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Abstract: The development of on-chip optical frequency
comb devices paves the way for novel applications in envi-
ronmental tracking, fast ranging and smart communication
solutions. Recently, a new type of frequency comb device,
based on a modulated ring quantum cascade laser, was
introduced and demonstrated. Here we present a rigorous
theoretical study of this type of device, also known as the
quantum walk comb laser. We show that resonant phase
modulation of a fast gain laser with a dispersive circu-
lar cavity is sufficient to support a broadband comb. This
method requires the gain to have a sufficiently fast recovery
time to support quasi-instantaneous suppression of inten-
sity fluctuations. When this condition is met, the modulation
leads to quantum walk dynamics, and then to stabilization
onto a stable and controllable frequency comb. We show
this type of dynamics through simulations using realistic
parameters and reveal the impact of higher-order contribu-
tions from gain and dispersion. We also study the resilience
of this type of mode-locked laser to noise injection and show
its superiority to that of active mode-locking. We believe that
this work will allow the development of comb devices with
high wall-plug efficiency, arbitrary output spectral shaping
and increased stability properties.

Keywords: laser science; photonic lattices; mode-locked
lasers

1 Introduction

Optical frequency comb source miniaturization [1] holds the
promise to significantly impact metrology [2]-[5], commu-
nications [6]-[8], and ranging [9], [10]. The first requirement
of such sources is to produce spectrally broad light with
perfectly spaced frequencies while on-chip. For practical
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reasons, additional constraints, such as wall plug efficiency
and fabrication costs, impact their development [1], [11].
The production of frequency comb devices that fulfill these
requirements will introduce an industrial advancement,
driving energy efficient sources for dense wavelength com-
munication channels, novel LIDAR schemes and molecular
detection applications that can fit in your hand. To make
frequency comb sources compact and useful, we are com-
pelled to obtain fine control over the nonlinear processes
that govern the broadening of the spectrum.

The mechanisms that generate optical frequency combs
are typically divided into a few types, which mainly depend
on whether the gain of the laser source and the nonlinear
proliferation mechanism of the multiple frequency modes
share the same space. From a practical point of view, this
difference sets a condition on whether the system can be
monolithically fabricated or must use hybrid integration of
a laser source and a passive nonlinear chip. With bounds
on the strength of nonlinear processes [12], the wall plug
efficiencies of such processes differ as well. While integrated
devices enjoy highly broadband processes with low loss [11],
[13]-[15], the monolithic structures benefit from directly
pumping the many spectral lines of the frequency comb and
reaching overall high power-conversion efficiency [16]-[22].

An additional difference lies in the mathematical
description of the energy source. This becomes evident in
the equation typically used to describe ultrafast optics, the
complex Ginzburg-Landau equation (CGLE) [23], which is
based on a slowly varying envelope in a copropagating
frame with the intracavity light. The difference between
monolithic and integrated frequency comb devices is in the
power source term in the equation, with either a coherent
pump that injects photons with the same frequency and
phase, or an incoherent pump that appears as a gain term,
typically with saturation that depends on intensity [24]. It
has been shown that incoherent pumping terms in a CGLE
equation can lead to stabilization in highly excited states,
with demonstrations in exciton—polariton cavities [25], [26]
or vertical cavity surface emitting lasers [27].

The physical process that gives rise to incoherent
pumping is determined by the relative response of the
gain saturation [28]. When the response is fast enough, the
incoherent pump term is local in the copropagating frame,
suppressing fluctuations on very fast time scales. The fast
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suppression mechanism provides the intracavity light with
the properties of a liquid [29], which lead to increased coher-
ent flows, but also the disfavoring of pulses [30]. This is in
contrast to the majority of the current techniques to produce
frequency combs that are amplitude-modulated, exhibiting
pulses in time [14], [31], [32]. For a sufficiently fast incoher-
ent pump, the amplitude is prevented from modulation in
time, keeping a quasi-constant intensity, while the phase
starts taking on a dynamical role and evolves to produce a
frequency comb output [33]. Although the mechanisms that
are responsible for the fast processes can vary, the impact
is similar — quasi-instantaneous suppression of intensity
fluctuations [29]. Only recently, it was shown that such
sources can produce an optical frequency comb with per-
fectly spaced frequencies [16], [30] and constant phase rela-
tions that allow for compression of the signal to short pulses
[34]. The material platforms that show such formation of
frequency-modulated combs span from quantum cascade
lasers (QCLs) and interband cascade lasers [16], [17], [35],
to quantum dash [20], [21], quantum dot [19], [22] and also
quantum well lasers [18], demonstrating the universality of
the regime.

Although it is agreed that the mechanism that locks
the modes is the incoherent pump term that results from
fast gain saturation, only recently the modeling of fast-
gain lasers revealed an explanation for mode prolifera-
tion [36]-[38]. The difficulty here was in identifying the
nonlinearities which act to couple frequencies while the
intensity of the signal remains constant. For example, a
nonlinearity such as the Kerr nonlinearity that depends
on the amplitude would only produce an overall trivial
phase velocity change that does not broaden the signal,
e.g. iE «x I(z)E = I,E, where E is the field, I(z) = |E|* and
I, is a constant intensity value. Therefore, the required
nonlinearity is expected to depend on other quantities, for
example the phase of the signal, which is free to vary.
Indeed, it was found that in Fabry—Perot semiconductor
lasers, the counter-propagating waves interfere to form
gain grating (spatial hole burning) that produces four-wave-
mixing (FWM) in the form called cross steepening [36], [39].
Effectively, this introduces FWM that depends on the phase
of the signal, e.g. i  ¢E, where ¢p = arg(E), that self-starts
a frqeuency comh. However, this spontaneous process nat-
urally lacks control over the final state, while also having
an ambiguity in the relative delay inside the optical cycle,
which amounts to instabilities and enhanced noise.

In this work, we develop a model for optical frequency
comb generation from an incoherently pumped monolithic
laser that is modulated to produce highly controllable and
stable broadband spectra [40], [41]. We significantly reduced
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backscattering to avoid competing proliferation processes
that lead to instabilities. By resonant modulation of the cav-
ity, we couple the longitudinal modes and generate coherent
proliferation and expansion in the frequency domain. At the
end of the expansion process, the incoherent pump locks the
output onto a broadband state, with a spectral bandwidth
that is defined by the modulation depth and cavity disper-
sion. This method to generate frequency combs presents
opportunities for highly stable, controllable and efficient
frequency comb sources on a chip.

2 Modulated fast-gain ring-laser
model

We consider a laser in a ring cavity configuration with cir-
cumference L and negligible backscattering of the propa-
gating light [42] (Figure 1(a)). We assume there is only one
transverse mode allowed, but multiple longitudinal modes
that can potentially lase simultaneously. The laser cavity
carries losses «,,,, dispersion k; and has a saturation inten-
sity I,. When the laser is electrically pumped, the light
exhibits a small signal gain of g, and a parabolic gain spec-
tral shape with a width T, determining a quadratic increase
in loss relative to the central frequency. When pumped,
the laser supports single-mode operation at the wavelength
with the highest gain, which is given by the medium, and
thus we define it as the zeroth mode with phase velocity c.
In the absence of nonlinearities in the material, the single-
mode solution is stable, therefore leading to monochromatic
lasing.

At time ¢t =0, we start to resonantly modulate the
current in a section of the laser, thereby generating
a spatiotemporal gain variation of the form g, (x,t) =
Y a, cos(nkx) cos(Qt + ¢, ), where Q is the modulation fre-
n

quency, K = 2z /L is the wavenumber of the fundamen-
tal mode, and a, and ¢, are the excited amplitudes and
phases of the low-frequency cavity modes n (Figure 1(a)). In
principle, resonant modulation at Q, = Kc should produce
a, > a, Vn > 1. The gain modulation produces an ampli-
tude modulation on top of a quasi-constant signal. When
the modulation is deeply close to the threshold and the
dynamics of the gain become critical [43], [44], it is possible
to reach a pulsed output, a regime we avoid in this study.
Moderate modulation alone is inefficient in mode prolifera-
tion, leading to negligible intermode coupling. However, the
linewidth enhancement factor (LEF) & [45], [46] is responsi-
ble for additional phase terms that depend on the gain and
the amplitude of the modulation. Consequently, the applied
amplitude modulation of the gain is converted to phase
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Figure 1: The evolution of the lasing state in an active modulated ring cavity. (a) System schematics of a fast-gain modulated ring laser. The laser

is modulated in a section with frequency €, which produces mode proliferation. The fast gain is responsible for stabilizing the system so that

the emission is coherent and broadband. (b)-(d) Evolution of the field amplitude in the unitless cavity space # using Eq. (3), for f # 0 in three cases:
(b) in the absence of stabilization mechanisms, I, - o0, T, = 0, where the field develops with uncorrelated dynamics; (c) when gain curvature stabil-
izes the system, I, — oo, T, # 0, which results in a narrow signal in time, and (d) when fast-gain is present, i.e. I, is finite, and the intensity remains
quasi-constant and stable. The units of time are normalized to T, = 1/\/5, the expansion time of the system. (e)-(g) Lattices describing the coupling
and complex potentials in the modal space, and their evolution in the modal space starting from a single mode. (e) Contains only phase modulation,
causing coupling, which results in a quantum walk and a ballistic expansion, (f) includes parabolic dispersion, showing uncorrelated dynamics
corresponding to (b), and (g) also contains gain curvature, which is a dissipative mechanism that leads to a narrow spectral state, corresponding to (c).
While coupling sets the expansion rate, the dispersion f dictates a bandwidth limitation. (h) The principle of a modulated cavity with fast gain, forcing
a quasi-constant intensity I(n) (left). The signal exhibits the phase modulation as an underlying potential V(), with a span of 4C. The evolution shows
ballistic expansion and then locking onto the broadest available bandwidth by the coupling and dispersion (right), corresponding to (d).

modulation through the non-zero LEF, resulting in much
more efficient side-mode proliferation. We incorporate the
modulation in the model by translating the gain variation
to a phase modulation of the form M(x, t) = ag,(x, ), as
keeping amplitude modulation indeed did not change signif-
icantly the result but made the calculation heavier numer-
ically. We also neglect the Kerr nonlinearity added by the
LEF as well as higher-order processes induced by the LEF, as
the intensity follows mostly the modulated gain signal with-
out substantial intensity variation that can be translated to
independent phase dynamics. The master equation of the
complex field that describes the dynamics in this system,
derived from Maxwell-Bloch equations [36], [37], [47], is
then

10E  OF _ 1, &°E
cot Tox = [g0 (1-I0, /1) w]E+12k T
+ %gOTZZgE + iM(x, . )

To describe the evolution of the field in a single
coordinate of time, reaching a CGLE form, we shift
to a copropagating frame of the optical signal by
using z=x-—ct and 7=x/c, and set Q,=Kc.
Using the longitudinal optical modes of the circular
cavity, the field in the lab frame is described by
Epp(t, ) = e@t=hoX 3 A (1)eim&t—imx - and in  the
copropagating frame of z and = by E(z, 7) = Y A, (t)e" MKz,
where A,, are the slowly varying amplitudes of modes with
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resonant optical frequencies. The modulation term takes
the form

M(z,7) = %Zan [cos((n€, + Q)7 —zQ/c+ ¢,)

+cos((nQ, — Q) +2Q/c— ¢,)]. ()]

In this case, the coupling between the modes will
require a phase-matching term of the form ~ e with
l € Z. Therefore, for near-resonant modulation, Q =
Q, + AQ, with detuning AQ « Q, and under a rotating
wave approximation, the modulation term is reduced to
M,(z,7) = Ja; cos(Kz — AQz — ¢;). Notice that we have

assumed cos (Kz + @> = c0s(Kz), due to the assumption

that 2 T 2 < 1. The resulting equation takes the following
CGLE form
OE _1 0? E
5 = [g0(1 1/L) w]E+l ﬂKZ
20
+ ch -+ icM,(n, T)E, 3

where used dispersion as § = k,c3, the gain curvature
& = & T:c% and the corotating coordinate # = Kz — AQr.
Figure 1(b)-(d) show the evolution over time 7 in space
n of the state E(y, 7), starting from a single mode m =0
for three different cases while f # 0. For the simulation
in this work, we have used realistic parameters, given in
Appendix D. When I; - oo and T, — 0 (Figure 1(b)), the
equation is linear and behaves like a Hermitian system
but lacks a stabilization mechanism. The dephasing of the
eigenmodes excited by the initial state leads to uncorrelated
dynamics. When T, is finite (Figure 1(c)), the dissipative
gain curvature, gCKZ, acts as a stabilization mechanism,
and together with the modulation M,, induces a gaussian
state in time, as predicted in active mode-locking processes
[48]. Finally, when I, is finite (Figure 1(d)), the fast-gain
acts as the main stabilization mechanism and maintains
a quasi-constant intensity state. Although the picture in
the cavity space provides signatures of stability, the evo-
lution of such a system is more intuitively described in
the frequency domain. Specifically, as the modulation intro-
duces direct coupling between longitudinal modes, in the
following we will analyze the quantum walk comb laser
dynamics through a modal space picture. We note that the
modes are almost equally spaced and nearest neighbors
are coupled by modulation, which can be mapped to a
“tight binding” model of a lattice in a synthetic frequency
space.
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3 Active photonic lattice
in a synthetic dimension

To provide intuition for the dynamics of Eq. (3), we consider
the mode coupling that M, introduces. Therefore, we will
now describe the system from the point of view of a lattice in
the frequency domain, which we call a synthetic dimension.
We use this terminology, as this is related to a whole field
of light manipulation in linear systems [49], and that has
the potential to revolutionize mode-locked sources [50]. We
ascribe a lattice location index m to frequency f; + mf,
and equivalently through a discrete Fourier transform, we
derive a set of equations for the linear part of the modes’
evolution using the aforementioned ansatz for E(z, 7):

A, = % PMPK2A,, — i% &M K*A,,

+ icoca1 (Apsre™ 87 + A2, @

where aq, is the relevant modulation amplitude defined
above, and z coordinate is shifted to nullify ¢; and keep the
sign of the coupling positive, so that z - z — (q’)l + 7[) /K.
We use D = %ﬂKZ, G.= %chz, C= icaal, and the ansatz
A,, = B,,e™ to get
iB,, = Dm*B,, + AmB,, + i(Gy — G.m*)B,, + C(Byy1 + Bpy),
6)]
which describes linear dynamics in the modal space with
coupling C (Figure 1(e), left), an effective quadratic potential
Dm? (Figure 1(f), left) with a linear bias Am, gain Gy, =
(g-,,)c/2, and quadratic loss G.m? (Figure 1(g), left). The
following present dynamics that depend on the different
elements of this system. In Figure 1(e)—(g), we present the
dynamics in the unbiased modal space lattice, i.e. A =0,
with D=G,=0,D#0,G,=0 and D # 0,G, # 0, respec-
tively, where Figure 1(f) and (g) correspond to Figure 1(c)
and (d). Figure 1(e) shows the well-known pattern of a quan-
tum walk [51]-[55], the quantum analogue of the random
walk, where the traveling particle also has phase. In this
case the intensity remains flat, E(n, 7) = E;, throughout
the whole evolution. However, when dispersion is present
(Figure 1(f)), D # 0, we observe a bound on the maximally
accessible frequency bandwidth and dephasing of the state.
When gain curvature is added (Figure 1(g)), G, # 0, the state
locks onto a Gaussian state, much narrower than the limit
set by the dispersion. Gain curvature causes the state to
narrow down in the modal space and a strong amplitude
change in the real space (Figure 1(c)).
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We can now add the nonlinear term of the gain satu-
ration to the equation. This term is represented as a local
operator in the real space, clamping the intensity to a certain
value, i.e. I(n) ~ I;, and suppressing intensity fluctuations
faster than all other timescales (Figure 1(h), left). We note
that the modulation occurs in the same effective space, 7,
generating an effective potential V(#, 7) < M, (1, 7). How-
ever, in the modal space, the gain saturation becomes a
long-range dissipative term, which we describe using the
following form

iB=HB- iy?NL(fa), ©6)
where we define H as the linear operator of the right-hand
side of Eq. (5), and y = % goc/I,. Here, the fast gain satura-

tion term f-‘NL = EE*E is of a four wave mixing nature [30],
[56], [57], and can be written as Fy; ,, = 2611 m— ,B;BiB),
jpl

(derivation shown in Appendix E). The evolution in this
lattice, in the synthetic frequency space, i.e. when I is finite,
is presented in Figure 1(h) (right), which shows an initial
quantum walk and subsequent stabilization onto a broad
state. We observe that a system with fast gain, even in the
presence of gain curvature, recovers the original bandwidth
set by the passive system. Interestingly, in the absence of
dispersion and gain curvature, i.e. a confining potential, the
propagation for either fast or slow gain would be identical.
In the following, we will derive the limits in the spectral
domain.

4 Eigenstates of the frequency
lattice

We will now use the modal space description to derive the
available stationary states of the system. As mentioned, the
coupling terms introduce coherent lattice dynamics of a
quantum walk [51]-[55] (Figure 1(e)). In contrast to diffu-
sive expansion, the unique feature of the quantum walk
dynamics, which results from interference, is its fast bal-
listic expansion [58], [59]. However, introducing D # 0 will
change this dynamic by breaking the translational symme-
try and modifying the quantum walk dynamics (Figure 1(f)).
This is restricting the analysis of this system from momen-
tum and energy consideration in band structures to solely
eigenmodes and eigenvalues.

The effective set of equations required to find the eigen-
modes are of the form eB,, = Dm’B,, + CB,; + CBy_1
with e being the eigenvalue (in the case of G, = A = 0).
The first term is a quadratic potential that depends on the
synthetic space coordinate m, V(m) = Dm?, and the mode

A. Dikopoltsev et al.: Theory of the quantum walk comb laser = 3487

coupling is a discrete second derivative equivalent to the
kinetic energy of the state. These coupling terms can only
carry a finite amount of kinetic energy equal to 4C, given
by the coupling energy span. This set of equations can
be then treated as a discrete version of a quantum har-
monic oscillator, where the solutions of this system will
have Hermite—Gauss nature for a finite range of energies
restricted by the available kinetic energy, 4C. Above this
value, the system behaves differently, having the modes
bound to the local potential, like Wannier-stark state that
are bound without a potential well [29]. Figure 2(a) and (b)
show the eigenmodes of such a system for A = G, = 0. The
broadest trapped state utilizes the maximum kinetic energy,
therefore Dm? = 4C, leading to my,, = 21/C/D, which
sets a spectral bandwidth limit of W, = 2f.m,,,,, where
fr = Q./2x is the resonance frequency of the laser cavity.
We note that, in contrast to Fourier relations, due to the
duality between the two conjugate coordinates in harmonic
oscillators, the solutions follow a positive relation between
the two spaces with respect to width, i.e., the narrow solu-
tions in frequency are also the narrow solutions in time,
while the broad solutions in frequency are also the broad
solutions in time. The lowest supermode carries a band-
width of W, =2- {/C/_D f» while the broadest supermode
trapped in the quadratic potential carries a bandwidth of
Whax =2 \‘*/C/_le. Considering a finite detuning from
resonance AQ, the potential becomes V(m) = Dm? + AQm.
As an effect, the central mode m = 0 is shifted from the
minimum of the potential by m; = %, and its minimum is

reducedbyE, = %2, compared to the resonant case AQ =
0. When the available kinetic energy is insufficient to sup-
port trapped states, the available states will become local-
ized to the local energy and have the shape of a Wannier-
Stark state. This happens for E, above the Kinetic energy
limit, which occurs above a critical detuning AQ,. = \/8C_D
This sets a transition between two ranges of RF detuning, the
resonant and off-resonant modulation regimes.

We can now analyze the dynamics and steady states
in this system using the eigenmodes that we have found.
Figure 1(f) shows a simulation of the time evolution in this
system, initially expanding ballistically but then reaching a
limit set by the quadratic potential and the kinetic energy,
M.« Once this limit is reached, the expansion stops, and
mode dephasing effects appear due to additional contribu-
tions from the quadratic potential. To study a realistic laser
system, we then introduce gain curvature by setting G, #
0, which introduces a non-Hermitian modal-space depen-
dent contribution. In this case, we consider gain saturation
acting on the average intensity in the cavity (I(z)) of the
form go(l— (I(2))/I;) (equivalent to I; — o0). This slow
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Figure 2: Linear eigenmodes and nonlinear steady states. (a) And (b) are eigenmodes of Eq. (5) in the cavity space and modal space, respectively.
The eigenmodes are trapped in the quadratic potential, with an upper limit on the maximal available trapped mode. This limit is set by the available
kinetic energy in the system, 4C. (c) And (d) are steady state spectra calculated from simulation for two values of gain curvature, g. = 2and g. = 0.2,
respectively, presented with the analytical solution. They exhibit a Hermite-Gaussian intensity distribution (blue) with linear intermodal phase
difference A¢ (red). The simulated amplitudes I;,(m) and the analytical solution I,(m) agree well, especially for reduced g.. (e)-(i) Steady-state
instantaneous frequency taken from simulations and compared to the analytical solution for different detuning values above and below the critical
detuning Af, = 6.93 MHz. We also present the small amplitude variation, f,, occurring due to gain curvature. (j) Steady state spectrum for
off-resonant modulation with Af > Af,, derived by simulations and compared to the analytical solutions. Here the phase difference between

the modes has a 0 or x difference, typical to electro-optically modulated combs.
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gain saturation effectively normalizes the overall power
without modifying the temporal pulse shape. In this linear
system, it is easy to show that only the eigenmode with
the maximal overlap with the gain will have an infinite
lifetime. Figure 1(g) shows the evolution in time, where the
initial quantum walk from a single mode dissipates into
the first Hermite—Gauss mode with a Gaussian envelope
both in frequency and time, i.e. a pulse of spectral band-
width W, [48]. This also resembles a condensation process
[60], where the system thermalizes to the lowest energy
state. Although this stabilization process is beneficial for
pulse generation, for many applications, frequency comb
sources are required to have broadband spectra, which is
not optimized here. It would be beneficial to utilize the
broadest available bandwidth set by the limit W ., but in
the discussed slow-gain case, the required spectrally and
temporally delocalized supermodes are inaccessible [48].
The method of driven mode-locking could greatly benefit
from a different approach, which prevents the state from
condensing to the lowest energy, and therefore the lowest
available bandwidth W;.

5 Synthetic dimension dynamics
in fast-gain lasers: quantum walk
comb laser

As seen in the previous section, resonant modulation of a
laser system alone does not ensure the generation of broad-
band combs, since dissipation leads to destabilization of
spectrally delocalized supermodes and thus a contraction of
the spectrum. Our system, however, contains an additional
term to the CGLE that stems from the fast dynamics of
carriers in semiconductor lasers. When the gain recovery
time is fast, it can support quasi-instantaneous saturation of
the form g, (1 —1(2)/I;), effectively forcing constant inten-
sity all around the laser cavity. We note that the fast-gain
is the same property that locks the modes proliferated by
cross-steepening in Fabry-Perot lasers, which requires bi-
directional lasing [30], [36], [37]. When the fast gain term is
considered, the only allowed dynamics in the laser cavity
is given by its phase, effectively changing the focus from
the photon density |E|?, which remains constant, to the pho-
tonic current density j « ﬁIm{E*‘;—i } ~ ﬂ%mz, which is
also proportional to the instantaneous frequency of the
field, f; = c/Zn‘;—‘f. This type of field in fast-gain lasers can
carry many frequencies while maintaining a quasi-constant
intensity, extended over the whole cavity. To maximize the
duration of the state in time, fast-gain leads to a different
stabilization process. This means that the system opposes
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stabilization on short forms of fields in time like pulses. On
the contrary, fast-gain lasers select the broadest available
modes in time to construct the final state, like the high-order
Hermite—Gauss modes we found above. As a result, instead
of collapsing to the narrow Gaussian mode of bandwidth
W, fast-gain lasers under resonant modulation support the
generation of quantum walk comb laser states, i.e. they sta-
bilize on states with the broadest available frequency band-
width W, > W, in the system, which is highly useful for
OFC applications (Figure 2(c) and (d)).

6 Analytical derivation
of the steady-state

To find the steady states in Eq. (3), we turn back to the
effective space description and propose a solution of the
following form, assuming an eigenfrequency Aw, while the
spatial field is copropagating with the modulation:

E=Ay(1- f() exp(ip(n) + iAwr). ™

Here fis a small variation of the amplitude, so that f <
1. By substituting E into Eq. (3), we can find the following
set of coupled equations for the real and imaginary parts
(derivation in Appendix A):

Aw — ¢/AQ =-D f_w - Gc ( Zlf/ ¢/

1-7) 1-f)
+ G.¢"" — D" + 2Ccos(n), ®)

! f— 2 1!
a1 20 ) o] oL

i £

(121_ff) ¢ — D¢’ — ch)/z_ ©)

Due to the suppression of fluctuations and the expected
small intensity variation, we look for solutions with
f.f'.f"" = 0 (ater justified). For the first-order solution, we
solve Eq. (8) for the phase. We neglect the contributions of
the gain curvature by taking G,¢"" — 0, which is justified in
Appendix B. The condition on the imaginary part turns to

+D

AQ = \/AQ® - 4DA® + 8CDcos(r)
- .

¢ = (10

At this point, we do not know the overall eigenfre-
quency Aw, and therefore we can find a continuum of
states to match this problem. However, we are looking for
a single continuous solution where the frequencies have
both positive and negative values. Such a solution must use
the two branches of ¢, which would be stitched at the
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point # where the square root is zero, #,, and fulfills AQ? —
4DAw + 8CDcos(7;) — 0. To keep also a finite derivative
(¢' )' at this point, we must also require that

F2Csin(n;,) o

¢/ ! (11)

\/ AQ? - 4DAw + 8CDcos (1)

The stitching points, at which the denominator goes to
zero, also require that sin(,) — 0, which sets ; = 7 as this
point should provide the lowest value of the cosine function

for the square root to be real (excluding 7, = 0). In this case,

the eigenfrequency is set to Aw = % — 2C. We plug this

value back into the equation and have

/_ AQ \/E n
¢ = D +2 Dcos<2>. (12)
We integrate the solution ¢’ to find the phase
= AQ Cin("
b = ﬂi4\/;sm<2) + ¢o. 13)

The solution ¢ is correct in the whole range of # values
only when boundary conditions do not apply. Although the
system is periodic, the periodic boundary conditions set by
the cavity length do not necessarily match the periodicity
of the above form. To find the correct solution, we look for
a range of this solution where the overall phase is peri-
odic, meaning ¢ (#y) = ¢ (1, + 27). We apply the periodic
boundary conditions to ¢, which results in

[ AQ x«
Ny = 2arcsin|l F——= |,
vcD 8

and depends on the offset of the modulation frequency AQ.
Then, the constructed periodic solution will have the form
bs(m) = pmVny < n < ny + 2m, where ¢(n) = ¢(n + 27).
Figure 2(c) and (d) show a comparison of the steady-state
spectral amplitude and phase differences between simula-
tions of Eq. (3) and the analytical solution from Eq. (12), for
two different values of gain curvature. Here, it is clear that
the state is not a Bessel function, as the intermode phases are
not spaced by only 0 or z. In fact, we observe that the sum
of these differences adds to 2z, which is a beneficial relation
for frequency-modulated combs that span over the whole
cycle. The spectral amplitude is compared to the analytical
solution. When gain curvature is present, the simulation
and analytical solutions slightly differ, but with decreas-
ing gain curvature, the correspondence becomes better. In
the spatial domain, the solution is mainly defined by its
instantaneous frequency. Figure 2(e)-(g) show the value of

(14)
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the instantaneous frequency found by simulations and the
analytical solution. These are in good agreement, where
the deviation increases for detuning closer to the critical
value AQ~AQ, specifically at the instantaneous frequency
discontinuity. This occurs due to incomplete assumptions
for the solutions at this critical value of detuning.

6.1 Bandwidth at near-resonant modulation

To find the bandwidth of the state when |AQ| < AQ,, we
look for the largest available phase derivative span in the
signal, with a stitching point at #,. We expect the global
extrema to appear either at qS” =0, or at the boundaries,
where the extrema valuesare ¢, . = = AQ/2D + 2@.
At the edges we expect

AQ C
;dges = oD 2 D

2
1— <AQ”) s
\/C_D 8

where we used the relation cos(asin(+x))=v/(1 — x?). As
¢’ it truncated with half a period of a cosine, we expect
only a single local extremum to be included, for example
the positive one, which would be naturally larger than the
positive edge extremum. The lowest ¢’ value will be then at
the negative edge value, while the negative local extremum
is outside the solution. We conclude that the overall band-
width is limited on one side by a local extremum and the
other by an edge, leaving a bandwidth of

/
extremum

cK
Wra = o

C
I

At resonant modulation for AQ = 0, the bandwidth is
Wro—o = 4f; \/EC /D) = W .., as expected from the energy
consideration in the synthetic space.

!
edge

6.2 Amplitude deviation

Although we neglected the amplitude variation to find the
phase, there is a direct impact of the phase on the amplitude.
We derive this impact on the amplitude shape when modu-
lation is in the resonant region. We keep G, — 0, so that the
equation for the real part is then (justified in Appendix B)

2
D(i)":;(.‘lgo(l_fl(z}(l_m)_aw]' an

I

sat
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From this formula, we can derive the steady-state
amplitude (Appendix C) and find that

b
C(go - aw)

fA ~ ¢”7 (18)
where the amplitude is directly impacted by the variations
in the phase. Figure 2(e)-(i) compares the instantaneous
frequency, m(s), which is proportional to ¢, to the ampli-

tude variation, f,. This solution results in a maximal ampli-

2VDC _ 10-3 « 1, which veri-
C(go—aw)

fies our initial assumption for this range of values.

tude variation of f, ;.. =

7 Strong detuning regime

As we observe in the lattice model, detuning imposes an
offset of the minimum of the dispersion-related potential
relative to the point of highest gain. When this offset is suf-
ficiently large, meaning AQ > AQ,, the initial conditions
and gain curvature set a different stable nonlinear solution
to the system. To find this family of solutions, we assume
that the detuning is large enough, so that we could use
the approximation |AQ¢’| > |D¢’?| and write the phase
equation as

2C
Aw—m

Gc 1

’—
N} +¢' = 19)

cos(n),

2C

where the solution of this driven linear ordinary differential
GC
AQ ) )

equation is
cos <n + atan(
(20)

Here, as previously, Aw is set by the gain curvature that
chooses the state with the higher overlap with the central
frequencies, i.e. Aw = 0. The instantaneous frequency and
spectra associated with this regime are shown in Figure
2(h)—(j), where these states are cosine shaped in their instan-
taneous frequency and consequently Bessel-shaped with
a symmetric spectrum. We notice that in this regime, the
phase is following directly the shape of the modulation, as
would be in the case of linear phase modulation by an exter-
nal EO modulator. From the point of view of modulation
overlap, this process is resonant and occurs inside the laser,
being more similar in its nature to a frequency comb regime
found in actively mode-locked lasers when the modulation
is strongly detuned. In practice, the stabilization processes
are completely different. Here, the gain recovery time is fast,
and the suppression of fluctuations leads to higher stability.
We will analyze this stability in Section 8.

) _ Ao _
TAQ

GC
AQ

a0y ( )2+1
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Although we have a general description of the analyt-
ical solutions in both the on- and off-resonant regime, it is
imperative to acquire their spectral shape from the com-
plete and non-approximated CGLE (Eq. (3)). Figure 3(a)—(c)
show the value of the spectral intensity, and amplitude and
instantaneous frequencies in simulations for a range of
detuning values, Af = AQ/2x. Although the spectral shape
in Figure 3(a) is smoothly deforming in the whole range,
Figure 3(b) and (c) present an abrupt transition between
two regimes. When |AQ| < AQ,, the regime is resonant
and follows a solution of the form presented in Eq. (13),
and for all other values the steady state follows the solu-
tion in Eq. (20). The two regimes are also related to the
two groups of eigenmodes presented in Figure 2(a) and
(b), the trapped Hermite—Gaussians (red) and the Wan-
nier—Stark like modes above the maximum Kkinetic energy
(blue). Figure 3(d) and (e) show the time evolution of a
state that was initiated with a single mode at m =0, in
frequency and cavity amplitude, respectively, at a detun-
ing value AQ ~ AQ . We observe an initial oscillation and
then stabilization on a steady spectrum. This type of oscil-
latory dynamics is experimentally studied in a different
work [29].

8 Effects of significant gain
curvature and third order
dispersion

Although, at first order, gain curvature and third-order dis-
persion are less significant than quadratic dispersion, mod-
ulation and fast gain, these impact the shape of the spec-
trum. To study the impact of gain curvature and third-order
dispersion on the steady state, we perform simulations to
find the dependence of the spectra at different detuning val-
ues on the gain curvature effective parameter, G, and third
order dispersion parameter Dy = %ktygc4K3, where k, 5 is the
third-order dispersion is in units of 1%31 Figure 4(a) dis-
plays the spectrum as a function of detuning, with the same
parameters as in Figures 2 and 3, but with g, = 6, 3 times
larger. It is clear that the spectrum is limited by a condition
related to gain curvature on top of the maximum band-
width limit that is set by only modulation and dispersion.
Figure 4(b) shows the spectra with the same original condi-
tions, but where dispersion has the opposite sign. This also
flips the sign of the instantaneous frequency and reflects the
spectrum symmetrically around m = 0. Figure 4(c) and (d)
show the impact of third-order dispersion on the spectra
(k5 # 0) asa function of injection detuning. We observe that
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Figure 3: Steady states in the quantum walk comb laser versus RF detuning in simulations. (a) Steady state spectrum as a function of RF detuning Af.
(b) Intensity in the cavity versus RF detuning Af. (c) Two periods in 7 of the instantaneous frequency in units of m as a function of the detuning
frequency Af. (d) and (e) Time evolution under significant detuning Af ~ AQ,/2x of a state initialized at m = 0. The evolution shows

an overdamped oscillation and then stabilization into an asymmetric spectrum.

the symmetry between positive and negative detuning is
broken, depending on the sign of the third-order dispersion.

9 Noise and stability

Lasers with fast gain that stabilize through gain saturation
have noise suppression properties that differ from dissipa-
tive slow gain systems. It was shown through an analysis
of fluctuations [61]-[63], that noise that does not match
the phase of the underlying nonlinear steady state in the
specific point where it is located will be quickly suppressed
like in a single mode laser. Therefore, stability would follow
approximately a Shallow-Townes limit [64]. This is in con-
trast to lasers with slow gain that suppress intensity fluc-
tuations on average, with the form gy (1 — (I(2))/I,), letting
the state destabilize from its self-preserving shape. Figure 5
shows calculations of noise added to a system with fast and
slow gain in various regimes. We model the noise as an
additional term on the right-hand side of Eq. (3), in the fol-
lowing form Ay+/I,(X(2) + iY(2))/T,, where X,Y € [-1,1]
are random with a uniform distribution, I, = Is(l —a/g)
is the steady state intensity and Ay is a variable amplitude
of the noise. In the absence of noise, we reach a steady state

of the system and use the noise term above to perturb it. We
then calculate the variance of the intensity o,(z) relative to
the steady state for 400,000 cycles. Every point in Figure 5
is calculated as N, = 4/ Y, 6%(z)/N,/2I,Ay, which is exactly
A), for a signal that contains only the noise input, and where
N, is the number of points used for the cavity space. When
the detuning, Af, is small, there is more than an order
of magnitude difference in the response of the fast gain
compared to the slow gain. The power fluctuation levels
for the fast gain show significantly lower amplitudes than
for slow gain. Further away from resonance, this becomes
even more drastic, reaching a difference of 2-3 orders of
magnitude. This showcases the improved noise properties
of the quantum walk comb laser compared to regular active
mode locking.

10 Discussion

In this work, we have derived a comprehensive model to
describe the dynamics and steady states of a modulated
backscatter-free ring cavity laser with a fast gain recov-
ery time. We showed that, unlike slow gain systems with
dynamics governed by dissipation, the fast gain supports
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Figure 4: Spectra impacted by gain curvature, sign of dispersion, and third-order dispersion. (a)-(d) Spectra versus RF detuning, Af, based on the
parameters used in Figure 3(a). In (a) the gain curvature is three times larger, which for this value presents a strong limitation on the spectral shape.
In (b), the sign of the dispersion is flipped, therefore the spectrum is mirrored symmetrically around m = 0. (c) and (d) Have third order dispersion,
positive and negative, respectively. The third-order dispersion deforms the spectral shape and breaks the previous symmetry of flipping both detuning
and the modal axis.
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Figure 5: Intensity noise level for slow and fast gain. The relative noise response is the square root of the intensity variance normalized by the total
intensity and noise generation rate. The noise is presented in logscale and shows the supremacy of fast gain lasers in terms of noise for the whole
range of frequencies for various values of gain curvature and noise generation rates.
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the expansion of a quantum walk in a synthetic frequency
dimension. The expansion continues until the maximum
frequency bandwidth limit, set by dispersion and modula-
tion, is reached. Once the system reaches this limit, it stabi-
lizes on the broadest available state in the system that fol-
lows a predictable shape given by the nonlinear analytical
solution that we derived. Interestingly, when Fabry—Perot
fast-gain lasers are strongly modulated, experiments in [33],
[47], [65] present instantaneous frequencies that resemble
the analytical solutions we have found of a half-sine shape.
The appearance of this signature is related to the compe-
tition between the cross-steepening nonlinearity caused by
spatial hole burning and phase modulation and will be the
subject of future studies.

Moreover, we found that detuning from resonance
reshapes the state until an abrupt transition occurs, and the
state changes its nature to an FM-like comb which directly
follows the modulation. We also studied the noise properties
of such systems and showed that they outperform their slow
gain counterparts, an advantange which we attribute to the
liquid state of the light. Although the repetition rate has
exquisite locking properties, the jitter in the carrier enve-
lope offset frequency can contribute to substantial optical
linewidth broadening. It would be beneficial to study the
effects of optically injecting quantum walk comb sources,
which incorporate coherent pumping schemes, such as in
[66], to reduce the overall optical linewidth of the source.
Along with unique acceptance to shaping the spectrum [50],
we believe that modulated fast-gain lasers will pave the
way to highly controllable, stable and broadband devices for
daily applications.
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Appendix A: Derivation of the
coupled amplitude and phase
equations

Here we derive the coupled amplitude and phase equations.
We start with the equation

I

sat

.1 In, 1) 1,. 0’E
E= Zc[go(l - > - aw]E+ Q(lﬁ + gc)Kza—n2
1
+ léca1 cos(n)E,

where we used the copropagating coordinate # = Kz —
AQ7. Due to the instantaneous gain saturation term, we
then assume the field follows the following form

E — AO (1 _ fA(n))ei¢(n)+l'Aw‘L"

where the amplitude is quasi constantA4, with a small
amplitude variation f,, and the state has an overall evolu-
tion frequency Aw. The LHS is then
E= (iAw - i¢/ AQ)E + Aof/gAQei¢+iA“’T.
The second derivative of the field in # is
0? d (0 it
2 E=2(2A.(1- ip+iAwt
on’ 0n(0n o(1=Ja)e )
= 4, 0%1 (= fleP807 4 (1= f)igf eib+ider)

_ 11eib+ideT 15 11 pip+HiAwT
= Ay (— Sy =2 i

+ (1 - fA)i¢’/ei¢+iAwr _ (1 _ fA)¢12ei¢+iAwr)_

We then get
(180~ i¢/89) + 5 _A a0
_ ;C[g0<1 _ Aé(ll;th)2> . }
+(iD+G,) <_ i ]—Z’fA) _ (12_1'}32) i + i — ¢’2>
+ 2Ccos(n).
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We require that the real and imaginary parts will be

fulfilled separately
@
fll Zlf,
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©-® (=g " Cea-p® TP
— D% + 2Ccos(y),
2
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(1 - fA) |:g0< Isat o
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Appendix B: Rationale for
neglecting gain curvature

To justify neglecting the term G,¢” in equation Eq. (8), we
estimate the values at resonance. The solution for AQ =0
gives ¢/ = F % sin(%), and the ratio between the contri-
butions of gain curvature and dispersion are given by

_af5unls)_ o_w(y

T opaCen2(n) 2(n\’
D4Ecos (5) 44/CD cos <5>

G
D ¢/2

As long as G, < 4\/5, our approximation is valid,
where we can also express this condition as G, << Dmy,
where m,, is the number of populated modes in the
steady state atresonance. For realistic parameters, the ratio
" \/» ~ D, so that as long as the steady
state is sufﬁc1ently broad, the gain curvature is not playing
a significant role in shaping the frequencies. However, at

values of # = x, the cosz( ) drops to zero and the approx-
imation does not hold anymore.

Appendix C: Considerations
for amplitude variation
at the near-resonant regime

We start with the equation for the real part of the field

, 2
e LR [gf’(l‘Aé(l

1 Zf/
A

A
(1-fa

“Oi-1)

+D G ™.

' _ Do —
)47 ¢
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We consider G, — 0, therefore the equation is redu-

ced to
[ 1
f,AQ = ic lg()(l —

+2Df, ¢’ —

Al(1—€fy)

2
-«
2 )-a]
D¢".
Taking an order of magnitude for the values of ¢/, ¢’ ~
\/g , wWe can estimate
Al(1-
efiAQ = %c lg(,(l _A=eh)

2
)]
+2¢f1/eD — /D,

sat
Using AQ < A, which is the limit in the resonant
regime, we can neglect the terms that depend on ff;, as
f1 < 1. We finally get

From this formula, we can derive the steady state
amplitude

_ — _Q " _ %w
A= 1) = 1= g -
_\/_/1_“W\/

. ’s(l‘ZV)(l‘MW’)-

1"

O‘W

So that

and finally
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Appendix D: Parameters
relationship to physical quantities
To relate the normalized parameters to physical quantities

we present in Table Al a list of physical quantities that cor-
responds to the system we study in this work.
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Table A1: Parameters used for simulations.

Name Symbol Value
Cavity length L 5mm
Waveguide losses + output  a,, 7cm™!

coupling divided by length

Dispersion k, 1,000 fs2/mm

Saturation intensity I 8- 10 v2/m?

Coherence lifetime T, 50fs

Light velocity in the cavity c c/n,n=3

Gain 9 10 cm™

Detuning (angular AQ € [—2n X 15MHz, 2% X 15MHz]
frequency)

Coupling strength C 3-108 rad/s

Appendix E: Fast-gain operator
in the synthetic frequency space

We consider a differential equation with a linear operator
local in z and the fast-gain nonlinear term

E=QE—%%E
S

We use a modal description of the field where E(z, 7) =
Z An(r)e‘i"KZ

iZmem=@2&mwm—%Z&m
X e—inz Z eipKz
> A(®)

X Y Ar)e e,

We multiply both side by e~™?, integrate over the cav-
ity and get

iAm(T) = [Lz(e_isz)eisz]Am(T)
8 * o
_/TSZAj(T),g(r)Al(T)e(p j-tm)Kz g,
= [Lo(e™™) ™ | An(@)
- % ZIA JOA DA 41— s
S j.ps

therefore, we can write the nonlinear term of the fast gain
as
Fagm = ) 04t-me pAAA,
jpl
which is identical to the Kerr term in the modal space,
but with an imaginary factor of i with respect to the field
derivative, making this term nonlinear and non-Hermitian.
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