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Abstract: Nonclassical states of light are fundamental in

various applications, spanning quantum computation to

enhanced sensing. Fast free electrons, which emit light

into photonic structures through the mechanism of spon-

taneous emission, represent a promising platform for gen-

erating diverse types of states. Indeed, the intrinsic con-

nection between the input electron wave function and the

output light field suggests that electron-shaping schemes,

based on light-induced scattering, facilitate their synthesis.

In this article, we present a theoretical framework capa-

ble of predicting the final optical density matrix emitted

by a generic N-electron state that can also account for

post-sample energy filtering. By using such a framework,

we study the modulation-dependent fluctuations of the N-

electron emission and identify regions of superradiant scal-

ing characterized byPoissonian and super-Poissonian statis-

tics. In this context, we predict that high-N modulated elec-

tron pulses can yield a tenfold shot-noise suppression in the

estimation of the electron-light coupling when the output

radiation intensity is analyzed. In the single-electron case,

we showhow coherent stateswith nearly 90% purity can be

formed by pre-filtering a portion of the spectrum aftermod-

ulation, and how non-Gaussian states are generated after

a precise energy measurement. Furthermore, we present

a strategy combining a single-stage electron modulation

and post-filtering to harness tailored light states, such as

squeezed vacuum, cat, and triangular cat states, with fideli-

ties close to 100 %.
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1 Introduction

Fast electrons in scanning and transmission electron micro-

scopes (SEM/TEM) offer the capability to measure different

material properties with nanometer resolution, thanks to

their exceptionally small wavelength. For instance, inelasti-

cally scattered electrons carry information about the exci-

tations of a sample, such as phonons [1], [2], plasmonic

resonances [3]–[6], and geometrically confined dielectric

modes [7], [8], which can be retrieved by analyzing their

final spectrum through electron energy-loss spectroscopy

(EELS) [9], [10].

In the past two decades, efforts to improve the spectral

resolution, limited in EELS measurements by the broad-

band nature of fast charged particles [9], and to achieve

time-resolved imaging, have led to the integration of opti-

cal systems into TEM. In such instruments, a laser and an

electron pulse interact at the sample, resulting in inelas-

tic electron-light scattering (IELS) [11], [12]. In the form

of photon-induced near-field electron microscopy (PINEM),

this combination of techniques has produced remarkable

results in studying the femtosecond dynamics of near fields

carried by polaritons in nanostructures [13]–[17] and optical

nonlinearities in dielectric resonators [18]. Beyond imaging,

IELS has proven to be an important phenomenon for coher-

ently shaping the longitudinal [19] and transverse [20], [21]

full three-dimensional wave function of an electron beam

(e-beam). In this context, a general IELS interaction with

laser frequency 𝜔L near a plane positioned at z along the

propagation axis, brings an electron traveling with velocity

𝑣 into the superposition state

𝜓e(z) = 𝜓0(z)

∞∑
𝓁=−∞

c𝓁 e
i𝓁𝜔Lz∕𝑣

composed of energy coefficients c𝓁 and an envelope 𝜓0(z).

Controlling the amplitude and phase of these coefficients

is crucial for attosecond bunching of the electron den-

sity [22]–[24]. Several schemes combining multiple IELS
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interaction zones have been proposed [16], [25]–[28] to

achieve extreme temporal compression, including the

replacement of laser illumination with a quantum light

source [29]–[31].

Free electrons in SEM/TEM also represent a unique

platform for tailoring and probing quantum characteristics

of polaritonic modes, either confined, or guided within pho-

tonic structures [32]–[35]. In the case of bosonic statistics, it

was shown that the incoming electron energy coefficients

c𝓁 and the output mode density matrix 𝜌p are directly

related [30], [36], thus rendering a tailored IELS modulation

an excellent means to control the latter. Under the usual

conditions of electron-light coupling linear in the electric

field of the mode [29], [32], Poissonian-distributed emission

is predicted to arise from single-electron pulses, with a state

purity determined by the temporal structure of the electron

density [30]. Since a possible way of generating quantum

light exploits a nonlinear interaction, schemes based on

quadratic ponderomotive coupling to produce squeezing

[37] or incorporating final electron energy filtering (post-

filtering) have been proposed [36], [38] and applied to her-

ald few-photon Fock states [39], [40]. Furthermore, more

complex light states, such as cat and GKP states [41], were

shown to be producible by employing multiple electrons

shaped into idealized electron superpositions, character-

ized by energy coefficients with constant amplitudes at all

orders and with corresponding phases ∝ 𝓁 [42].

This article aims at exploring in detail the connection

between electron energy modulation and light emission in

a single photonic mode with a particular focus on quan-

tum light synthesis. The work is organized as follows. In

Section 2.1, we develop a general theoretical framework for

a linear type – with an interaction Hamiltonian propor-

tional to the mode electric field – of electron-light coupling

capable of connecting, through an input-output relation, an

incomingN-electron densitymatrixwith 𝜌p. In addition, the

action of an electron spectrometer is incorporated in the

theory to account for the possibility of energy post-filtering.

Without post-filtering, we predict super-Poissonian light

emission arising from N > 1 bunches for most electron

modulations and Poissonian statistics in specific limiting

cases. We then apply parameter estimation theory to study

how these types of electron pulses affect shot-noise lim-

ited measurements of electron-light interaction strengths.

In Section 2.2, we analyze, for single-electron pulses, the

coherence conditions and the corresponding modulation

requirements to generate high-purity states, both with and

without post-filtering. By focusing on the latter case, we

propose a simplemodulation scheme that combines a strong

IELS interaction with an energy filter placed before the

sample to significantly enhance electron coherence and

state purity. Moreover, for electrons with coherence times

longer than the optical cycle of the mode and incorporating

post-filtering, we show that pure light states are produced

regardless of the form of c𝓁 . In Section 2.3, we leverage the

implications of the previous result to explore how a stan-

dard IELSmodulation can create cat states. Subsequently, in

Section 2.4, we adopt an approach used for electron-pulse

shaping [26] combined with an optimization algorithm to

provide specific guidelines for designing near-field distribu-

tions to be used in an IELS interaction leading to the syn-

thesis of more complex light states. We find that squeezed

vacuum, cat, and triangular cat states can be generatedwith

∼100 % fidelity under strong coupling conditions and with

modulation parameters accessible to state-of-the-art setups.

Finally in Section 3, we discuss the results, their possible

extensions, and we provide considerations on the applica-

tion of the proposed strategies.

In addition to their theoretical significance, our results

represent a fundamental step towards developing practi-

cal methods for harnessing nonclassical light from free

electrons.

2 Results and discussion

2.1 Output light density matrix after
interaction with N electrons

In this work, we study the quantum properties of light emit-

ted in a photonic structure by the interaction of an e-beamat

kinetic energies in the keV range with a single optical mode

of energy ℏ𝜔0 and an electric field profile ⃗0(r). In particu-

lar, we are interested in computing the post-interaction light

density matrix 𝜌p for electrons having passed through a

modulation stage thatmay comprise an IELS interaction and

an energy filter before the sample (pre-filtering). Moreover,

we consider the consequences linked to light generation

when only a subset of events, determined by a particular

choice of the electrons’ final energies, is considered (post-

filtering) (see Figure 1). In doing so, we will assume each

e-beampulse to containN electrons, all with central velocity

v = 𝑣ẑ corresponding to a kinetic energy Ee
0
≫ ℏ𝜔0, and to

be well-focused around the transversal coordinate R.

Under these conditions, the quantum evolution of

the joint electron-light state can be written by lineariz-

ing the electron dispersion, directly leading to the closed

form of the scattering operator ̂ = ei𝜒̂ ̂ (see Supplemen-

tary Information (SI) [43]), with

̂ = e𝛽0(b̂â
†−b̂†â), (1)
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Figure 1: Creation and analysis of quantum light states generated by

free electrons. An e-beam pulse composed by N electrons is directed into

a light-based inelastic modulator that coherently reshapes the electron

energy distribution through a single IELS interaction with coupling

coefficient 𝛽 and frequency𝜔L. An optional energy filter placed before

the sample may eliminate electrons outside a selected energy range.

The beam subsequently passes a nanostructure and emits photons into

an optical mode with frequency𝜔0 via spontaneous emission of strength

𝛽0. After this interaction, the generated light is extracted from the

structure, and its quantum state is analyzed using a homodyne detection

scheme in coincidence with the energies measured by an electron

spectrometer composed by a sector magnet and an electron detector.

written in terms of the electron b̂†, b̂ and the photon

â†, â creation and annihilation operators. While â, â† act

on the number of photons, subtracting and adding one

particle, respectively, b̂ decreases and b̂† increases the

longitudinal momentum of one of the electrons in the

bunch by 𝜔0∕𝑣, i.e., bringing any N-electron momentum

eigenstate |q1,… , qN⟩ to the superposition∑N

i=1|q1,… , qi ±
𝜔0∕𝑣,… , qN⟩. In particular, the former follow boson statis-

tics, whereas, in the considered nonrecoil approximation,

which is well justified at high electron energies, the lat-

ter commute [b̂, b̂†] = 0 [19], [29], [44]. The coupling coef-

ficient 𝛽0 = (e∕ℏ𝜔0 )
|||∫

∞
−∞dz 0,z(R, z) e

−i𝜔0z∕𝑣||| (sometimes
referred to as gQ in the literature [29], [36], [39]) determines

the number of photons exchanged between the electron and

the optical mode and can be evaluated through standard

methods employed to compute EELS probabilities [45]. We

remark that ̂ connects the density matrix prior to the

scattering in the interaction picture 𝜌(−∞) with the state

after the interaction 𝜌(∞) as 𝜌(∞) = ̂𝜌(−∞)̂†. The oper-

ator 𝜒̂ accounts for the non-resonant part of the electron-

electron interaction mediated by the surrounding dielectric

environment and induces an elastic phase shift on the wave

function of a single electron passing close to a conductive

surface [46]. Owing to its short time scale in the few-fs

range and the typical temporal separation between elec-

trons of hundreds of fs, we disregard its effect in the rest

of this work. Interestingly, the electron-light entanglement

generated by the excitation-number-conserving evolution

operator of Eq. (1) has recently been demonstrated in a TEM

through a quantum eraser experiment [47].

The single-mode assumption, underlying the validity

of Eq. (1), strongly depends on the value of 𝛽0 for the cou-

pling to each mode allowed by the material and the con-

figuration details of the photonic structure collecting the

electron emission. Generally, narrow-band selectivity can

be achieved in one-dimensional geometries through phase-

matching, when themode’s phase velocity𝜔0∕k0 equals the
electron group velocity 𝑣, i.e., when 𝜔0∕k0 ∼ 𝑣 [39], [40],

[48], [49]. However, somewhatweaker selectivity can also be

achieved in confined resonances supported by nanostruc-

tures [50], [51].

To compute the statistical properties of the light emit-

ted by electrons measured in a final set of longitudinal

momenta qN = (q1,… , qN ), we begin with the calculation

of the matrix TqN = ⟨qN | ̂ 𝜌(−∞) ̂ †|qN⟩, which is a

key intermediate in the derivation of the optical density

matrix. Indeed, it projects the evolved quantum state of

the system (after interaction) onto the electron momentum

eigenstates. Interestingly, its evaluation becomes straight-

forward when performed in the spatial representation

|zN⟩ = ∑
qN

(
e−iqN ⋅zN∕LN∕2

)|qN⟩ (where L is the quantiza-

tion length), as these states satisfy the eigenequations

b̂|zN⟩ = j(zN )|zN⟩ and b̂†|zN⟩ = j ∗(zN )|zN⟩ with j(zN ) =∑N

i=1e
−i𝜔0zi∕𝑣. In physical terms, j∗(zN ) represents the 𝜔0-

frequency contribution of a classical current in units of −e
formedbyN electrons longitudinally distributed as the com-

ponents of zN . As such, it is an eigenvalue of the current ope-

rator of negative frequency, which is proportional to b̂† [44].

Under typical experimental conditions, the optical

mode is either in the vacuum state or excited with a laser,

while the N-electron bunch exists in a complex state aris-

ing from an incoherent ensemble average over stochas-

tic fluctuations of the electron source, combined with

the coherent operations of IELS modulation and energy

pre-filtering. To best describe such initial conditions, we

set as pre-interaction electron-light state ⟨zN |𝜌(−∞)|z′
N
⟩ =

𝜌e
(
zN , z

′
N

) |𝛼⟩⟨𝛼|, where |𝛼⟩ is a bosonic coherent state of
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the mode with amplitude 𝛼, and 𝜌e
(
zN , z

′
N

)
is the spatial

representation of the N-electron density matrix. Generally,

electron sources triggered by photoemission pulses gener-

ate states populated by a fluctuating number of electrons,

with a mean that is controlled by the incident laser. How-

ever, in this work, we restrict our analysis to the fixed num-

berN , owing to the capabilities of cutting-edge experimental

setups equipped with number-resolved electron detectors

[40], [52], [53]. We remark that predictions involving a fluc-

tuating number of electrons may be computed by averaging

our results over the electron source distribution.

To account for general multi-electron post-filtering per-

formed over a finite set of final momenta, we introduce the

dimensionless detector function F(qN ) which vanishes for

values of qN outside the selected region. By integrating the

product F(qN )T
qN , we canwrite the exact form of the output

light density matrix after the interaction (see SI [43] for a

detailed calculation):

𝜌 p =
1

PF ∫
dzNdz

′
N

(
zN − z

′
N

)
𝜌e
(
zN , z

′
N

)
(2)

× ||𝛼 + 𝛽0 j(zN )
⟩⟨
𝛼 + 𝛽0 j

(
z
′
N

)||,
where the function  (zN ) = ∫ dqNF(qN ) e

−iqN ⋅zN∕(2𝜋 )N
represents the detector response function. The normaliza-

tion constant PF ≤ 1 corresponds to the probability of suc-

cess of the post-filtering operation as well as to the N-

electron energy correlations developed during the light-

mediated coupling [29], [54]. Importantly, Eq. (2) establishes

a direct connection between a generic incoming N-electron

state and the created light state. Interestingly, the final opti-

cal density matrix is formed by a continuous superposition

of coherent states with amplitudes determined by classi-

cal multi-electron currents and coefficients determined by

the incoming N-electron state and the detector response

function. Furthermore, Eq. (2) highlights that a complete

tomography of 𝜌p could enable full readout of 𝜌e
(
zN , z

′
N

)
,

including the retrieval of quantum entanglement between

the momentum states of different electrons. An entangle-

ment that has also been predicted to cause visible variations

in the cathodoluminescence emission patternwhen no post-

filtering is applied [55].

Note that, if no post-filtering is performed[

(
zN − z

′
N

)
= 𝛿

(
zN − z

′
N

)]
, Eq. (2) shows that 𝜌p becomes

a function of the N-electron density 𝜌e(zN , zN ) only. In this

regime, the evaluation of expectation values of normally-

ordered light operators is made particularly simple. For

high electron currents, Coulomb interaction through the

propagation in TEM can induce marked electron-electron

transversal and longitudinal energy correlations, as

shown by a recent experiment measuring the ensemble

properties of few-electron bunches [52], [56]. While

Eq. (2) maintains its validity under these conditions, for

illustrative purposes and to derive example results, in the

following we assume uncorrelated particles, which is the

case when sufficiently spaced electrons in time arrive at

the sample. In this scenario, the total density factorizes as

𝜌e(zN , zN ) =
∏N

i=1𝜌
i
e
(zi, zi ), and all light properties depend

on the so-called electron coherence factor (CF) [57], [58].

Mi
k
=

∞

∫
−∞

dz 𝜌i
e
(z, z) eikz. (3)

The CF is a measure of the coherence carried by each

of the electrons at momentum k, quantified through the

strength of the Fourier components of their densities.

In practice, it defines the ability of the light emitted

by the electrons to interfere with a second time-varying

signal [44], [58]. For instance, if all electrons share the

same density
(
Mi

k
≡ Mk

)
, the total radiated intensity in

the absence of laser excitation takes the form IN = ⟨n̂⟩ =
⟨â†â⟩ = 𝛽2

0
N
[
1+ (N − 1)|M𝜔0∕𝑣|2

]
and scales as N2 when

the CF approaches unity. This multi-electron cooperative

effect, where the interfering fields are mutually gener-

ated by the electrons, produces an emission intensity ∝ N2,

resembling the Schwartz–Hora effect [59], and is referred to

as superradiance [60], [61]. Such behavior has been exper-

imentally observed in transition radiation [62] and lies at

the core of free-electron laser operation [63]–[65]. The type

of emission is also characterized by its intensity fluctuations

ΔI2
N
= ⟨n̂2⟩− I2

N
that read

ΔI2
N
∕IN = 1+ IN

[
g(2)(0)− 1

]
, (4)

where g(2)(0) = ⟨â†2â2⟩∕I2
N
is the zero-delay second-order

correlation function dependent only on M𝜔0∕𝑣 and M2𝜔0∕𝑣
(see SI [43] for its exact form). Interestingly, it can uniquely

exhibit Poissonian or super-Poissonian emission (g(2)(0) ≥
1) if the e-beam density is modified. This conclusion can be

drawn from the positivity of the fluctuations and the fact

that, if g(2)(0) < 1, ΔI2
N
can assume an arbitrary negative

value for strong enough coupling 𝛽0, as the correlation func-

tion is independent of its value.

In Figure 2, we explore the statistics of the light gen-

erated by identically modulated electrons yielding equal

CF without keeping track of the post-interaction electron

energies, as shown in the sketch of Figure 2a. In particular,

in Figure 2b we look at electron densities leading to a purely

imaginary and real CF at k = 𝜔0∕𝑣 and 2𝜔0∕𝑣, respectively.
Wemotivate this particular choice after inspecting the form

of the CF given by an electron after a single IELS modula-

tion at 𝜔L = 𝜔0 and a macroscopic propagation d from the

interaction zone
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Figure 2: Intensity fluctuations for Nmodulated electrons. (a) N-electron modulated pulses emit light into a photonic mode. Its intensity is recorded

together with its fluctuations by including all electron scattering events. (b) Second-order correlation function g(2)(0) defining the statistics of the

emitted light without post-filtering (see Eq. (4) and sketch in panel (a)) computed for N = 5 electrons. The electrons are assumed to undergo the same

modulation yielding a coherence factor (CF) with imaginary M𝜔0∕𝑣 and real M2𝜔0∕𝑣 similarly to the CF after an IELS interaction (see Eq. (5)). The grey

areas correspond to unphysical electron states and CF values leading to negative light intensity fluctuations. (c) Same as in (b) but for electrons

emitting light after an IELS modulation of strength |𝛽| and subsequent free propagation of d with respect to the Talbot distance zT = 4𝜋me𝑣
3𝛾3∕ℏ𝜔2

L

(see Eq. (5)). (d) Second-order correlation function as a function of the number of electrons N in each pulse. (e) Root mean square error in the estimate

of 𝛽0 when measuring the light intensity emitted by pulses composed of N electrons,Δ𝛽0,N , normalized to the error in the single-electron limit,Δ𝛽0
(see Eq. (6)), for 𝛽0 = 0.01 (dashed lines) and 𝛽0 = 1 (solid lines). For illustrative purposes, continuous curves are obtained through interpolation of

a discretized number of points, as shown in panel (d). The type of modulation in (d, e) is chromatically indicated by matching the colors of the curves

to (|𝛽|, 2𝜋d∕zT) coordinates in panel (c) and to values of the first and second CF in (b) (colored dots).

Mm𝜔0∕𝑣 = im sign{sin(2𝜋md∕zT )|}m (5)

× e−im arg{−𝛽} Jm[4|𝛽 sin(2𝜋md∕zT )|]
which can be calculated from Eq. (3) and the energy

coefficients c𝓁 = J𝓁(2|𝛽|)ei𝓁 arg{−𝛽}−2𝜋i𝓁2d∕zT using an enve-

lope 𝜓0(z) spanning several optical cycles [25], [37], [58],

[66]. The J𝓁(x) is the 𝓁-th Bessel function, d is the dis-

tance of free propagation from the IELS interaction zone,

zT = 4𝜋me𝑣
3𝛾3∕ℏ𝜔3

L
is the Talbot distance, and 𝛽 is a com-

plex coupling parameter analogous to 𝛽0 but incorporating

phase and amplitude of the electric field produced by the

laser scattering off a material boundary [12], [30], [57]. We

observe that, already forN = 5 electrons (Figure 2b), a wide

range of super-Poissonian light can be harnessed with spe-

cific electron modulations. For instance, an electron bunch

with vanishing coherence is shown to lead to thermal light

[63], [67] whereas electrons with unity CF yield Poissonian

statistics. In Figure 2c, we show that these types of electron

modulations can be directly reproduced through careful

choice of the IELS parameters.

Interestingly, g(2)(0) can also be tuned by varying the

number of electrons under fixed IELS conditions, as shown

in Figure 2d. This observation has important implications

when estimating the coupling strength 𝛽0 from light inten-

sity measurements. Specifically, when using a total number

of electrons K = RN , divided into R pulses each containing

N particles, the root mean square error associated with

the estimation of 𝛽0, given byΔ𝛽0,N = |𝜕𝛽0∕𝜕IK |ΔIK , must
be evaluated from the total measured intensity IK and its

fluctuations ΔI2
K
. Since each pulse corresponds to an inde-

pendent measurement, both quantities are connected with

IN and ΔI2
N
by a multiplicative factor R (see the SI [43] for

more details), leading to

Δ𝛽0,N = Δ𝛽0

√
1+ IN [g

(2)(0)− 1]

1+ (N − 1)|M𝜔0∕𝑣|2
, (6)

where we have defined the shot-noise-limited single-

electron root mean square error as Δ𝛽0 = 1∕2
√
K. From

Eq. (6), we observe that Poissonian emission combined

with a high number of electrons per pulse improves the

estimation by a factor of approximately 1∕
√
N|M𝜔0∕𝑣|.

When g(2)(0) deviates slightly from unity, this approxima-

tion remains valid for small values of 𝛽0, corresponding to

low IN . Remarkably, a nearly tenfold reduction in the ratio
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Δ𝛽0,N∕Δ𝛽0 can be achieved by a single IELS modulation

stage in the estimation of a weak electron-mode coupling,

as shown in Figure 2e.

A more complex situation is found for a general post-

sample filtering function. In this case, the number represen-

tation 𝜌p =
∑

nn′ 𝜌p,nn′ |n⟩⟨n′| provides a clearer isolation of
the role playedby the input electrondensitymatrix,which is

otherwise obscured in the spatial dependence of the coher-

ent states in Eq. (2). While again considering uncorrelated

electrons and an initial vacuum state (𝛼 = 0), we calculate

𝜌p,nn′ from Eq. (2) through a combinatorial analysis leading

to (see SI [43] for a detailed derivation)

𝜌 p,nn′ =
1

PF

∑
k,k′,m

m
′,p,p′≥0

(n,k,n′,k′ )
m,m′,p,p′ ∫

dqNF(qN ) (7)

×
N∏
i=1

PMi

𝜔0

(
s′
i
−si

)
∕𝑣

[
qi +

𝜔0

2𝑣

(
si + s′

i

)]
,

where si =mi −mi
′, si

′ = pi − pi
′, while the 𝛽0-dependent

coefficient (n,k,n′,k′ )
m,m′,p,p′

is defined in the SI [43] and its specific

form is not of fundamental relevance to this work. The

vectors m,m′,p and p
′ are composed by positive integers

and have dimension N . Interestingly, Eq. (7) condenses the

electron dependence into the factor

PMi
k
(q) =

∞

∫
−∞

dz Wi
e
(z, q) eikz (8)

which we term projected coherence factor (PCF), as it plays

a role similar to the CF when only a sub-set of scatter-

ing events are observed and it is defined through the

electron Wigner functionWi
e
(z, q) = ∫ ∞

−∞dy 𝜌
i
e
(z− y∕2, z+

y∕2) eiqy∕2𝜋 [68] representing the quantum analogue of

a classical phase-space density. Equation (8) reveals that

when final energies are measured, the electron density

involved in the interaction is only determined a posteriori

through the post-filtering procedure. Specifically, the spatial

frequencies that influence 𝜌p,nn′ are those arising from the

Fourier transform along the propagation axis of the density

obtained through the integration of the electron Wigner

function over the finite momentum range set by F(qN ). In

Figure 1a of the SI [43], we illustrate the sub-cycle structur-

ing of several such cuts of the Wigner function correspond-

ing to an IELS-modulated electron, also measured through

a reconstruction algorithm based on a double-IELS inter-

action scheme [22]. Reassuringly, when no post-filtering is

applied, the momentum integral of the PCF coincides with

the CF, namely, Mi
k
= ∫ ∞

−∞dq PM
i
k
(q), as is directly evident

from the Wigner function definition.

2.2 Light-state purity and electron
coherence

An ideal quantum state, unaffected by classical ensemble

averages over initial conditions or mechanisms of decoher-

ence, can be described by a pure state |𝜓 p⟩ = ∑∞
n=0𝛼 p,n|n⟩

and, equivalently, by the density matrix 𝜌p = |𝜓 p⟩⟨𝜓 p|.
Here, we aim to explore how electron coherence and post-

filtering determine the final purity of the light.

First, we examine Eq. (2) in the case of uncorrelated

electrons (although this assumption is not necessary for

the following statement to hold) and observe that, if an

infinitely precise post-filtering measurement with outcome

q̃N , described by F(qN ) ∼ 𝛿(qN − q̃N ), is performed, 𝜌p
becomes perfectly pure, provided the electron state is also

pure, i.e., 𝜌i
e
(zi, z

′
i
) = 𝜓 i

e
(zi )𝜓

i∗
e

(
z′
i

)
. In most experiments

performed in SEM/TEM, the latter assumption is not met

because electrons arrive at the sample at a time t0,i that can

incoherently fluctuate by Δt ∼ 100 fs [53], [69]–[71]. How-

ever, since they have coherence times 𝜎t ∼ 5 fs spanning

several optical cycles (𝜎t𝜔0 ≫ 1), their PCF is not affected by

the incoherent averaging at the spatial frequencies of inter-

est for this work k = m𝜔0∕𝑣, with m an integer number,

therefore effectively providing the aforementioned purity

condition (see SI [43] for a detailed proof). Thus, we con-

clude that, regardless of the specific form of the coherently

modulated electron state, the determination of the final

energies of all electrons guarantees a pure light state. How-

ever, such purity will be maintained over the spectral width

∼ ℏ∕Δt ∼ 10 meV around 𝜔0.

We now examine this result in the simple case of a

single electron, for which Eq. (7) simplifies to the form (see

SI [43])

𝜌 p,nn′ =
1

PF
⟨n|𝛽0⟩⟨𝛽0|n′⟩ (9)

×
∞

∫
−∞

dq F(q) PM𝜔0(n
′−n)∕𝑣

[
q+𝜔0(n+ n′ )∕2𝑣

]
.

In Figure 3a, we analyze the purity Tr{𝜌2
p
} of the state in

Eq. (9) for an electron with a coherent Gaussian envelope

of standard deviation 𝜎t and incoherent ensemble distribu-

tion of width Δt𝜔0 ≫ 1 modulated through an IELS stage

of laser frequency 𝜔L = 𝜔0 and subsequently propagated

over a distance d from the interaction zone, as done to

obtain Eq. (5). As expected, the light-state purity approaches

unity when the post-filtering window 2𝛿d, collected by the

energy detector, is 𝛿d𝑣∕𝜔0 ≲ 0.5 as long as the electron

coherence spans several optical cycles, while it stabilizes

to the fully-mixed value
∑∞

n=0𝜌
2
nn
, when the post-filtering

window covers the entire electron spectrum. This result
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Figure 3: Properties of the light state generated by single electrons using energy post- or pre-filtering. An electron with an incoherent envelope of

temporal widthΔt𝜔0 ≫ 1 freely drifts over a negligible length with respect to the Talbot distance zT = 4𝜋me𝑣
3𝛾3∕ℏ𝜔2

L
, from a single IELS interaction

of strength 𝛽 and frequency𝜔L = 𝜔0 to couple with an optical mode with strength 𝛽0 = 1 initially in a vacuum state |0⟩⟨0|. After the interaction, the
light state purity (a) and the absolute value of the average of the photonic destruction operator (b) are computed by considering the electrons with

normalized coherence time 𝜎t𝜔0 = 1 (dashed lines) and 3 (solid lines) and longitudinal momentum in a window 2𝛿d symmetric around the zero-loss

peak (ZLP), as shown in the post-sample asymmetric spectrum above panels (c–e). (c–e) Photonic Wigner function after coupling with an electron with

𝜎t𝜔0 = 3 for the post-filtering windows δd𝑣∕𝜔0 = 0.01, 2, 15, respectively. (f, g) Same as (a, b) with 𝜎t𝜔0 = 3 but discarding the electrons outside the

momentum range betweenΔmax −Δd andΔmax = 50𝜔0∕𝑣 immediately after an IELS stage, as shown in the symmetric spectrum above panels (h–j),

and without final energy post-filtering. (h–j) Photonic Wigner function corresponding to the pre-filtering windows atΔd𝑣∕𝜔0 = 0.01, 16.5, 100,

respectively. In all panels, we use arg{−𝛽} = 0.

is in agreement with the form of the m-th order CF in

Eq. (5), vanishing for d∕zT ∼ 0 andm ≠ 0, and the generated

light state 𝜌 p,nn′ = ⟨n|𝛽0⟩⟨𝛽0|n′⟩M𝜔0(n
′−n)∕𝑣 obtained from

Eq. (9) in the 𝛿d →∞ limit. Accordingly, the form of the pho-

tonic Wigner function [72], also showing negative values,

represent a pure quantum state generated by an IELS elec-

tron for small 𝛿d and a phase-averaged coherent statewhere

the entire spectrum is considered (see Figure 3c–e).

As we previously observed, in addition to enabling

access to high-purity states, the combination of post-filtering

and shaped electrons provides a means to probe time-

varying signals with an electron density that depends

on its final measured energy and that can be visualized

through the energy cuts of the electron Wigner function

(see Figure 1a in the SI [43]). An example of this is the

average electric field ⟨Ê(r)⟩ = ⃗0(r)⟨â⟩+ ⃗∗
0
(r)⟨â†⟩ ∝ |⟨â⟩|

emitted by the electron into the light mode, which varies

as a function of 𝛿d (see Figure 3b). This capability could

be particularly significant for studying and controlling the

dynamics in materials [73], [74] triggered by the same laser

used to modulate the beam with sub-ps precision.

A similar phenomenon of enhanced time localization

occurs when an energy filter, selecting a fixed momentum

range starting from Δmin = Δmax −Δd and ending at Δmax

relative to the central momentum, is placed between the

IELS modulation and the interaction with the sample (see

Figure 1 and the rightmost sketch in Figure 3). Indeed, since

the CF can be re-expressed in terms of the PCF of an electron

without pre-filtering PMunf
k

as

Mk =
1

M0

Δ̃max

∫
Δ̃min

dq PMunf
k
(q+ k∕2) (10)

with Δ̃max = min{Δmax,Δmax − k} and Δ̃min = max{Δmin,

Δmin − k}, this procedure effectively corresponds to select-
ing an energy portion of We(z, q), thereby influencing the

involved electron density and its related quantities, such as

the average electric field (see Figure 3g). The factorM0 rep-

resents the probability of pre-filtering and guarantees wave

function normalization. The resulting enhanced electron

coherence is also reflected by the light-state purity depicted

in Figure 3f for an electron pre-filtered right after (d = 0)
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an IELS interaction. Here, we observe several maxima (with

∼0.86 the greatest value), each one for a given energy win-
dowℏΔd𝑣 and coupling strength 𝛽 as well as a convergence

to the mixed-state value for small and largeΔd. This behav-

ior can be understood by examining the corresponding CF

in the 𝜎t𝜔0 ≫ 1 limit, expressed as (see SI [43] for a detailed

calculation):

Mm𝜔0∕𝑣 = e−im arg{−𝛽}+2𝜋im2d∕zT (11)

× 1

M0

𝓁max∑
𝓁=𝓁min

J𝓁(2|𝛽|) J𝓁+m(2|𝛽|) e4𝜋im𝓁d∕zT ,

where 𝓁min = ⌊Δmin𝑣∕𝜔0⌋−min{0,m} + 1 and 𝓁max =
⌊Δmax𝑣∕𝜔0⌋−max{0,m}, and ⌊x⌋ denotes the floor func-
tion of x. This expression reveals a significant increase in

electron coherence, surpassing the absolute maximum of

|M𝜔0∕𝑣| ∼ 0.58 observed in bunched densities following an

IELS interaction and a drift in free space [22], [30], [75].

For instance, with |𝛽| ∼ 20, we achieve |M𝜔0∕𝑣| ∼ 0.95 for

various values of d, including d∕zT ∼ 0 (see Figure 1b–d in

the SI [43]). Given themacroscopic lengths on the centimeter

scale required by standard energy filters to operate, such

a case refers to an idealized scenario not experimentally

achievable in a straightforward manner. However, at Tal-

bot revivals and thus larger distances, depending on the

coherence time and IELS strength, similar results could be

achieved. In particular, optimal purity is achieved by filter-

ing near the lobes of the IELS energy distribution, as in that

region the electron density confines to a limited range in

time (see Figure 1a in the SI [43]). Importantly, this type of

strategy can also be used as an alternative approach to pulse

compression [22], [23].

Despite this high coherence for lowm, Eq. (11) vanishes

for ⌊Δmax𝑣∕𝜔0⌋− ⌊Δmin𝑣∕𝜔0⌋ ≤ |m|, thereby limiting the
light-state purity in a manner dependent on the electron-

mode coupling 𝛽0. Finally, as previously demonstrated [30],

𝜌p oscillates between a quasi-pure and a phase-averaged

coherent state as the electron coherence is varied through

Δd (see Figure 3h–j).

As expected, for nearly elastic attosecond imaging or

diffraction experiments, it also becomes irrelevant if the

filtering takes place before or after the sample. This is con-

firmed by the k→ 0 limit of the integral in Eq. (10) that

transforms to an integrated PCF over the collection range

as it appears in Eqs. (7) and (9) for negligible 𝜔0.

2.3 Natural synthesis of cat states by IELS
electrons

We now utilize the purity achieved through post-filtering

performed around the s-th energy sideband in the high

electron coherence limit of Figure 3a to examine the actual

state of the generated light (see Figure 4a). Under these

conditions, we can work in the 𝜎t𝜔0 ≫ 1 approximation

for which the integral of the PCF in Eq. (9), taken around

the post-filtering sideband, only selects specific energy

coefficients from the modulated superposition and thus

reduces to the simple product cn+sc
∗
n′+s (see SI [43] for a

proof). This further confirms our previous result stating

that any form of coherent electron energy shapingwill yield

𝜌p = |𝜓 p⟩⟨𝜓 p|. The expansion coefficients in number basis

directly follow from it and read

𝛼 p,n =
⟨n|𝛽0⟩ cn+s√∑∞
n=0|⟨n|𝛽0⟩ cn+s|2

. (12)

Equation (12) demonstrates that any target light state with

finite support can be synthesized through appropriate

shaping of the electron energy coefficients c𝓁 . Intuitively,

it predicts an average photon number that depends on 𝛽0
but can exceed the probability of spontaneous emission, 𝛽2

0
.

This effect arises from the post-filtering process, where only

a subset of events is considered during the photon mea-

surements, and is related to the weak value of a quantum

observable [76].

In the special case of an electron immediately after a

one-stage IELS interaction (c𝓁 = J𝓁(2|𝛽|)ei𝓁arg{−𝛽}), we find
that, beyond a certain high value of |𝛽|, the electron nat-

urally forms an approximate version of a cat state, 𝛼 p,n ∝
⟨n|𝜒⟩[1+ ei𝜃(−1)n], where 𝜒 = −i𝛽0eiarg{−𝛽} and 𝜃 = s𝜋 +
𝜋∕2− 4|𝛽|. Taking this state as the target state |𝜓 targ

p ⟩ =∑∞
n=0𝛼

targ
p,n |n⟩, we compute its overlap with |𝜓 p⟩ using the

fidelity |⟨𝜓 p|𝜓 targ
p ⟩|2. Remarkably, this shows near-perfect

generation under the condition (nmax + s)2∕2≪ |𝛽|, deter-
mined by the first nmax coefficients required to accurately

describe |𝜓 targ
p ⟩, which is itself set by the value of |𝜒 | =

𝛽0 (see Figure 4b). The origin of this natural predisposi-

tion of IELS electrons to form cat states lies in the asymp-

totic behavior of the Bessel functions for large arguments.

Specifically, the large argument approximation Jn+s(2|𝛽|) ≈
e−i𝜃∕2[(−i)n + ei𝜃in]∕

√
4𝜋|𝛽| reveals a superposition of two

energy plane waves. Each of these components corresponds

to the emission of a coherent state whose amplitude is

shifted relative to the other by a𝜋 phase, exactly as required

for the formation of a cat state. In more intuitive terms,

in this regime, the sinusoidal modulation in phase space

passes twice at fixed times through the region of small

energy changes, leading to a superposition of electron den-

sity shifted by half a cycle. The high coupling strengths

demanded in this approach have already been experimen-

tally demonstrated with pulsed-laser interactions near a

nanostructure [77] and in free space [78] as well as under
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Figure 4: Natural formation of cat states after a single IELS stage.

(a) Proposed scheme to produce high-purity cat states from an optical

mode in a vacuum state involving a single IELS interaction of coupling

parameter 𝛽 and the post-filtering of the s-th sideband after

spontaneous emission into the cavity with strength 𝛽0 = 2.

(b) Overlap between the light state generated by an electron after

passing through the stages sketched in (a) and a cat state with

amplitude 𝜒 = −i𝛽0eiarg{−𝛽} and relative phase 𝜃 = s𝜋 + 𝜋∕2− 4|𝛽|
for different IELS couplings 𝛽 and post-filtered sideband order s.

(c) Post-filtering probabilities for the configurations reported in (b).

(d–f) Post-interaction photonic Wigner function for s = −5 and
|𝛽| = 1, 4, 20. In all panels, we use arg{−𝛽} = 0.

continuous-wave seeding of a Si3N4 microresonator [13].

However, due to the large energy spread introduced by

the |𝛽| ≳ 10 IELS interaction, post-filtering probabilities are

found to be ≲ 1 % (see Figure 4c) at fidelities ≳ 99 % (see

Figure 4d–f).

2.4 On-demand quantum light generation
by lateral IELS

The approach previously used to create a specific type of cat

state can be generalized to a broader range of light states

through Eq. (12) by accessing a wider set of electron energy

coefficients c𝓁 . Several schemes have been proposed to

achieve such flexibility, primarily relying on either sequen-

tial combinations of IELS and free propagation stages

[25] or focusing different lateral sections of an e-beam

that has passed through a spatially dependent coupling

coefficient 𝛽(R) [26]. A third strategy involves the use of

shaping pulses composed of several harmonics [79], [80],

however, its implementation would require a structure

capable of sustaining strong IELS coupling strengths over a

considerably broad spectral range, especially when operat-

ing in the visible regime. In this work, we adopt the scheme

based on lateral field structuring whose capabilities are

reported in Figure 5; however, a similar study could be

conducted following the other methods.

As detailed in the SI [43], the energy coefficients form-

ing the wave function near the focal point of a lens acting

on an electron previously shaped by anear field divided into

M equal-area circular sectors, each producing constant IELS

coefficients 𝛽 i (see themodulation scheme in Figure 5a), are

given by

c𝓁 = e−2𝜋i𝓁
2d∕zT

M∑
i=1

J𝓁(2|𝛽i|)ei𝓁 arg{−𝛽i}, (13)

where now d = z0 + f is the sum of the lens’ separation

from the IELS plane (z0) and the focal distance ( f ).We use an

optimization algorithm based on a steepest descent routine

(see SI [43] for details) to determine the set of coupling

strengths 𝛽 i, lens position d, and post-filtering sideband s

thatmaximize the overlap of the generated state |𝜓opt
p ⟩with

a given target light state. This is achieved by repeatedly

inserting Eqs. (13) into (12) (see Figure 5a). Specifically, the

optimization process runs over cs,… , cnmax+s while verify-

ing that the inclusion of additional coefficients does not

result in any significant changes.

As target states, we select the first nmax coefficients,

which define a maximum achievable target fidelity (black

solid lines in Figure 5b–d), for a squeezed vacuum

with 𝛼
targ

p,2n
∝ (− tanh r)n

√
(2n)!∕2nn!, a cat state 𝛼

targ
p,n ∝

⟨n|𝛼⟩[1+ ei𝜃(−1)n], and a triangular cat state with 𝛼
targ
n ∝

⟨n|𝛼⟩[1+ ein𝜃 + e2in𝜃] (see the first row of photonic Wigner

functions in Figure 5b–d). However, we remark that this

method is applicable to any set of coefficients 𝛼
targ
p,n .
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Figure 5: Lateral IELS patterning for electron energy coefficients optimization and quantum light generation. (a) Illustration of the steps employed for

tailored synthesis of quantum light states. A set of electron energy amplitudes are obtained from Eq. (12) to approximate the first nmax = 10

coefficients of a given target photonic state |𝜓 targ
p ⟩ and employed to optimize the design of the radial profile of the near-field used in an IELS stage

composed of M concentric rings each with corresponding coupling constant 𝛽 i . The most favorable design is supposed to provide the electron energy

coefficients producing the optimal light state |𝜓opt
p ⟩ that maximizes the fidelity |⟨𝜓 targ

p |𝜓opt
p ⟩|2. (b–d) Maximum achieved fidelity for M = 1, 2, 4, 6

concentric rings for different types of light states: a squeezed vacuum state with coefficient r (a), a cat state with real amplitude 𝛼 and phase 𝜃 = 𝜋∕2
(b), and a triangular cat state with real amplitude 𝛼 and 𝜃 = 2𝜋∕3 (c). The photonic Wigner functions on the top row correspond to target states while

the ones in the bottom to generated states in the configurations highlighted by the black circles in (b, c, d). A laser modulation frequency 𝜔L = 2𝜔0

and an electron-mode coupling strength 𝛽0 = 1 were used in (b) while𝜔L = 𝜔0 and 𝛽0 = 1.5 in (c, d).

For the squeezed vacuum, we achieve fidelities of

nearly 100 % for amounts of squeezing smaller than 𝛽0
by modulating the electron at twice the fundamental

frequency (𝜔L = 2𝜔0), which suppresses the emission of an

odd number of photons for even s, simplifying the opti-

mization. While this result is largely independent of the

number of sectors for small r, when the average number

of required photons exceeds 𝛽2
0
, we observe a significant

improvement in synthesizing the target state asM increases

(see Figure 5b). For cat and triangular cat states, the ability

of the coefficients in Eq. (13) to replicate 𝛼
targ
p,n improves dra-

matically with the addition of more circular sectors, raising

the fidelity from below 80 % for M = 1 to nearly 100 % for

M = 6 (see Figure 5c and d). Within the explored parameter

range, the optimal IELS couplings are confined to the range

0 ≲ |𝛽 i| ≲ 15 (in Figure 2 in the SI [43], we report their

values), while post-filtering probabilities range from 10 %

to 0.1 %, depending on whether ⟨𝜓 targ
p |n̂|𝜓 targ

p ⟩ is smaller or
larger than 𝛽2

0
, respectively.

In Figure 5, we chose to run our optimization algorithm

over the first nmax = 10 coefficients to ensure computational

efficiency. This limitation is reflected in the target fidelity

curve which does not reach 100 % in all cases and produces

target states that are not exact, as is the case of target

squeezed vacuum states with r > 1.

3 Discussion and concluding

remarks

In this work, we have presented a compact theoreti-

cal framework that enables the study of the light state

generated by the interaction of N pre-modulated electrons

with a single optical mode, within a specific subset of scat-

tering events selected by a final electron spectrometer (see

Figure 1).

We have demonstrated that, without final energy fil-

tering, the resulting light density matrix 𝜌p can exhibit

either Poissonian or super-Poissonian statistics due to inter-

electron photon exchange. However, its purity is strongly

constrained by the electron coherence, quantified by the

absolute value of the coherence factor (CF) Mi
k
, i.e., the

strength of the Fourier components of the single-electron

density 𝜌i
e
(z, z) (see Eq. (3)). Coherent N-electron pulses

shaped by a single IELS stage are capable of producing light

superradiantly while maintaining g(2)(0) ∼ 1, an effect that

can provide a means to probe small coupling strengths 𝛽0
frommeasurements of cathodoluminescence emissionwith

a tenfold reduction in shot noise (see Figure 2e).

To enhance the CF to approximately 95 %, we proposed

retaining only the electrons exiting a strong (|𝛽| ∼ 20) IELS

modulation with energies inside a specific window, which
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effectively compresses the e-beam temporally. The advan-

tage of this scheme, compared to others that combine lon-

gitudinal [25] or later IELS interactions [26], is that it relies

only on a single homogeneous IELS stage – a resource

increasingly common in ultrafast TEM – and an energy

filter, such as a Wien filter [81], placed before the sample

rather than after, as in energy-filtered EELS measurements

[82]. At optical frequencies, the optimal energy window is

approximately 20 eV (see Figure 3f), making the filtering

requirements less stringent than in such experiments. Using

this practical scheme for a single electron, we have shown

that coherent stateswith a purity of approximately 90 % can

be generated (see Figure 3f).

Wehave also examined how𝜌p, and the associated light

properties, are influenced by electron modulation when

post-filtering is applied to a specific kinetic energy win-

dow. Specifically, we found that electron coherence is now

quantified by the projected coherence factor (PCF) (see

Eq. (8)), where the electron density appearing in the CF

is replaced by the electron Wigner function Wi
e
(z, q) inte-

grated over a specific range of momenta. Since this range

is selected a posteriori, this result demonstrates how differ-

ent post-filtering windows can reveal information about a

specimen probed through various sub-cycle density modu-

lations. In terms of light state purity, we demonstrated that

for any electronmodulation yielding the energy coefficients

c𝓁 , a narrow post-filtering window produces a perfectly

separable state, even under stochastic electron illumina-

tion with random times of arrival, provided the electrons

have coherence times spanning several optical periods

(see Figure 3a).

By leveraging this result, we have demonstrated several

cases where quantum light can be harnessed using only a

single IELS stage. We showed how cat states can be gener-

ated without lateral patterning of the IELS field or disper-

sive electron compression, achieving ∼100 % fidelity with

probabilities exceeding 1 % (see Figure 4b and c). A practi-

cal realization of our proposed method should already be

within reach of state-of-the-art experimental setups, com-

bining near-unity quantum efficiency electron detectors

and photonic chips that have proved strong IELS modula-

tion with |𝛽| ≈ 40 using microresonators operated at mil-

liwatt optical powers [13]. In this context, photonic chips

integrating multiple optical microresonators with light in-

and out-coupling capabilities [83] offer the possibility to

condense modulation and synthesis stages into a single

photonic structure. While this approach requires sufficient

suppression of inter-stage optical crosstalk, it inherently

aligns the two interaction zones and eliminates differential

mechanical noise between them.

Furthermore, to synthesize other types of light states,

we proposed a scheme based on optimizing the c𝓁 coef-

ficients produced by an IELS interaction composed of M

concentric sectors (see Eq. (13)). Applying this approach to

the generation of squeezed vacuum, cat, and triangular cat

states, we demonstrated that M = 6 sectors are sufficient

to achieve their production with ∼99 % fidelity and prob-

abilities greater than 0.1 %, provided the required average

number of photons remains close to the Poissonian spon-

taneous emission value 𝛽2
0
. A first possible design aimed

at the production of these states with reasonable fidelity

might be realized using a two-sector (M = 2) platewith axial

symmetry, as shown in the sketch of Figure 5a. Specifically,

hybrid films composed of a dielectric layer coated with a

metallic film of varying thickness could be uniformly illu-

minated to produce the desired amplitude and phase of 𝛽1
and 𝛽2 [26]. Electron-light coupling in similar geometries,

consisting of apertures in gold films deposited on silicon

membranes, has been shown to yield IELS strengths ∼1 for
laser pulses with an average power of∼10 mW illuminating

areas of ∼0.1 μm2 [17]. Higher laser powers, constrained by

the damage threshold of the materials, or smaller interac-

tion areas are therefore required to generate |𝛽1|, |𝛽2| ≳ 3,

enabling electron pulses optimized to emit quantum light

containing a considerable number of photons (see Figure 2

in the SI [43]). In addition, careful consideration must be

given to the separation d between modulation and interac-

tion stages in relation to the Talbot distance (zT ∼ 156 mm

at Ee
0
= 100 keV energy and ℏ𝜔0 = 1.5 eV), which modulates

the quadratic phase in Eq. (13). Since optimal distances

are found to depend strongly on the specifics of the tar-

get photonic state, tunable quantum light sources intended

to generate different states require scattering structures

optimized over a broad range of frequencies and electron

velocities, allowing for adjustment of zT through the tuning

of these two parameters.

In all analyzed cases, the creation of light states with

strong quantum features, such as high squeezing orWigner

function negativity, requires a high average photon num-

ber, which in turn necessitates above-unity values of 𝛽0.

Recent experiments with electrons passing extended struc-

tures of about ∼100 μm in length reported photon gen-

eration in a dielectric waveguide at an average coupling

parameter of 𝛽0 ∼ 0.32 [40], and EELS at a hybrid metal-

dielectric multilayer structure corresponding to 𝛽0 ∼ 0.99

[49]. In addition, several works have explored the fun-

damental limits constraining 𝛽0 in free-flying trajectories

[84], [85], aiming to guide the search for higher coupling



1876 — V. Di Giulio et al.: Tunable quantum light by modulated free electrons

strengths, which are generally expected for longer inter-

action lengths [45]. Ultimately limited by electron diffrac-

tion, other proposals have suggested ponderomotive trans-

verse confinement of electrons to mitigate beam expansion

[86]. In the current optimization scheme (Figure 5a), the

electron coefficients maintain the form reported in Eq. (13)

only over a distance of approximately 𝜆e∕NA2, suggesting
small numerical apertures at high energies such as NA ∼
2 × 10−4 at Ee

0
= 100 keV. Alternatively, at lower kinetic

energies and for larger numerical apertures, infrared plas-

monic resonances with dimensions D on the order of tens

of nanometers, such as those found in nanostructured two-

dimensional materials [45], [87], [88], may be preferred.

Since D ∼ 1∕k0, this conclusion is further supported by the
phase-matching condition 𝜔0∕k0𝑣 ∼ 1, which suggests low

electron velocities for small-sized structures. If the c𝓁 varia-

tion in the spontaneous-emission zone continues to repre-

sent a problem, its effect could be mitigated by explicitly

incorporating the spatial dependence of the coefficients into

the optimization process.

Another possibility to increase the bare coupling

strength 𝛽0 is offered by the application of the optimization

scheme to N-electron pulses, leveraging the superradiant

enhancement to achieve an effective coupling strength of

N𝛽0. In practice, such implementation only requires Eq. (7)

in the 𝜎t𝜔0 ≫ 1 and exact post-filtering limits, available in

the SI [43], in order to compute the fidelity between target

and emitted light states. The exploration of this approach is

left for future work.

The analysis presented here marks a fundamental

step toward a more complete understanding of N-electron

emission into free space and photonic structures under

general coupling conditions. Our findings pave the way

for superradiance-enhanced cathodoluminescence mea-

surements and the practical realization of tunable sources

of complex quantum light in photonic devices, with poten-

tial applications in electron-based low-dose spectroscopy as

well as in quantum metrology and imaging.

Acknowledgments: We thank Hao Jeng, Aviv Karnieli,

and F. Javier García de Abajo for helpful and enjoyable

discussions.

Research funding: This work has been supported in part by

the European project EBEAM (ID: 101017720).

Author contributions: VDG and CR provided the ideas. VDG

developed the theory, performed the simulations, and pro-

duced the figures. All authors discussed the results and

interpretation. VDG wrote the manuscript, with contribu-

tions and input from RH and CR. All authors have accepted

responsibility for the entire content of this manuscript and

consented to its submission to the journal, reviewed all the

results and approved the final version of the manuscript.

Conflict of interest: The authors state no conflict of interest.

Data availability: Data sharing is not applicable to this arti-

cle as no datasets were generated or analyzed during the

current study.

References

[1] O. L. Krivanek, et al., “Vibrational spectroscopy in the electron

microscope,” Nature, vol. 514, no. 7521, p. 209, 2014,.

[2] F. S. Hage, D. M. Kepaptsoglou, Q. M. Ramasse, and L. J. Allen,

“Phonon spectroscopy at atomic resolution,” Phys. Rev. Lett.,

vol. 122, no. 1, p. 016103, 2019,.

[3] J. Nelayah, et al., “Mapping surface plasmons on a single metallic

nanoparticle using sub-nm resolved EELS spectrum-imaging,”

Microsc. Microanal., vol. 13, p. 144, 2007.

[4] U. Hohenester, H. Ditlbacher, and J. R. Krenn,

“Electron-energy-loss spectra of plasmonic nanoparticles,” Phys.

Rev. Lett., vol. 103, no. 4, p. 106801, 2009,.

[5] H. Duan, A. I. Fernández-Domínguez, M. Bosman, S. A. Maier, and

J. K. W. Yang, “Nanoplasmonics: classical down to the nanometer

scale,” Nano Lett., vol. 12, no. 3, p. 1683, 2012.

[6] J. Krehl, et al., “Spectral field mapping in plasmonic nanostructures

with nanometer resolution,” Nat. Commun., vol. 9, no. 1, p. 4207,

2018,.

[7] N. Li, et al., “Direct observation of highly conned phonon

polaritons in suspended monolayer hexagonal boron nitride,” Nat.

Mater., vol. 20, no. 1, p. 43, 2021.

[8] D. T. L. Alexander, V. Flauraud, and F. Demming-Jansen, “Near-field

mapping of photonic eigenmodes in patterned silicon nanocavities

by Electron Energy-Loss Spectroscopy,” ACS Nano, vol. 15, no. 10,

p. 16501, 2021.

[9] F. J. García de Abajo, “Optical excitations in electron microscopy,”

Rev. Mod. Phys., vol. 82, no. 1, p. 209, 2010,.

[10] O. L. Krivanek, et al., “Progress in ultrahigh energy resolution

EELS,” Ultramicroscopy, vol. 203, p. 60, 2019,.

[11] B. Barwick, D. J. Flannigan, and A. H. Zewail, “Photon-induced

near-field electron microscopy,” Nature, vol. 462, no. 7275, p. 902,

2009,.

[12] S. T. Park, M. Lin, and A. H. Zewail, “Photon-induced near-field

electron microscopy (PINEM): theoretical and experimental,” New

J. Phys., vol. 12, no. 12, p. 123028, 2010,.

[13] J.-W. Henke, et al., “Integrated photonics enables

continuous-beam electron phase modulation,” Nature, vol. 600,

no. 7890, p. 653, 2021,.

[14] Y. Kurman, et al., “Spatiotemporal imaging of 2D polariton wave

packet dynamics using free electrons,” Science, vol. 372, no. 6547,

p. 1181, 2021,.

[15] Y. Auad, et al., “μeV electron spectromicroscopy using free-space
light,” Nat. Commun., vol. 14, no. 1, p. 4442, 2023,.

[16] J. H. Gaida, et al., “Attosecond electron microscopy by free-electron

homodyne detection,” Nat. Photonics, vol. 18, no. 5, p. 509, 2024,.

[17] S. Meuret, H. Lourenço-Martins, W. Sébastien, F. Houdellier, and A.

Arnaud, “Photon-induced near-field electron microscopy of

nanostructured metallic films and membranes,” ACS Photonics,

vol. 11, no. 3, p. 977, 2024.



V. Di Giulio et al.: Tunable quantum light by modulated free electrons — 1877

[18] Y. Yang, et al., “Free-electron interaction with nonlinear optical

states in microresonators,” Science, vol. 383, no. 6679, p. 168, 2024.

[19] A. Feist, K. E. Echternkamp, J. Schauss, S. V. Yalunin, S. Schäfer, and

C. Ropers, “Quantum coherent optical phase modulation in an

ultrafast transmission electron microscope,” Nature, vol. 521,

no. 7551, p. 200, 2015,.

[20] G. M. Vanacore, et al., “Ultrafast generation and control of an

electron vortex beam via chiral plasmonic near fields,” Nat. Mater.,

vol. 18, no. 6, p. 573, 2019,.

[21] Y. Fang, J. Kuttruff, D. Nabben, and P. Baum, “Structured electrons

with chiral mass and charge,” Science, vol. 385, no. 6705, p. 183,

2024,.

[22] K. E. Priebe, et al., “Attosecond electron pulse trains and quantum

state reconstruction in ultrafast transmission electron

microscopy,” Nat. Photonics, vol. 11, no. 12, p. 793, 2017,.

[23] M. Kozák, N. Schönenberger, and P. Hommelhoff, “Ponderomotive

generation and detection of attosecond free-electron pulse

trains,” Phys. Rev. Lett., vol. 120, no. 10, p. 103203, 2018,.

[24] Y. Morimoto and P. Baum, “Diffraction and microscopy with

attosecond electron pulse trains,” Nat. Phys., vol. 14, no. 3, p. 252,

2018,.

[25] S. V. Yalunin, A. Feist, and C. Ropers, “Tailored high-contrast

attosecond electron pulses for coherent excitation and scattering,”

Phys. Rev. Res., vol. 3, no. 3, p. L032036, 2021,.

[26] F. J. García de Abajo and C. Ropers, “Spatiotemporal electron beam

focusing through parallel interactions with shaped optical fields,”

Phys. Rev. Lett., vol. 130, no. 24, p. 246901, 2023,.

[27] D. Nabben, J. Kuttruff, L. Stolz, A. Ryabov, and P. Baum,

“Attosecond electron microscopy of sub-cycle optical dynamics,”

Nature, vol. 619, no. 7968, p. 63, 2023,.

[28] T. Bucher, et al., “Free-electron Ramsey-type interferometry for

enhanced amplitude and phase imaging of nearfields,” Sci. Adv.,

vol. 9, no. 51, p. eadi5729, 2023,.

[29] O. Kfir, “Entanglements of electrons and cavity photons in the

strong-coupling regime,” Phys. Rev. Lett., vol. 123, no. 10, p. 103602,

2019,.

[30] V. Di Giulio and F. J. García de Abajo, “Free-electron shaping using

quantum light,” Optica, vol. 7, no. 12, p. 1820, 2020.

[31] R. Dahan, et al., “Imprinting the quantum statistics of photons on

free electrons,” Science, vol. 373, no. 6561, p. eabj7128, 2021,.

[32] V. Di Giulio, M. Kociak, and F. J. García de Abajo, “Probing quantum

optical excitations with fast electrons,” Optica, vol. 6, no. 12,

p. 1524, 2019,.

[33] A. Karnieli and S. Fan, “Jaynes-Cummings interaction between

low-energy free electrons and cavity photons,” Sci. Adv., vol. 9,

no. 22, p. eadd2349, 2023,.

[34] J. Abad-Arredondo and A. I. Fernández-Domínguez,

“Electron-assisted probing of polaritonic light{matter states,”

Nanophotonics, vol. 13, no. 11, p. 2015, 2024.

[35] F. J. García de Abajo, et al., arXiv preprint arXiv:2409.11300, 2025.

[36] A. B. Hayun, O. Reinhardt, J. Nemirovsky, A. Karnieli, N. Rivera, and

I. Kaminer, “Shaping quantum photonic states using free

electrons,” Sci. Adv., vol. 7, no. 11, p. eabe4270, 2021.

[37] V. Di Giulio and F. J. García de Abajo, “Optical-cavity mode

squeezing by free electrons,” Nanophotonics, vol. 11, no. 21,

p. 4659, 2022.

[38] X. M. Bendaña, A. Polman, and F. J. García de Abajo,

“Single-photon generation by electron beams,” Nano Lett., vol. 11,

no. 12, p. 5099, 2011,.

[39] A. Feist, et al., “Cavity-mediated electron-photon pairs,” Science,

vol. 377, no. 6607, p. 777, 2022,.

[40] G. Arend, et al., arXiv preprint arXiv:2409.11300, 2024.

[41] D. Gottesman, A. Kitaev, and J. Preskill, “Encoding a qubit in an

oscillator,” Phys. Rev. A, vol. 64, no. 1, p. 012310, 2001,.

[42] R. Dahan, G. Baranes, A. Gorlach, R. Ruimy, N. Rivera, and I.

Kaminer, “Creation of optical cat and GKP states using shaped free

electrons,” Phys. Rev. X , vol. 13, no. 3, p. 031001, 2023,.

[43] See Supplementary Information for further details.

[44] V. Di Giulio, O. Kfir, C. Ropers, and F. J. García de Abajo,

“Modulation of cathodoluminescence emission by interference

with external light,” ACS Nano, vol. 15, no. 4, p. 7290, 2021,.

[45] V. Di Giulio, E. Akerboom, and A. P. F. J. García de Abajo, “Toward

optimum coupling between free electrons and conned optical

modes,” ACS Nano, vol. 18, no. 22, p. 14255, 2024.

[46] V. Di Giulio and F. J. García de Abajo, “Electron diffraction by

vacuum fluctuations,” New J. Phys., vol. 22, no. 10, p. 103057, 2020,.

[47] J.-W. Henke, H. Jeng, M. Sivis, and C. Ropers, arXiv preprint

arXiv:2504.13047, 2025.

[48] O. Kfir, et al., “Controlling free electrons with optical

whispering-gallery modes,” Nature, vol. 582, no. 7810, p. 46, 2020,.

[49] Y. Adiv, et al., “Observation of 2D Cherenkov radiation,” Phys. Rev.

X , vol. 13, no. 1, p. 011002, 2023,.

[50] F. Aguilar, H. Lourenço-Martins, D. Montero, X. Li, M. Kociak, and A.

Campos, “Selective probing of longitudinal and transverse

plasmon modes with electron phase-matching,” J. Phys. Chem. C,

vol. 127, no. 45, p. 22252, 2023.

[51] E. Akerboom, V. Di Giulio, N. J. Schilder, F. J. García de Abajo, and A.

Polman, “Free electron−plasmon coupling strength and near-field
retrieval through electron energy-dependent

cathodoluminescence spectroscopy,” ACS Nano, vol. 18, no. 21,

p. 13560, 2024,.

[52] S. Meier, J. Heimerl, and P. Hommelhoff, “Few-electron

correlations after ultrafast photoemission from nanometric needle

tips,” Nat. Phys., vol. 19, no. 10, p. 1402, 2023,.

[53] R. Haindl, V. Di Giulio, A. Feist, and C. Ropers, arXiv preprint

arXiv:2412.11929, 2024.

[54] S. Kumar, et al., “Strongly correlated multielectron bunches from

interaction with quantum light,” Sci. Adv., vol. 10, no. 19,

p. eadm9563, 2024.

[55] A. Karnieli, N. Rivera, A. Arie, and I. Kaminer, “Superradiance and

subradiance due to quantum interference of entangled free

electrons,” Phys. Rev. Lett., vol. 127, no. 6, p. 060403, 2021,.

[56] R. Haindl, et al., “Coulomb-correlated electron number states in a

transmission electron microscope beam,” Nat. Phys., vol. 19, no. 10,

p. 1410, 2023,.

[57] F. J. García de Abajo and V. Di Giulio, “Optical excitations with

electron beams: challenges and opportunities,” ACS Photonics,

vol. 8, no. 4, p. 945, 2021,.

[58] O. Kfir, V. Di Giulio, F. J. García de Abajo, and C. Ropers, “Optical

coherence transfer mediated by free electrons,” Sci. Adv., vol. 7,

no. 18, p. eabf6380, 2021,.

[59] H. Schwarz and H. Hora, “Modulation of an electron wave by a

light wave,” Appl. Phys. Lett., vol. 15, no. 11, p. 249, 1969.

[60] A. Gover, “Superradiant and stimulated-superradiant emission in

prebunched electron-beam radiators. I. Formulation,” Phys. Rev. ST

Accel. Beams, vol. 8, no. 3, p. 030701, 2005,.

[61] A. Gover, E. Dyunin, Y. Lurie, Y. Pinhasi, and M. V. Krongauz,

“Superradiant and stimulated-superradiant emission in



1878 — V. Di Giulio et al.: Tunable quantum light by modulated free electrons

prebunched electron-beam radiators. II. Radiation enhancement

schemes,” Phys. Rev. ST Accel. Beams, vol. 8, no. 3, p. 030702,

2005,.

[62] W. P. Leemans, et al., “Observation of terahertz emission from a

laser-plasma accelerated electron bunch crossing a plasma-

vacuum boundary,” Phys. Rev. Lett., vol. 91, no. 7, p. 074802, 2003.

[63] R. Bonifacio and F. Casagrande, “Classical and quantum treatment

of amplifier and superradiant free-electron laser dynamics,” J. Opt.

Soc. Am. B, vol. 2, no. 1, p. 250, 1985,.

[64] R. Bonifacio, F. Casagrande, and C. Pellegrini, “Preface,” Nucl.

Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc.

Equip., vol. 239, no. 1, p. 36, 1985,.

[65] H. P. Freund and T. M. Antonsen, Jr., Principles of Free Electron

Lasers, Cham, Switzerland, Springer, 2018.

[66] Z. Zhao, X.-Q. Sun, and S. Fan, “Quantum entanglement and

modulation enhancement of free-electron−bound-electron
interaction,” Phys. Rev. Lett., vol. 126, no. 23, p. 233402, 2021,.

[67] B. Zhang, et al., “Spontaneous photon emission by shaped

quantum electron wavepackets and the QED origin of bunched

electron beam superradiance,” Rep. Prog. Phys., vol. 88, no. 1,

p. 017601, 2024,.

[68] E. Wigner, “On the quantum correction for thermodynamic

equilibrium,” Phys. Rev., vol. 40, no. 5, p. 749, 1932,.

[69] S. T. Park, O.-H. Kwon, and A. H. Zewail, “Chirped imaging pulses in

four-dimensional electron microscopy: femtosecond pulsed hole

burning,” New J. Phys., vol. 14, no. 5, p. 053046, 2012,.

[70] F. O. Kirchner, A. Gliserin, F. Krausz, and P. Baum, “Laser streaking

of free electrons at 25 keV,” Nat. Photonics, vol. 8, no. 1, p. 52, 2014,.

[71] A. Feist, et al., “Ultrafast transmission electron microscopy using a

laser-driven field emitter: femtosecond resolution with a high

coherence electron beam,” Ultramicroscopy, vol. 176, p. 63, 2017,.

[72] L. Mandel and E. Wolf, Optical Coherence and Quantum Optics,

Cambridge, Cambridge University Press, 1995.

[73] M. Chergui and A. H. Zewail, “Electron and X-ray methods of

ultrafast structural dynamics: advances and applications,”

ChemPhysChem, vol. 10, no. 1, p. 28, 2009,.

[74] P. K. Suri and D. J. Flannigan, “Probing structural and electronic

dynamics with ultrafast electron microscopy,” Chem. Mater., vol. 27,

no. 9, p. 3178, 2015,.

[75] P. Baum, “Quantum dynamics of attosecond electron pulse

compression,” J. Appl. Phys., vol. 122, no. 22, p. 223105, 2017,.

[76] Y. Aharonov, D. Z. Albert, and L. Vaidman, “How the result of a

measurement of a component of the spin of a spin-1/2 particle can

turn out to be 100,” Phys. Rev. Lett., vol. 60, no. 14, p. 1351, 1988,.

[77] R. Dahan, et al., “Resonant phase-matching between a light wave

and a free-electron wavefunction,” Nat. Phys., vol. 16, no. 11,

p. 1123, 2020,.

[78] M. Kozák, T. Eckstein, N. Schönenberger, and P. Hommelhoff,

“Inelastic ponderomotive scattering of electrons at a

high-intensity optical travelling wave in vacuum,” Nat. Phys.,

vol. 14, no. 2, p. 121, 2018,.

[79] A. Konečná, V. Di Giulio, V. Mkhitaryan, C. Ropers, and F. J. García

de Abajo, “Nanoscale nonlinear spectroscopy with electron

beams,” ACS Photonics, vol. 7, no. 5, p. 1290, 2020,.

[80] O. Reinhardt and I. Kaminer, “Theory of shaping electron

wavepackets with light,” ACS Photonics, vol. 7, no. 10, p. 2859, 2020,.

[81] K. Tsuno and D. Ioanoviciu, Chapter Six − Application of Wien Filters

to Electrons, vol. 176, Amsterdam, Elsevier, 2013.

[82] J. Verbeeck, D. Van Dyck, and G. Van Tendeloo, “Energy-filtered

transmission electron microscopy: an overview,” Spectrochim. Acta

B Atom Spectrosc., vol. 59, no. 10, p. 1529, 2004,.

[83] F. A. Sabattoli, et al., “A silicon source of frequency-bin entangled

photons,” Opt. Lett., vol. 47, no. 23, p. 6201, 2022,.

[84] Z. Xie, et al., “Maximal quantum interaction between free electrons

and photons,” Phys. Rev. Lett., vol. 134, no. 4, p. 043803, 2025.

[85] Z. Zhao, “Upper bound for the quantum coupling between free

electrons and photons,” Phys. Rev. Lett., vol. 134, no. 4, p. 043804,

2025,.

[86] A. Karnieli, C. Roques-Carmes, N. Rivera, and S. Fan, “Strong

coupling and single-photon nonlinearity in free-electron quantum

optics,” ACS Photonics, vol. 11, no. 8, p. 3401, 2024,.

[87] H. Yan, et al., “Damping pathways of mid-infrared plasmons in

graphene nanostructures,” Nat. Photonics, vol. 7, no. 5, p. 394,

2013,.

[88] R. Yu, J. D. Cox, J. R. M. Saavedra, and F. J. García de Abajo,

“Analytical modeling of graphene plasmons,” ACS Photonics, vol. 4,

no. 12, p. 3106, 2017,.

Supplementary Material: This article contains supplementary material

(https://doi.org/10.1515/nanoph-2025-0040).

https://doi.org/10.1515/nanoph-2025-0040

	1 Introduction
	2 Results and discussion
	2.1  Output light density matrix after interaction with N electrons
	2.2 Light-state purity and electron coherence
	2.3 Natural synthesis of cat states by IELS electrons
	2.4 On-demand quantum light generation by lateral IELS

	3 Discussion and concluding remarks


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (Euroscale Coated v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.7
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 35
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1000
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.10000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError false
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /DEU <>
    /ENU ()
    /ENN ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName (ISO Coated v2 \(ECI\))
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName <FEFF005B0048006F006800650020004100750066006C00F600730075006E0067005D>
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 8.503940
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /UseName
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [595.276 841.890]
>> setpagedevice


