotated by𝜙 = −𝜋

2
from the imaginary

part to the real part, e.g., 𝜒̂ ′(𝜔) = a𝜋G(𝜔), as shown in

Figure 2.

3.2 Homogeneous broadening (HB)

HB represents the natural linewidth broadening that affects

all atoms or molecules equally, due to the finite lifetime

𝜏 = 𝛾−1 of excited states (uncertainty principle [2]). The gen-

eral form of single-term HB dispersion, also known as the

critical point model [60], represents an arbitrary rational

function13

𝜒𝛾 (t) =
(
𝜒0 𝜑L

)
(t)

= ae−𝛾t sin(Ωt − 𝜙) 𝜃(t)

←←←←←←←←←←←→ (11a)

𝜒̂ 𝛾 (𝜔) =
(
𝜒̂0

∗GL
)
(𝜔)

= a

2

[
e−𝚤𝜙

𝜔+ 𝚤𝛾 +Ω − e𝚤𝜙

𝜔+ 𝚤𝛾 −Ω

]
. (11b)

The HB case (11) can be derived by either convolving

(“blurring”) the ideal unbroadened susceptibility 𝜒̂0(𝜔) in

(6) with the Cauchy–Lorentz PDFGL(x), or substituting com-

plex function L(x) into the general formulation (5), where

GL(x; 0, 𝛾 ) =
1

𝜋

𝛾

x2 + 𝛾2
, L(x) =

𝚤

𝜋

1

x + 𝚤𝛾
,

𝜑L(t) = e−𝛾|t|.
(12)

As expected, the parameter substitutions (outlined in paren-

thesis) reduce the general HB formula (11) to the classical

Lorentz [61], Debye [62], and Drude [59] dispersion models,

as shown below.

Lorentz oscillator

(
𝜙 = 0,Ω =

√
𝜔2
0
− Γ2

4
, a = f

Ω ,

𝛾 = Γ
2

)
is conventionally formulated with doubled

broadening Γ = 2𝛾 , the natural frequency 𝜔0 =
√
Ω2 + 𝛾2

instead of resonance frequency Ω, and oscillator strength

f = aΩ instead of amplitude a,

𝜒Γ
L
(t) = f

Ωe−
Γt
2 sin(Ωt) 𝜃(t)


←←←←←←←←←←←→

𝜒̂Γ
L
(𝜔) = f

𝜔2
0
−𝜔2 − 𝚤𝜔Γ .

(13)

13 Fourier transform of a real function 𝜒 (t) can be always approx-

imated as a rational function of argument s = −ı𝜔 with real coeffi-

cients. We assume no multiple poles and zero limit at infinity (as the

constant term 𝜀∞ is detached), so partial fraction decomposition of

𝜒̂ (𝜔) is a sumof real poles (relaxations) and/or complex conjugate pole

pairs (phase-relaxed oscillators) 𝜒̂ i(𝜔).
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Debye relaxation (𝜙 = −𝜋

2
,Ω = 0, a = Δ𝜀

𝜏
, 𝛾 = 1

𝜏
) con-

ventionally uses parameters of relaxation time 𝜏 = 𝛾−1 and

permittivity jumpΔ𝜀 = a𝜏 ,

𝜒𝜏
De
(t) = Δ𝜀

𝜏
e−

t

𝜏 𝜃(t)

←←←←←←←←←←←→ 𝜒̂𝜏

De
(𝜔) = Δ𝜀

1− 𝚤𝜔𝜏
. (14)

Drude model (𝜙 = −𝜋

2
,Ω = 0, a = 𝜀0𝜔

2
p
, 𝜒 (.)→ 𝜎(.)) is

classically parameterized by the plasma frequency 𝜔p and

broadening 𝛾 and is obtained as the Debye case of the con-

ductivity function11

𝜎
𝛾

D
(t) = 𝜀0𝜔

2
p
e−𝛾t𝜃(t)


←←←←←←←←←←←→ 𝜎̂

𝛾

D
(𝜔) =

𝜀0𝜔
2
p

𝛾 − 𝚤𝜔
, (15a)

𝜒
𝛾

D
(t) =

𝜔2
p

𝛾

(
1− e−𝛾t

)
𝜃(t)


←←←←←←←←←←←→

𝜒̂
𝛾

D
(𝜔) = −

𝜔2
p

𝚤𝜔𝛾 +𝜔2
+

𝜋𝜔2
p

𝛾
𝛿(𝜔). (15b)

In the Drude case, convolution with unbroadened suscep-

tibility (10b) is unphysical but valid for its unbroadened

conductivity function (10a), with 𝜒 (.) restored from 𝜎(.)

afterward.12

3.3 Inhomogeneous broadening (IB)

IB arises from statistical distribution of microscopic reso-

nant frequencies Ω affected by local environmental vari-

ations and the Doppler shift.14 As a result, the observed

spectral broadening deviates from the ideal Lorentzian

lineshape to a mix of both – natural lifetime-based (HB)

defined by 𝛾 and statistical (e.g., Gaussian) broadening

defined by variance 𝜎2 (Figure 1), leading to the general

Gauss–Lorentz model

𝜒𝛾,𝜎(t) =
(
𝜒0𝜑L𝜑G

)
(t)

= ae−𝛾t−
𝜎2 t2

2 sin(Ωt − 𝜙) 𝜃(t)

←←←←←←←←←←←→

(16a)

𝜒̂ 𝛾,𝜎(𝜔) =
(
𝜒̂0

∗GL ∗GG
)
(𝜔)

= 𝚤a
√
𝜋

2𝜎
√
2

⎡⎢⎢⎢⎢⎢⎣

e𝚤𝜙𝑤

(
𝜔+ 𝚤𝛾 −Ω

𝜎
√
2

)

− e−𝚤𝜙𝑤

(
𝜔+ 𝚤𝛾 +Ω

𝜎
√
2

)
⎤⎥⎥⎥⎥⎥⎦
,

(16b)

where𝑤(z) is the Faddeeva (Kramp) function [63].

14 Gaussian IB essentially represents the Doppler shift effect, when

the particles “see” the wavelength differently according to the

Maxwellian distribution of the velocities [12].

The IB formula (16) is obtained as a convolution of the

unbroadened response 𝜒̂0(𝜔)with both the CauchyPDF (GL,

see Eq. (12)) and the Gaussian PDF (GG) defined by

GG(x; 0, 𝜎2 ) = e
− x2

2𝜎2

𝜎
√
2𝜋

, G(x) =
𝑤
(

x

𝜎
√
2

)
𝜎
√
2𝜋

,

𝜑G(t) = e−𝜎
2t2∕2,

(17)

corresponding to the time-dependent scattering 𝛾(t) =
𝜎2t∕2. In the presence of multiple broadening mechanisms,
the probability theory for the sum of random variables dic-

tates that the PDFs are convolved, while their CFs are multi-

plied,15 and so the IB formula (16) can also be obtained from

the general formula (5) using the Gauss–Lorentz (Voigt)

PDF/CF

GGL(x; 𝛾, 𝜎 ) = (GL ∗GG)(x)

= 1

𝜎
√
2𝜋

R𝑤

(
x + 𝚤𝛾

𝜎
√
2

)
,

GL(x) =
1

𝜎
√
2𝜋

𝑤

(
x + 𝚤𝛾

𝜎
√
2

)
,

𝜑GL(t) =
(
𝜑L 𝜑G

)
(t) = e−𝛾|t|e−𝜎2t2∕2,

(18)

where the scattering function has both – the constant and

the linear correction terms, 𝛾(t) = 𝛾 + 𝜎2t∕2.16
The new Voigt formula is consistent with all limiting

cases: 𝜎 → 0+ gives classical Lorentzianmodels (11), 𝛾 → 0+

gives pure Gaussian lineshape typical for strong disorder,

while 𝜎, 𝛾 → 0+ gives the ZB case (6). These transitions are

easy to see through the general formula (5) and distributions

equations (7), (12), (17) and (18).17

As before, we simplify the general IB formula (16) for

the oscillator, relaxation, and conductivity cases, specifying

the corresponding parameter substitutions.

Gauss-Lorentz oscillator (𝜙 = 0, Ω =
√
𝜔2
0
− Γ2

4
, a = f

Ω ,

𝛾 = Γ
2
) with strength f , natural frequency 𝜔0 and two (HB

and IB) broadening parameters Γ, 𝜎 reads

15 Both operations ( ∗ and ⋅) are commutative and associative, e.g.,(
𝜒0

∗G1
)

∗G2 = 𝜒0
∗ (G1 ∗G2 ) = 𝜒0

∗ (G2 ∗G1 ), (under suitable inte-

grability conditions).

16 Higher orders terms in the scattering function 𝛾(t) are also possible

with other (non-Gaussian) distributions.

17 Note that in the Gaussian limit (𝛾 = 0+) of all equations with IB

parameter 𝜎, the arguments of the Faddeeva function 𝑤(x) become

real, so that the real and imaginary parts of 𝑤(x) can be separated

as 𝑤(x) = e−x
2 + 2𝚤√

𝜋
F(x), where F(x) is the Dawson function. In the

Lorentzian limit (𝜎 = 0+), large argument formulas are useful:𝑤(z) ≈
𝚤

z
√
𝜋
or erfc(z) = e−z

2
𝑤(𝚤z) ≈ e−z

2

z
√
𝜋
.
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𝜒Γ,𝜎
L

(t) = f

Ωe−
Γt
2
− 𝜎2 t2

2 sin(Ωt) 𝜃(t)

←←←←←←←←←←←→

𝜒̂Γ,𝜎
L

(𝜔) = 𝚤 f
√
𝜋

2
√
2𝜎Ω

⎡⎢⎢⎢⎢⎢⎣

𝑤

(
𝜔+ 𝚤Γ

2
−Ω

𝜎
√
2

)

−𝑤

(
𝜔+ 𝚤Γ

2
+Ω

𝜎
√
2

)
⎤⎥⎥⎥⎥⎥⎦
.

(19)

The first causal Gaussian oscillator model (Γ = 0+) was

derived in 2006 [64] using a causality tip from [65]. The first

attempts to formulate the Gauss–Lorentz model date back

to the late 1970s [66], with a later reproduction [67] usu-

ally referred to as the Brendel-Bormann (BB)-model. Unfor-

tunately, the non-causal BB model, incompatible with TD,

remains broadly adopted by experimentalists to fit material

responses to infra-red light, e.g., [68]–[70]. Causal correc-

tions with logarithmic terms, rational approximations, and

ongoing discussions of the physical validity of the BB model

can be found in Refs. [71]–[73].

Our new Gauss–Lorentz (GL) model (19) fixes all the

issues with the previous BB formulation [67] (see the details

in Appendix B).When𝜎 → 0+, the GL formula gives the clas-

sical Lorentz model with 1∕(1+ x2) absorption lineshape,

(13). The case of Γ→ 0+ gives a causal Gaussian oscilla-

tor with exp[−x2 ln2] absorption lineshape17 [64], while

the mixed case (Γ, 𝜎 > 0) yields the Voigt profile – a new

causal formulation with a time-dependent scattering func-

tion 𝛾(t) = 𝛾 + 𝜎2t∕2, first mentioned by Kim et al. [24], [25],

and consistent with [74].

Gauss–Debye relaxation (𝜙 = −𝜋

2
,Ω = 0, a = Δ𝜀

𝜏
, 𝛾 = 1

𝜏
)

with the IB parameter 𝜎 additionally to the standard relax-

ation time 𝜏 and permittivity jumpΔ𝜀 reads

𝜒𝜏,𝜎

De
(t) = Δ𝜀

𝜏
e−

t

𝜏
− 𝜎2 t2

2 𝜃(t)

←←←←←←←←←←←→

𝜒̂𝜏,𝜎

De
(𝜔) = Δ𝜀

√
𝜋

𝜎𝜏
√
2
𝑤

(
𝜔+ 𝚤𝜏−1

𝜎
√
2

)
.

(20)

The limits 𝜎 → 0+ and 𝛾 → 0+ give the classical Debye (14)

and a new Gauss relaxation model, respectively.17

The Gauss–Debyemodel (20) has not been shown in the

literature. Known generalizations to the Debye relaxation

– the Cole–Cole, Cole–Davidson, and Havriliak–Negami

models [75], [76] – remain inaccessible to efficient TD simu-

lations, and will be addressed in future work.

Gauss-Drude model (𝜙 = −𝜋

2
, Ω = 0, a = 𝜀0𝜔

2
p
, 𝜒 (.)→

𝜎(.)) with IB broadening parameter 𝜎 additionally to the

plasma frequency 𝜔p and HB 𝛾 reads

𝜎
𝛾,𝜎

D
(t) = 𝜀0𝜔

2
p
e−𝛾t−

𝜎2 t2

2 𝜃(t)

←←←←←←←←←←←→

𝜎̂
𝛾,𝜎

D
(𝜔) = 𝜀0

𝜔2
p

√
𝜋

𝜎
√
2

𝑤

(
𝜔+ 𝚤𝛾

𝜎
√
2

)
,

(21a)

𝜒
𝛾,𝜎

D
(t) =

𝜔2
p

√
𝜋

𝜎
√
2
e

𝛾2

2𝜎2

×

⎡⎢⎢⎢⎢⎢⎣

erfc

(
𝛾

𝜎
√
2

)

− erfc

(
𝛾 + 𝜎2t

𝜎
√
2

)
⎤⎥⎥⎥⎥⎥⎦
𝜃(t)


←←←←←←←←←←←→

𝜒̂
𝛾,𝜎

D
(𝜔) =

𝜔2
p

√
𝜋

𝜎
√
2

⎡⎢⎢⎢⎢⎢⎣

𝜋𝑤

(
𝚤𝛾

𝜎
√
2

)
𝛿(𝜔)

− 1

𝚤𝜔
𝑤

(
𝜔+ 𝚤𝛾

𝜎
√
2

)
⎤⎥⎥⎥⎥⎥⎦
.

(21b)

The limits 𝜎 → 0+ and 𝛾 → 0+ give the classical Drude

model (15b) and a new Gauss conductive model, respec-

tively.17 The derivation is based on the broadening for-

malism (Section 2) for the conductivity function. Compar-

ing classical Drude model (15b) to the new Gauss conduc-

tivity model (21b), we observe lineshape change and find

that disordered analogue of classic conductivity 𝜀0𝜔
2
p
∕𝛾 , is

𝜀0𝜔
2
p

√
𝜋∕(𝜎

√
2). In the TD, linear argument of the exponen-

tial decay in 𝜎(t) becomes quadratic, and in 𝜒 (t) changes to

a complementary error function (erfc).

Corrections to the classical Drude model have been

widely studied, including empirical frequency-domain for-

mulationswith fractional derivatives, effectivemass param-

eter, and modified scattering functions [77]. However, the

causal Gauss–Drudemodel introduced here has never been

presented.

Figure 2 illustrates the final Voigt formula (16) for three

cases of broadening – ZB, HB (𝜎 = 0+) and IB (𝛾 = 0+) for

three types of dispersion: oscillator, relaxation, and conduc-

tive media. HB and IB curves are matched at the peak maxi-

mum and full-width-half-maximum (FWHM) of the real (for

relaxation) or imaginary (for oscillator) parts, demonstrat-

ing the deviation of the “heavy-tail” Lorentzian lineshape
1

1+x2 from the Gaussian lineshape e−x
2 ln 2. For conductive

media, the DC conductivity (𝜎̂(0)) and a plasma crossover

point
(
𝜔 = 𝜔p

)
are matched.

These plots effectively illustrate the physical interpre-

tation of the complex PDF (x) = G(x) + 𝚤{G(x)}. For an
oscillator with zero phase (𝜙 = 0), the real part of (x)
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defines the absorption spectrum (𝜒̂ ′′(𝜔)), producing sym-

metric peaks G(𝜔±Ω), while the imaginary part gener-

ates KK-consistent terms{G}(𝜔±Ω) in 𝜒̂ ′(𝜔). When the

phase 𝜙 is nonzero, the real and imaginary parts of the

susceptibility become mixed. In the case of relaxation (𝜙 =
−𝜋∕2), 𝜒̂ ′ and 𝜒̂ ′′ are effectively swapped, and the two res-

onant peaks coalesce into a single peak. The conductive case

is identical to the relaxation case, with the susceptibility

function 𝜒̂ (𝜔) replaced by the conductivity function 𝜎̂(𝜔).

3.4 Minimax approximation (MiMOSA)

When the broadening function G(x) is non-Lorentzian, the

general dispersion formula (5) falls outside of the class

of the rational functions of argument s = −ı𝜔, and can-

not be immediately translated into auxiliary differential

equations, making it challenging to construct short dis-

cretization stencils and coupling to time-domain solvers,

such as FDTD. The solution for efficient TD implementation

of non-Lorentzian dispersion was first developed for a pure

Gaussian oscillator [50], and employsminimax optimization

to generate the shortest possible time stencil for a given

error (MiMOSA).

Derivation of MiMOSA (Mini-max optimized semi-

analytical approximation) models for a general dispersion

formula (5) starts with a minimax rational approximation18

of the complex PDF (x) = G(x) + 𝚤{G(x)},

𝜎
√
2𝜋 (z𝜎

√
2; 𝛾 = 0) = 𝑤(z)

≈ 𝑤n(z) =
n∑
j=1

Bj

(−𝚤z)− C j
. (22)

For example, for the Voigt distribution (18), the approxi-

mation coefficients [Bj, Cj] are calculated for the Faddeeva

function 𝑤(z), with n being the number of approximation

poles, Figure 3(c),19

(n = 2) B1,2 = 0.28209∓ 𝚤0.47633,

C1,2 = −0.82576± 𝚤0.57178;

(n = 3) B1,2 = −0.18872∓ 0.28646𝚤, B3 = 0.94163,

C1,2 = −1.00160± 𝚤1.03731, C3 = −1.05117.

(23)

18 Constraints are imposed on parity, pole positioning, and the sum

rule, with the objective function optimized using theminimax criterion

on the real axis. Restoring the complex-valued approximation with the

Hilbert transform and then analytically continuing the approximation

to the upper half-space gives the complex PDF approximation.

19 Notation: we use upper case for approximation constants (j);

the lower index (i) is reserved for dispersion terms numbering,

Eqs. (1–3, 5).

Substituting the approximation (22) into the general

susceptibility formula (5) gives a set of FDTD-compatible

analytically derived dispersion terms

𝜒 (t) = a𝜑(t) sin
(
Ωt − 𝜙

)
𝜃(t)

≈ 𝜒n(t) =
n∑
j=1

a je−𝛾
j t sin

(
Ω j

t − 𝜙 j
)
𝜃(t)


←←←←←←←←←←←→

𝜒̂ (𝜔) = 𝜄𝜋a

2

[
e𝚤𝜙

(
𝜔−Ω

)
− e−𝚤𝜙

(
𝜔+Ω

)]

≈ 𝜒̂n(𝜔) =
n∑
j=1

a j

2

[
e−𝚤𝜙

j

𝜔+ 𝚤𝛾 j +Ω j
− e𝚤𝜙

j

𝜔+ 𝚤𝛾 j −Ω j

]
,

(24)

where parameters [aj, 𝜙 j, Ω j
, 𝛾 j] are directly connected

to the parameters of the exact single-term model

[a, 𝜙, Ω, 𝛾, 𝜎] (5) and the approximation constants

[Bj, Cj] in (22) as

⎧⎪⎪⎪⎨⎪⎪⎪⎩

a j = a
√
𝜋|Bj|,

𝜙 j = 𝜙− Arg(Bj ),

𝛾 j = 𝛾 −R[C j]𝜎
√
2,

Ω j = Ω+ I[C j]𝜎
√
2.

(25)

The MiMOSA model (24)–(25) retains the single-oscillator

form [78], with only its envelopemodified by approximation

(compare to the exact susceptibility 𝜒 (t)),

𝜒n(t) = ae−𝛾t

(√
𝜋R

n∑
j=1

BjeC
j𝜎
√
2t

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

≈𝜑(t)

sin
(
Ωt − 𝜙

)
𝜃(t).

(26)

This identity arises by substituting coefficients (25) into the

time-domain expression (24) and combining the conjugate

pole pairs. It ensures that the model remains physically

consistent, without introducing nonphysical oscillations.

Due to the equioscillation theorem [79], the mini-

max solution provides the shortest rational polynomial

approximation (corresponding to most compact numeri-

cal stencil), with the approximation error spread evenly

across the entire frequency domain. In the Voigt case

𝜎
√
2𝜋(z𝜎

√
2; 𝛾 = 0) = 𝑤(z), the error converges expo-

nentially with number of poles (n) throughout the upper

half-plane [50]. As a result, even two poles (n = 2) already

give a few percent error, which is sufficient for many appli-

cations, such as initial optimization or ellipsometry charac-

terization. Using three poles (n = 3) drives the FD relative

error below 1 %, making the approximation indiscernible

from the experimental data (see Appendix C for details).
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The MiMOSA models (24) fit the class of rational func-

tions that can be coupled efficiently to the TD Maxwell’s

solvers. Detailed ADE and RC numerical schemes for this

class of dispersion can be found in Refs. [50], [80], [81] for

second-order accurate TD solvers, and in Refs. [82]–[84] for

higher-order schemes. We recommend using the universal

compact scheme, which minimizes computational cost per

dispersion term and enables easy switching between dif-

ferent second-order accurate ADE and RC formulations. An

FDTD code implementing six such schemes is available in

Ref. [50].

Compared to the approximations derived in the 1950s

by reincarnating the minimax methods for rational polyno-

mials and themore recent literature on the rational approxi-

mations to Faddeeva/Kramp/plasma dispersion function (or

their real/imaginary parts) [85]–[102], our MiMOSA method

achieves impressive <1 % error with just 2–3 terms (and

thus the minimal number of additional equations in the

numerical model), while preserving the necessary analyti-

cal properties of the dielectric function including causality

and the sum rules.

A related computational approach has been recently

proposed in Ref. [103], where an ab initio integral dispersion

formulation is presented and subsequently transformed

into a rational function through a quadrature approxima-

tion, thereby preserving the physical meaning of the main

model parameters. However, no alternative approximation

technique achieves the sameminimal number of additional

equations as MiMOSA for a given maximal error across the

entire upper half-space.

4 Conclusions

This work advances the field of computational nanopho-

tonics by introducing a general theoretical framework to

model inhomogeneous broadening in disordered, defect-

containing, and amorphous materials based on the absorp-

tion probability density functions G(x). The new formula-

tion employs a complex absorption probability density,  =
G(x)+ 𝚤{G(x)}, in the frequency domain and a match-

ing characteristic function 𝜑(t) = ∫ℝG(x)e
𝚤xt dx in the time

domain.

Application examples of the theory include Gauss–

Lorentz oscillator, Gauss–Debye relaxation, and Gauss–

Drude conductivitymodels for the characterization andpre-

dictive modeling of inhomogeneous broadening effects in

linear and nonlinear regimes and provide a critical fix to

the noncausal Brendel–Bormannmodel (seeAppendix B for

comparison). The complete set of newly derived dispersion

models is presented in Table A, Appendix A.

The exact generalized permittivity formulation is then

used to obtain the efficient, best-possible minimax-based

approximation (MiMOSA) models that enable (1) integral-

and special-function-free permittivity calculation; (2)

efficient FDTD implementation with a minimal set of

the additional equations; and (3) ellipsometry fitting

and lineshape retrieval. The MiMOSA implementation

ensures efficient simulation while maintaining the desired

controlled accuracy and analytical constraints.

The near-term work includes extending our approach

to nonsymmetric distributions (e.g., the Fermi–Dirac distri-

bution), and next-order corrections in the scattering func-

tion 𝛾(t) = 𝛾 + 𝜎2t∕2+ ·· ·, as well as developing the time-
domain approximations to the widely used empirical non-

symmetric models, including the Tauc(Cody)–Lorentz dis-

persion [27], [28] (Figure 2(a) and (b)). The proposed for-

mulation for arbitrary probability density functions can

become a foundational model for inhomogeneous broaden-

ing analysis. Its ability to retrieve broadening information

through minimax coefficients and fitting to experimental

data can provide invaluable insights into the lifetime-based

width, local environments, and the nature of disorder in

materials, thus improving our understanding of their fun-

damental properties [104].

Our approach extends naturally to anisotropic and bi-

anisotropic materials involving full electromagnetic ten-

sors, as well as to nonlinear models such as saturable

Lorentz and multilevel carrier kinetics solvers, where the

non-Lorentzian lineshapes can now be accurately imple-

mented in FETD, DGTD, FVTD or FDTD solvers. Although this

result focuses primarily on optical materials and nanopho-

tonics, its implications extend broadly to wave propaga-

tion across various disciplines, including microwave elec-

tromagnetics, acoustics, electronics, magnonics, biosensing,

seismology, astrophysics, and quantum information tech-

nologies, where our newly developed MiMOSA method effi-

ciently accounts for inhomogeneous broadening in disper-

sive media.
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Appendix A: Table of susceptibility

models with arbitrary broadening

Table A presents the Fundamental Dispersion Model (shown

in the dark green cell) for any rational unbroadened

dispersion function 𝜒0(.) broadened by an arbitrary

Probability Density Function (PDF) G(x). Special cases of

𝜒0(.) are listed in the columns: Oscillator – difference of

two complex conjugate or real poles (column 3), Relaxation

– one real pole (column 4), Conductivity – difference of

two real poles, one of which is zero (columns 5). Special

cases of the broadening function G(x) are listed in the

rows: the most general case is Any Broadening (row 2) with

given Characteristic Function (CF) 𝜑(t) = ∫ ∞
−∞G(x)e

𝚤xtdx

and complex PDF (x) = G(x)+ 𝚤{G(x)}, followed by the
Voigt profile (row 3), and its subcases – pure Gauss and

pure Lorentz (Cauchy) broadening (rows 4–5), then the

unbroadened case G(x) = 𝛿(x) (row 6). In the time domain,

broadening means multiplication of the unbroadened

susceptibility 𝜒0(t) by the CF𝜑(t). In the frequency domain,

this translates to the convolution of 𝜒̂0(𝜔) with the PDF

G(x), which can be expressed in terms of the complex PDF

(x). Each cell represents a special case of the fundamental
model (dark green cell), obtained by substitution of

[a, 𝜙, Ω, 𝛾, 𝜎]-parameters (shown in the header) and

[𝜑(t),(x)]-functions (shown in column 1). The cell color

legend is as follows: light red indicates agreement with

long-established classical models, while greenish cells

denote formulations newly introduced in this work. The

medium green cell corresponds to a recent result (obtained

both here and in Ref. [74]) that provides an important

correction to the well-known noncausal Brendel–Bormann

model (see Appendix B for details).

The general model is parameterized by the time-domain

phase𝜙, amplitude a, resonance frequencyΩ, and broaden-
ing (𝜎, 𝛾) parameters, yielding simple formulas. The phase

parameter 𝜙 allows to account for a critical point (CP)

model [60], and toggles between two orthogonal cases: a

relaxation (𝜙 = −𝜋∕2) with one real pole s1 = −𝛾 , and an
oscillator (𝜙 = 0) with two poles s1,2 = −𝛾 ± ıΩ, whereΩ =√
𝜔2
0
− 𝛾2, and s = −ı𝜔 is polynomial argument. Two poles

are either complex conjugates (𝛾 < 𝜔0) or both real (𝛾 ≥
𝜔0); the latter is called an overdamped oscillator. If one

real pole is zero (𝜔0 = 0), themodel represents conductivity

case. To correctly take the limits 𝛾 → 0+ and 𝜎 → 0+ in the

general model columns, use the following tips:

𝛾 → 0+: for x ∈ ℝ, the real and imaginary parts separate as𝑤(x) = e−x
2 + 2𝚤√

𝜋
F(x). (A.1a)

𝜎 → 0+: for large argument use𝑤(z) ≈ 𝚤

z
√
𝜋
and erfc(z) = e−z

2

𝑤(𝚤z) ≈ e−z
2

z
√
𝜋
. (A.1b)

𝛾 → 0+, 𝜎 → 0+: use the Sokhotski−Plemelj theorem to obtain Zero Broadening formulas. (A.1c)

Oscillator (𝜙 = 0, Ω > 0) is usually defined by the natu-

ral frequency 𝜔0, broadening Γ, and oscillator strength f ,

as in 𝜒̂ (𝜔) = f

𝜔2
0
−𝜔2−𝚤𝜔Γ . In the time domain, it represents

either an oscillator (if the resonance frequency is real,

Ω =
√
𝜔2
0
− Γ2∕4 ∈ ℝ), or a difference of two exponential

decays (overdamped oscillator), otherwise (Γ∕2 > 𝜔0).

Relaxation (𝜙 = −𝜋∕2, Ω = 0) corresponds to exponen-

tial decay in the time domain. Its amplitude is classi-

cally characterized by a permittivity jump Δ𝜀 at 𝜔 = 0,

with the fall rate defined by the relaxation time 𝜏 , as in

𝜒̂ (𝜔) = Δ𝜀
1−𝚤𝜔𝜏 . In the zero broadening limit 𝛾 = 𝜏−1 → 0+,

this parametrization becomes ill-defined, so a DC electric
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Table A: Susceptibility 𝜒̂ (𝜔) =
(
𝜒̂0

∗G
)
(𝜔) for different unbroadened dispersion 𝜒̂0(𝜔) (columns) and broadening functions G(x ) =R[(x )] (rows).

For conductivity, 𝜎̂(𝜔) =
(
𝜎̂0

∗G
)
(𝜔), then restore 𝜒 (t ) = 𝜀−1

0
∫ t

0
𝜎(𝜏 )d𝜏 .
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conductivity parameter is used instead, 𝜎e = 𝜀0Δ𝜀𝜏−1, for
the Gaussian and zero broadening cases.

Conductivity (𝜙 = −𝜋∕2, Ω = 0, 𝜒 (.)→ 𝜎(.)) is character-

ized by the plasma frequency 𝜔p and collision rate 𝛾 , as

in 𝜒̂ (𝜔) = − 𝜔2
p

𝜔2+𝚤𝛾𝜔 = 𝜔2
p

𝛾

[
1

−𝚤𝜔 − 1

𝛾−𝚤𝜔

]
, (𝜔 ≠ 0). An alterna-

tive (equivalent) definition using the conductivity func-

tion is 𝜎̂(𝜔) = −𝚤𝜔𝜀0𝜒̂ (𝜔) =
𝜀0𝜔

2
p

𝛾−𝚤𝜔 . In conductive media,

broadening is applied to the conductivity function 𝜎̂(𝜔)

rather than to the susceptibility 𝜒̂ (𝜔), as is done in

non-conductive cases (this ensures that the zero pole

remains unbroadened); thus the substitution 𝜒 (.)→ 𝜎(.) is

used.

Appendix B: Correction to

the Brendel–Bormann (BB) model

Efimov and Khitrov [66] and later Brendel and Bormann

[67] postulated that the following convolution integral intro-

duces the Voigt (Gauss–Lorentz) broadening to the classical

Lorentz oscillator,

𝜒̂BB(𝜔) =
1

𝜎
√
2𝜋

+∞

∫
−∞

f

x2 −𝜔2 − 𝚤𝜔Γ

× exp

(
− (x −𝜔0 )

2

2𝜎2

)
dx. (B.2)

This integral can be solved in terms of Faddeeva functions,

as shown in Rakić et al. [68],

𝜒̂BB(𝜔) =
𝚤f
√
𝜋

𝜎
√
2

1

2a(𝜔)

[
𝑤

(
a(𝜔)−𝜔0

𝜎
√
2

)

+𝑤

(
a(𝜔)+𝜔0

𝜎
√
2

)]
,

a(𝜔) =
√
𝜔2 + 𝚤𝜔Γ,

(
Ia(𝜔) ≥ 0

)
. (B.3)

While the BB model (B.2) and (B.3) can be useful in specific

cases of experimental frequency-domain spectroscopy, e.g.,

[68], it is inherently non-causal. This drawback restricts its

utility primarily to spectral fitting applications andmakes it

unsuitable for time-domain simulations. The properties of

the BB model and possible corrections have been discussed

in the literature up to today, [71]–[73].

In this work, we have built a physically consistent

formalism for susceptibility functions broadened by any

absorption probability G(x), including Voigt profile. First,

we express the Lorentz oscillator with strength f , natural

frequency 𝜔0, and (homogeneous) broadening 𝛾 = Γ∕2 in
the time and frequency domains,

𝜒L(t) =
f

Ωe−𝛾t sin
(
Ωt
)
𝜃(t)


←←←←←←←←←←←→

𝜒̂L(𝜔) =
f

𝜔2
0
−𝜔2 − 2𝚤𝜔𝛾

,

(
Ω =

√
𝜔2
0
− 𝛾2

)
. (B.4)

Second, we write the Gaussian probability density function

(PDF) and corresponding characteristic function (CF), both

characterized by the variance 𝜎2,

PDF: G(x;𝜇 = 0, 𝜎2 ) = 1

𝜎
√
2𝜋

e
− x2

2𝜎2 , (B.5a)

CF: 𝜑(t) =
+∞

∫
−∞

G(x)e𝚤xtdx = e−
𝜎2

2
t2 . (B.5b)

Note that we assume zero mean (𝜇 = 0) which keeps the

resonance frequencyΩ of the oscillator unshifted.

In the time domain, the Gauss–Lorentz model is a mul-

tiplication of the Lorentz oscillator (B.4) by the Gaussian CF

(B.5b),

𝜒GL(t) =
f

Ωe−𝛾t sin
(
Ωt
)
𝜃(t)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Lorentz

e−
𝜎2

2
t2

⏟⏟⏟
Gaussian CF

= f

Ω sin
(
Ωt
)
𝜃(t)

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
Sellmeier

e−𝛾t
⏟⏟⏟
Cauchy CF

e−
𝜎2

2
t2

⏟⏟⏟
Gaussian CF

, (B.6)

which can also be viewed as a lossless Lorentz (Sellmeier)

oscillator broadened by both Cauchy and Gaussian distribu-

tions. This alignswith the general principle fromprobability

theory: the CF of the sum of two random variables is a prod-

uct of individual CFs, while the PDF of the sum is a convolu-

tion. Equation (B.6) preserves causality (note the term 𝜃(t))

and leads to an inhomogeneous time-dependent scattering

function 𝛾(t) = 𝛾 + 𝜎2t∕2, where higher order correction

terms are possible for other broadening functions G(x), as

predicted by Kim et al. [24].

In the frequency domain, according to the convolution

theorem, such multiplication corresponds to the integral

𝜒̂GL(𝜔) =
(
𝜒̂L ∗G

)
(𝜔)

=
+∞

∫
−∞

f

𝜔2
0
− (𝜔− x)2 − 2𝚤(𝜔− x)𝛾

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Lorentz 𝜒̂L(𝜔−x )

1

𝜎
√
2𝜋

e
− x2

2𝜎2

⏟⏞⏞⏞⏟⏞⏞⏞⏟
Gauss PDF G( x;0,𝜎2 )

dx.

(B.7)
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Decomposing the Lorentzian into single poles (with 𝜔2
0
=

Ω2 + 𝛾2) gives

f

𝜔2
0
− (𝜔− x)2 − 2𝚤(𝜔− x)𝛾

= f

2Ω

[
1

𝜔+ 𝚤𝛾 − x +Ω

− 1

𝜔+ 𝚤𝛾 − x −Ω

]
,

making substitution x→−x in the integral for the first pole,
and then (x +Ω)→ x for both poles, gives the final integral

(where Γ = 2𝛾)

𝜒̂GL(𝜔) =
1

𝜎
√
2𝜋

+∞

∫
−∞

x

Ω
f

x2 −𝜔2 − 𝚤𝜔Γ + Γ2∕4

× exp

(
− (x −Ω)2

2𝜎2

)
dx, (B.8)

and its closed-form expression in terms of the Faddeeva

functions

𝜒̂GL(𝜔) =
𝚤f
√
𝜋

𝜎
√
2

1

2Ω

[
𝑤

(
𝜔+ 𝚤Γ∕2−Ω

𝜎
√
2

)

−𝑤

(
𝜔+ 𝚤Γ∕2+Ω

𝜎
√
2

)]
, (B.9)

𝜒̂BB(𝜔) =
𝚤f
√
𝜋

𝜎
√
2

1

2a(𝜔)

[
𝑤

(
a(𝜔)−𝜔0

𝜎
√
2

)

+𝑤

(
a(𝜔)+𝜔0

𝜎
√
2

)]
, a(𝜔) =

√
𝜔2 + 𝚤𝜔Γ.

(B.10)

Comparison of the GL model (B.9) with the BB model (B.3)

(duplicated in (B.10) for convenience) indicates two key dif-

ferences:

1. The resonance and natural frequencies are confused,

Ω ≠ 𝜔0. For a mildly damped oscillator Γ ≪ 𝜔0 this

can be a close approximation,Ω =
√
𝜔2
0
− Γ2∕4 ≈ 𝜔0.

Similarly, for high enough frequencies𝜔 ≫ Γ, we have
a(𝜔) =

√
(𝜔+ 𝚤Γ∕2)2 + Γ2∕4 ≈ 𝜔+ 𝚤Γ∕2.

2. The BB model uses a sum of the Faddeeva functions

instead of a difference. For the Lorentzians, the sum

and difference are identical,

1

a

[
1

a−Ω + 1

a+Ω
]
= 1

Ω
[

1

a−Ω − 1

a+Ω
]
.

For the Voigt profile, same identity does not hold, i.e.,

1

a

[
𝑤(a−Ω)+𝑤(a+Ω)

]
≠

1

Ω
[
𝑤(a−Ω)−𝑤(a+Ω)

]
.

Only with a negligible Gaussian width, 𝜎 ≪ Γ, the
Voigt profile simplifies to a Lorentzian, and the sum

can approximate the difference, which can be shown

using the asymptotic formula of large arguments,

𝑤(z) ≈ ı𝜋−1∕2z−1. As a result, the BB model (B.3) can

be useful for Gaussian broadening analysis but only

becomes close to the trueGL formula for feebly damped

(Γ ≪ 𝜔0) and feebly Gaussian (𝜎 ≪ Γ) oscillators over
higher frequency ranges (𝜔 ≫ Γ). The BB model (B.3)

violates causality, which makes it unusable in time-

domain simulations. Instead, the Gauss–Lorentz (GL)

model (B.8) and (B.9) should be used for spectral analy-

sis and simulations, especially in the time domain.

The newGLmodel is causal (𝜒GL(t) = 0 ∀t < 0), has the cor-

rect symmetry 𝜒̂GL(−𝜔) = 𝜒̂∗
GL
(𝜔), preserves the Lorentz

plasma sum rule: 𝜒̂GL(𝜔) ≈ − f∕𝜔2 as 𝜔→∞, and has

correct pure Lorentz (𝜎 → 0+) and pure Gaussian (𝛾 → 0+)

limits, as follows from properties of the Faddeeva function

(𝑤(−z) = 𝑤∗(z∗) and𝑤(z) ≈ ı𝜋−1∕2z−1).

Appendix C: Equioscillation

theorem and MiMOSA method

The minimax optimization technique utilized in the

MiMOSA method traces its historical origins to the 19th

century work of Pafnuty Tchebycheff (Chebyshev) [79].

The equioscillation theorem, also known as the Chebyshev

alternation theorem, represents a fundamental principle in

approximation theory. It states that, when approximating

a continuous function, the optimal uniform (minimax)

rational approximation of degree [M,N] exhibits a

distinctive pattern: the approximation error attains its

maximum absolute value at least M + N + 2 times across

the interval. At these extremal points, the error alternates

precisely in sign and has equal magnitude, hence the

term “equioscillation”. This evenly distributed alternation

of maximal error is the defining feature of the optimal

solution in the minimax sense, see Figure 3(a).

The MiMOSA method starts by finding such optimal

minimax rational approximation for the Hilbert transform

of the probability function {G(x)} along the real axis,

with a sum rule constraint imposed at infinity. This choice

is motivated by the fact that while the absorption 𝜒̂ ′′(𝜔)

may lack a rational asymptote at infinity (e.g., Gaussian

absorption decays as e−𝜔
2∕2𝜎2

), its Hilbert transform decays

as 𝜒̂ ′(𝜔) ∼ −𝜔2
p

𝜔2 according to the sum rule (Section 2.2).

Figure 3(a) illustrates the minimax concept and its

advantages over non-minimax approximation methods.
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Figure 3: Minimax approximation error. (a) Error distribution of a minimax rational approximation and a non-minimax technique (Padé, [92]) for the

Dawson function F(x), both using four poles (n = 4). The minimax approximation exhibits a characteristic equioscillating error – uniformly spread with

alternating sign and constant magnitude and achieving optimal accuracy across the domain. The non-minimax (Padé) method shows lower error near

the origin and at infinity but significantly higher (9× larger) global maximum error than the minimax. (b) Exponential convergence of the maximum

relative error with increasing number of poles (n) for both the Dawson function and the Hilbert-reconstructed Faddeeva function approximations.

With each additional pole, we observe an error reduction of roughly one order of magnitude. (c) Dawson’s approximation error for coefficients (23).

Shown is a relative error of the sum-rule-constrained

4-pole (n = 4) minimax rational approximation of the Daw-

son function (F(x) ≈ Fn(x)), featuring (4n− 1) equioscillat-

ing peaks (in agreement with the alternation theorem). As

a non-minimax reference, we include a 4-pole Padé approx-

imation [92], a method that has recently gained popularity

in computational modeling [100]. While the Padé approxi-

mation achieves higher precision near x = 0 and at infinity,

its global maximum error in this example is 9 times larger

(4.5e-3) than that of the minimax approximation (0.5e-3). In

time-domain simulations, particularly those involving ultra-

fast phenomena, broadband accuracy is essential, making

the minimax approach optimal for achieving the best over-

all accuracy with a fixed number of poles n.

Figure 3(b) demonstrates that the maximum

relative error of the Dawson function approximation,

max
x
|Fn(x)∕F(x)− 1| decreases exponentially with the

number of poles n. Furthermore, reconstructing the real

part via the Hilbert transform,

𝑤n(z) =
2√
𝜋

(
𝚤Fn(z)+−1{Fn(z)}

)
,

yields an approximation of the Faddeeva function𝑤(z) with

approximately the samemaximum relative error across the

entire upper half-plane,

max
z∈ℂ,I[z]≥0

||||𝑤n(z)

𝑤(z)
− 1

||||.
Each additional pole reduces the error by roughly an order

ofmagnitude, highlighting the rapid convergence of themin-

imax approximation.

Described properties are essential to the efficiency of

MiMOSA permittivity models for the following reasons:

– Optimal error distribution.MiMOSAmodels usemin-

imax rational approximations to uniformly minimize

error across the spectral domain, ensuring consistent

broadband accuracy without localized degradation.

– Minimal number of poles. High accuracy (better than

1 %) can be achieved with just 2–3 poles, significantly

reducing computational cost. A smaller number of

poles translates into the shortest possible time-domain

stencil in the FDTD update equations, which is critical

for fast andmemory-efficient time-domain simulations.

– Physically consistent formulation. The semi-analyt-

ical derivation with built-in constraints (e.g., causal-

ity, sum rules, Kramers–Kronig consistency) ensures

that MiMOSA models maintain the structure and inter-

pretability of a single oscillator. Unlike overfitted multi-

parameter models, the compact form of MiMOSA

improves fitting stability and gives physical meaning to

each parameter.

Appendix D: Abbreviations and

functions

PDF – Probability density function, G(x); it is nonnegative

(G(x) ≥ 0) and has full probability support
(
∫ℝG(x)dx = 1

)
.

Examples: Cauchy/Lorentz GL(x) = 1

𝜋

𝛾

(x−𝜇 )2+𝛾2 and Gauss

GG(x) = 1

𝜎
√
2𝜋
e
− (x−𝜇 )2

2𝜎2 .

Complex PDF – Probability density function with added

Hilbert transform as an imaginary part, (x) = G(x)+
𝚤{G(x)}. Examples (𝜇 = 0): Cauchy/Lorentz L(x) = 𝜋−1

𝛾−𝚤x

and Gauss G(x) = 1

𝜎
√
2𝜋
𝑤
(

x

𝜎
√
2

)
.
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CF – Characteristic function, 𝜑(t) =
∞
∫
−∞

G(x)e𝚤xtdx; it is

bounded
(|𝜑(t)| ≤ 1

)
and zero-centered

(
𝜑(0) = 1

)
; more-

over, if the PDF is symmetric, its CF is real-valued. Examples

(𝜇 = 0): Cauchy/Lorentz 𝜑L(t) = e−𝛾|t| and Gauss 𝜑G(t) =
e−𝜎

2t2∕2.

sPDF – standard PDF, g(x) = G(x;𝜇 = 0, 𝜎2 = 1) – a nor-

malized PDF, with the argument centered and stretched

such that: the mean is zero (𝜇 = 0) and variance is

one (𝜎 = 1) leading to G(x;𝜇, 𝜎2 ) = 1

𝜎
g
(
x−𝜇
𝜎

)
. Examples:

Cauchy/Lorentz gL(x) = 𝜋−1

x2+1 and Gauss gG(x) =
1√
2𝜋
e−x

2∕2.

Lineshape, l(x) – a normalized distribution with the argu-

ment centered and stretched and the amplitude scaled so

that: the peak is centered at zero with maximum of 1

and half-width-half-maximum (HWHM) of 1. Examples:

Cauchy/Lorentz lL(x) = 1

1+x2 and Gauss lG(x) = e−x
2 ln 2.

CP – Critical point model, known in the semiconductor lit-

erature [60].

FT – Fourier transform ( ), { f (t)} = f̂ (𝜔) =
∞
∫
−∞

f (t)e𝚤𝜔tdt.

IFT – Inverse Fourier transform (−1 ),−1{f̂ (𝜔)} = f (t) =

(2𝜋 )−1
∞
∫
−∞

f̂ (𝜔)e−𝚤𝜔td𝜔.

HT – Hilbert transform ( ),{ f (x)} = 𝜋−1
∞
∫
−∞

f (t)

x−tdt.

IHT – Inverse Hilbert transform (−1 ), −1{ f (x)} =
−{ f (x)}.
TD – Time domain.

FD – Frequency domain.

ZB – Zero broadening (𝛾 = 0+, 𝜎 = 0+).

HB – Homogeneous broadening (𝛾 > 0, 𝜎 = 0+).

IB – Inhomogeneous broadening (𝛾 ≥ 0, 𝜎 > 0).

The Faddeeva (or Kramp) function,𝑤(z) = e−z
2
erfc(−𝚤z) =

e−z
2 + 2𝚤√

𝜋
F(z), [63].

The Dawson function (or Dawson integral), F(x) =
∫ x

0
et

2−x2dt = 
{√

𝜋

2
e−x

2
}
=

√
𝜋

2
I[𝑤(x)], x ∈ ℝ.

Conductivity function 𝜎̂(𝜔) = −𝚤𝜔𝜀0𝜒̂ (𝜔), 𝜎(t) = 𝜀0𝜒
′(t),

𝜒 (t) = 𝜀−1
0
∫ t

0
𝜎(𝜏 )d𝜏 .

The Dirac delta function, 𝛿(x).

The Heaviside step function, 𝜃(t).
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