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Abstract: The development of on-chip optical frequency

comb devices paves the way for novel applications in envi-

ronmental tracking, fast ranging and smart communication

solutions. Recently, a new type of frequency comb device,

based on a modulated ring quantum cascade laser, was

introduced and demonstrated. Here we present a rigorous

theoretical study of this type of device, also known as the

quantum walk comb laser. We show that resonant phase

modulation of a fast gain laser with a dispersive circu-

lar cavity is sufficient to support a broadband comb. This

method requires the gain to have a sufficiently fast recovery

time to support quasi-instantaneous suppression of inten-

sity fluctuations.When this condition ismet, themodulation

leads to quantum walk dynamics, and then to stabilization

onto a stable and controllable frequency comb. We show

this type of dynamics through simulations using realistic

parameters and reveal the impact of higher-order contribu-

tions from gain and dispersion. We also study the resilience

of this type ofmode-locked laser to noise injection and show

its superiority to that of activemode-locking.Webelieve that

this work will allow the development of comb devices with

high wall-plug efficiency, arbitrary output spectral shaping

and increased stability properties.

Keywords: laser science; photonic lattices; mode-locked

lasers

1 Introduction

Optical frequency comb sourceminiaturization [1] holds the

promise to significantly impact metrology [2]–[5], commu-

nications [6]–[8], and ranging [9], [10]. The first requirement

of such sources is to produce spectrally broad light with

perfectly spaced frequencies while on-chip. For practical
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reasons, additional constraints, such as wall plug efficiency

and fabrication costs, impact their development [1], [11].

The production of frequency comb devices that fulfill these

requirements will introduce an industrial advancement,

driving energy efficient sources for dense wavelength com-

munication channels, novel LIDAR schemes and molecular

detection applications that can fit in your hand. To make

frequency comb sources compact and useful, we are com-

pelled to obtain fine control over the nonlinear processes

that govern the broadening of the spectrum.

Themechanisms that generate optical frequency combs

are typically divided into a few types, which mainly depend

on whether the gain of the laser source and the nonlinear

proliferation mechanism of the multiple frequency modes

share the same space. From a practical point of view, this

difference sets a condition on whether the system can be

monolithically fabricated or must use hybrid integration of

a laser source and a passive nonlinear chip. With bounds

on the strength of nonlinear processes [12], the wall plug

efficiencies of such processes differ aswell.While integrated

devices enjoy highly broadband processes with low loss [11],

[13]–[15], the monolithic structures benefit from directly

pumping themany spectral lines of the frequency comb and

reaching overall highpower-conversion efficiency [16]–[22].

An additional difference lies in the mathematical

description of the energy source. This becomes evident in

the equation typically used to describe ultrafast optics, the

complex Ginzburg–Landau equation (CGLE) [23], which is

based on a slowly varying envelope in a copropagating

frame with the intracavity light. The difference between

monolithic and integrated frequency comb devices is in the

power source term in the equation, with either a coherent

pump that injects photons with the same frequency and

phase, or an incoherent pump that appears as a gain term,

typically with saturation that depends on intensity [24]. It

has been shown that incoherent pumping terms in a CGLE

equation can lead to stabilization in highly excited states,

with demonstrations in exciton–polariton cavities [25], [26]

or vertical cavity surface emitting lasers [27].

The physical process that gives rise to incoherent

pumping is determined by the relative response of the

gain saturation [28]. When the response is fast enough, the

incoherent pump term is local in the copropagating frame,

suppressing fluctuations on very fast time scales. The fast
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suppression mechanism provides the intracavity light with

the properties of a liquid [29], which lead to increased coher-

ent flows, but also the disfavoring of pulses [30]. This is in

contrast to themajority of the current techniques to produce

frequency combs that are amplitude-modulated, exhibiting

pulses in time [14], [31], [32]. For a sufficiently fast incoher-

ent pump, the amplitude is prevented from modulation in

time, keeping a quasi-constant intensity, while the phase

starts taking on a dynamical role and evolves to produce a

frequency comb output [33]. Although the mechanisms that

are responsible for the fast processes can vary, the impact

is similar – quasi-instantaneous suppression of intensity

fluctuations [29]. Only recently, it was shown that such

sources can produce an optical frequency comb with per-

fectly spaced frequencies [16], [30] and constant phase rela-

tions that allow for compression of the signal to short pulses

[34]. The material platforms that show such formation of

frequency-modulated combs span from quantum cascade

lasers (QCLs) and interband cascade lasers [16], [17], [35],

to quantum dash [20], [21], quantum dot [19], [22] and also

quantum well lasers [18], demonstrating the universality of

the regime.

Although it is agreed that the mechanism that locks

the modes is the incoherent pump term that results from

fast gain saturation, only recently the modeling of fast-

gain lasers revealed an explanation for mode prolifera-

tion [36]–[38]. The difficulty here was in identifying the

nonlinearities which act to couple frequencies while the

intensity of the signal remains constant. For example, a

nonlinearity such as the Kerr nonlinearity that depends

on the amplitude would only produce an overall trivial

phase velocity change that does not broaden the signal,

e.g. iĖ ∝ I(z)E = I0E, where E is the field, I(z) = |E|2 and
I0 is a constant intensity value. Therefore, the required

nonlinearity is expected to depend on other quantities, for

example the phase of the signal, which is free to vary.

Indeed, it was found that in Fabry–Perot semiconductor

lasers, the counter-propagating waves interfere to form

gain grating (spatial hole burning) that produces four-wave-

mixing (FWM) in the form called cross steepening [36], [39].

Effectively, this introduces FWM that depends on the phase

of the signal, e.g. iĖ ∝ 𝜙E, where𝜙 = arg(E), that self-starts

a frqeuency comb. However, this spontaneous process nat-

urally lacks control over the final state, while also having

an ambiguity in the relative delay inside the optical cycle,

which amounts to instabilities and enhanced noise.

In this work, we develop a model for optical frequency

comb generation from an incoherently pumped monolithic

laser that is modulated to produce highly controllable and

stable broadband spectra [40], [41].We significantly reduced

backscattering to avoid competing proliferation processes

that lead to instabilities. By resonant modulation of the cav-

ity, we couple the longitudinalmodes and generate coherent

proliferation and expansion in the frequency domain. At the

end of the expansion process, the incoherent pump locks the

output onto a broadband state, with a spectral bandwidth

that is defined by the modulation depth and cavity disper-

sion. This method to generate frequency combs presents

opportunities for highly stable, controllable and efficient

frequency comb sources on a chip.

2 Modulated fast-gain ring-laser

model

We consider a laser in a ring cavity configuration with cir-

cumference L and negligible backscattering of the propa-

gating light [42] (Figure 1(a)). We assume there is only one

transverse mode allowed, but multiple longitudinal modes

that can potentially lase simultaneously. The laser cavity

carries losses 𝛼𝑤, dispersion kt and has a saturation inten-

sity Is. When the laser is electrically pumped, the light

exhibits a small signal gain of g0, and a parabolic gain spec-

tral shape with a width T2 determining a quadratic increase

in loss relative to the central frequency. When pumped,

the laser supports single-mode operation at the wavelength

with the highest gain, which is given by the medium, and

thus we define it as the zeroth mode with phase velocity c.

In the absence of nonlinearities in the material, the single-

mode solution is stable, therefore leading tomonochromatic

lasing.

At time t = 0, we start to resonantly modulate the

current in a section of the laser, thereby generating

a spatiotemporal gain variation of the form gm(x, t) =∑
n

an cos(nKx) cos
(
Ωt + 𝜙n

)
, whereΩ is themodulation fre-

quency, K = 2𝜋∕L is the wavenumber of the fundamen-

tal mode, and an and 𝜙n are the excited amplitudes and

phases of the low-frequency cavity modes n (Figure 1(a)). In

principle, resonant modulation at Ωr = Kc should produce

a1 ≫ an ∀n > 1. The gain modulation produces an ampli-

tude modulation on top of a quasi-constant signal. When

the modulation is deeply close to the threshold and the

dynamics of the gain become critical [43], [44], it is possible

to reach a pulsed output, a regime we avoid in this study.

Moderate modulation alone is inefficient in mode prolifera-

tion, leading to negligible intermode coupling. However, the

linewidth enhancement factor (LEF) 𝛼 [45], [46] is responsi-

ble for additional phase terms that depend on the gain and

the amplitude of the modulation. Consequently, the applied

amplitude modulation of the gain is converted to phase
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Figure 1: The evolution of the lasing state in an active modulated ring cavity. (a) System schematics of a fast-gain modulated ring laser. The laser

is modulated in a section with frequencyΩ, which produces mode proliferation. The fast gain is responsible for stabilizing the system so that

the emission is coherent and broadband. (b)–(d) Evolution of the field amplitude in the unitless cavity space 𝜂 using Eq. (3), for 𝛽 ≠ 0 in three cases:

(b) in the absence of stabilization mechanisms, Is →∞, T2 → 0, where the field develops with uncorrelated dynamics; (c) when gain curvature stabil-

izes the system, Is →∞, T2 ≠ 0, which results in a narrow signal in time, and (d) when fast-gain is present, i.e. Is is finite, and the intensity remains

quasi-constant and stable. The units of time are normalized to Ts = 1∕
√
CD, the expansion time of the system. (e)–(g) Lattices describing the coupling

and complex potentials in the modal space, and their evolution in the modal space starting from a single mode. (e) Contains only phase modulation,

causing coupling, which results in a quantum walk and a ballistic expansion, (f) includes parabolic dispersion, showing uncorrelated dynamics

corresponding to (b), and (g) also contains gain curvature, which is a dissipative mechanism that leads to a narrow spectral state, corresponding to (c).

While coupling sets the expansion rate, the dispersion 𝛽 dictates a bandwidth limitation. (h) The principle of a modulated cavity with fast gain, forcing

a quasi-constant intensity I(𝜂) (left). The signal exhibits the phase modulation as an underlying potential V(𝜂), with a span of 4C. The evolution shows

ballistic expansion and then locking onto the broadest available bandwidth by the coupling and dispersion (right), corresponding to (d).

modulation through the non-zero LEF, resulting in much

more efficient side-mode proliferation. We incorporate the

modulation in the model by translating the gain variation

to a phase modulation of the form M(x, t) = 𝛼gm(x, t), as

keeping amplitudemodulation indeed did not change signif-

icantly the result but made the calculation heavier numer-

ically. We also neglect the Kerr nonlinearity added by the

LEF as well as higher-order processes induced by the LEF, as

the intensity followsmostly the modulated gain signal with-

out substantial intensity variation that can be translated to

independent phase dynamics. The master equation of the

complex field that describes the dynamics in this system,

derived from Maxwell–Bloch equations [36], [37], [47], is

then

1

c

𝜕E

𝜕t
+ 𝜕E

𝜕x
= 1

2

[
g0
(
1− I(x, t)∕Is

)
− 𝛼𝑤

]
E + i

1

2
kt
𝜕2E

𝜕t2

+ 1

2
g0T

2
2

𝜕2E

𝜕t2
+ iM(x, t)E. (1)

To describe the evolution of the field in a single

coordinate of time, reaching a CGLE form, we shift

to a copropagating frame of the optical signal by

using z = x − ct and 𝜏 = x∕c, and set Ωr = Kc.

Using the longitudinal optical modes of the circular

cavity, the field in the lab frame is described by

Elab(t, x) = ei𝜔ot−ik0x∑Am(t)e
imΩrt−imKx , and in the

copropagating frame of z and 𝜏 by E(z, 𝜏) =
∑
Am(𝜏)e

−imKz,

where Am are the slowly varying amplitudes of modes with
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resonant optical frequencies. The modulation term takes

the form

M(z, 𝜏) = 𝛼

2

∑
n

an
[
cos
((
nΩr +Ω

)
𝜏 − zΩ∕c + 𝜙n

)

+ cos
((
nΩr −Ω

)
𝜏 + zΩ∕c − 𝜙n

)]
. (2)

In this case, the coupling between the modes will

require a phase-matching term of the form ∼ eilKz, with

l ∈ ℤ. Therefore, for near-resonant modulation, Ω =
Ωr +ΔΩ, with detuning ΔΩ ≪ Ω, and under a rotating

wave approximation, the modulation term is reduced to

Me(z, 𝜏) = 𝛼

2
a1 cos

(
Kz−ΔΩ𝜏 − 𝜙1

)
. Notice that we have

assumed cos
(
Kz+ ΔΩz

c

)
≈ cos(Kz), due to the assumption

that ΔΩ
Kc

≪ 1. The resulting equation takes the following

CGLE form

𝜕E

𝜕𝜏
= 1

2
c
[
g0
(
1− I∕Is

)
− 𝛼𝑤

]
E + i

1

2
𝛽K2 𝜕

2E

𝜕𝜂2

+ 1

2
gcK

2 𝜕
2E

𝜕𝜂2
+ icMe(𝜂, 𝜏)E, (3)

where used dispersion as 𝛽 = ktc
3, the gain curvature

gc = g0T
2
2
c3, and the corotating coordinate 𝜂 = Kz−ΔΩ𝜏 .

Figure 1(b)–(d) show the evolution over time 𝜏 in space

𝜂 of the state E(𝜂, 𝜏), starting from a single mode m = 0

for three different cases while 𝛽 ≠ 0. For the simulation

in this work, we have used realistic parameters, given in

Appendix D. When Is →∞ and T2 → 0 (Figure 1(b)), the

equation is linear and behaves like a Hermitian system

but lacks a stabilization mechanism. The dephasing of the

eigenmodes excited by the initial state leads to uncorrelated

dynamics. When T2 is finite (Figure 1(c)), the dissipative

gain curvature, gcK
2, acts as a stabilization mechanism,

and together with the modulation Me, induces a gaussian

state in time, as predicted in active mode-locking processes

[48]. Finally, when Is is finite (Figure 1(d)), the fast-gain

acts as the main stabilization mechanism and maintains

a quasi-constant intensity state. Although the picture in

the cavity space provides signatures of stability, the evo-

lution of such a system is more intuitively described in

the frequency domain. Specifically, as the modulation intro-

duces direct coupling between longitudinal modes, in the

following we will analyze the quantum walk comb laser

dynamics through a modal space picture. We note that the

modes are almost equally spaced and nearest neighbors

are coupled by modulation, which can be mapped to a

“tight binding” model of a lattice in a synthetic frequency

space.

3 Active photonic lattice

in a synthetic dimension

To provide intuition for the dynamics of Eq. (3), we consider

the mode coupling that Me introduces. Therefore, we will

nowdescribe the system from the point of viewof a lattice in

the frequency domain, whichwe call a synthetic dimension.

We use this terminology, as this is related to a whole field

of light manipulation in linear systems [49], and that has

the potential to revolutionize mode-locked sources [50]. We

ascribe a lattice location index m to frequency f0 +mf ,

and equivalently through a discrete Fourier transform, we

derive a set of equations for the linear part of the modes’

evolution using the aforementioned ansatz for E(z, 𝜏):

iȦm = 1

2
𝛽m2K2Am − i

1

2
gcm

2K2Am

+ 1

4
c𝛼a1

(
Am+1e

−iΔ𝜏 + Am−1e
iΔ𝜏), (4)

where a1 is the relevant modulation amplitude defined

above, and z coordinate is shifted to nullify 𝜙1 and keep the

sign of the coupling positive, so that z→ z−
(
𝜙1 + 𝜋

)
∕K.

We use D = 1

2
𝛽K2, Gc = 1

2
gcK

2, C = 1

4
c𝛼a1, and the ansatz

Am = Bme
iΔm𝜏 to get

iḂm = Dm2Bm +ΔmBm + i(G0 − Gcm
2 )Bm + C

(
Bm+1 + Bm−1

)
,

(5)

which describes linear dynamics in the modal space with

coupling C (Figure 1(e), left), an effective quadratic potential

Dm2 (Figure 1(f), left) with a linear bias Δm, gain G0 =
(g0-αw)c/2, and quadratic loss Gcm

2 (Figure 1(g), left). The

following present dynamics that depend on the different

elements of this system. In Figure 1(e)–(g), we present the

dynamics in the unbiased modal space lattice, i.e. Δ = 0,

with D = Gc = 0, D ≠ 0,Gc = 0 and D ≠ 0,Gc ≠ 0, respec-

tively, where Figure 1(f) and (g) correspond to Figure 1(c)

and (d). Figure 1(e) shows thewell-known pattern of a quan-

tum walk [51]–[55], the quantum analogue of the random

walk, where the traveling particle also has phase. In this

case the intensity remains flat, E(𝜂, 𝜏) = E0, throughout

the whole evolution. However, when dispersion is present

(Figure 1(f)), D ≠ 0, we observe a bound on the maximally

accessible frequency bandwidth and dephasing of the state.

When gain curvature is added (Figure 1(g)),Gc ≠ 0, the state

locks onto a Gaussian state, much narrower than the limit

set by the dispersion. Gain curvature causes the state to

narrow down in the modal space and a strong amplitude

change in the real space (Figure 1(c)).
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We can now add the nonlinear term of the gain satu-

ration to the equation. This term is represented as a local

operator in the real space, clamping the intensity to a certain

value, i.e. I(𝜂) ∼ I0, and suppressing intensity fluctuations

faster than all other timescales (Figure 1(h), left). We note

that the modulation occurs in the same effective space, 𝜂,

generating an effective potential V(𝜂, 𝜏) ∝ Me(𝜂, 𝜏). How-

ever, in the modal space, the gain saturation becomes a

long-range dissipative term, which we describe using the

following form

i.
̇⃗
B = HB⃗− i𝛾 F⃗NL

(
B⃗
)
, (6)

where we define H as the linear operator of the right-hand

side of Eq. (5), and 𝛾 = 1

2
g0c∕Is. Here, the fast gain satura-

tion term F⃗NL = EE∗E is of a four wave mixing nature [30],

[56], [57], and can be written as FNL,m = ∑
jpl

𝛿 j+l−m− pB jBlB
∗
p

(derivation shown in Appendix E). The evolution in this

lattice, in the synthetic frequency space, i.e. when Is is finite,

is presented in Figure 1(h) (right), which shows an initial

quantum walk and subsequent stabilization onto a broad

state. We observe that a system with fast gain, even in the

presence of gain curvature, recovers the original bandwidth

set by the passive system. Interestingly, in the absence of

dispersion and gain curvature, i.e. a confining potential, the

propagation for either fast or slow gain would be identical.

In the following, we will derive the limits in the spectral

domain.

4 Eigenstates of the frequency

lattice

We will now use the modal space description to derive the

available stationary states of the system. As mentioned, the

coupling terms introduce coherent lattice dynamics of a

quantum walk [51]–[55] (Figure 1(e)). In contrast to diffu-

sive expansion, the unique feature of the quantum walk

dynamics, which results from interference, is its fast bal-

listic expansion [58], [59]. However, introducing D ≠ 0 will

change this dynamic by breaking the translational symme-

try andmodifying the quantumwalk dynamics (Figure 1(f)).

This is restricting the analysis of this system from momen-

tum and energy consideration in band structures to solely

eigenmodes and eigenvalues.

The effective set of equations required to find the eigen-

modes are of the form 𝜖Bm = Dm2Bm + CBm+1 + CBm−1,

with 𝜖 being the eigenvalue (in the case of Gc = Δ = 0).

The first term is a quadratic potential that depends on the

synthetic space coordinate m, V(m) = Dm2, and the mode

coupling is a discrete second derivative equivalent to the

kinetic energy of the state. These coupling terms can only

carry a finite amount of kinetic energy equal to 4C, given

by the coupling energy span. This set of equations can

be then treated as a discrete version of a quantum har-

monic oscillator, where the solutions of this system will

have Hermite–Gauss nature for a finite range of energies

restricted by the available kinetic energy, 4C. Above this

value, the system behaves differently, having the modes

bound to the local potential, like Wannier-stark state that

are bound without a potential well [29]. Figure 2(a) and (b)

show the eigenmodes of such a system forΔ = Gc = 0. The

broadest trapped state utilizes themaximumkinetic energy,

therefore Dm2
max

= 4C, leading to mmax = 2
√
C∕D, which

sets a spectral bandwidth limit of Wmax = 2frmmax, where

fr = Ωr∕2𝜋 is the resonance frequency of the laser cavity.

We note that, in contrast to Fourier relations, due to the

duality between the two conjugate coordinates in harmonic

oscillators, the solutions follow a positive relation between

the two spaces with respect to width, i.e., the narrow solu-

tions in frequency are also the narrow solutions in time,

while the broad solutions in frequency are also the broad

solutions in time. The lowest supermode carries a band-

width of W1 = 2 ⋅ 4
√
C∕D fr, while the broadest supermode

trapped in the quadratic potential carries a bandwidth of

Wmax = 2 ⋅ 4
√
C∕DW1. Considering a finite detuning from

resonanceΔΩ, the potential becomes V(m) = Dm2 +ΔΩm.
As an effect, the central mode m = 0 is shifted from the

minimum of the potential bym0 = ΔΩ
2D
, and its minimum is

reduced by EΔ = ΔΩ2

4D
, compared to the resonant caseΔΩ =

0. When the available kinetic energy is insufficient to sup-

port trapped states, the available states will become local-

ized to the local energy and have the shape of a Wannier-

Stark state. This happens for EΔ above the kinetic energy

limit, which occurs above a critical detuningΔΩc =
√
8CD.

This sets a transition between two ranges of RF detuning, the

resonant and off-resonant modulation regimes.

We can now analyze the dynamics and steady states

in this system using the eigenmodes that we have found.

Figure 1(f) shows a simulation of the time evolution in this

system, initially expanding ballistically but then reaching a

limit set by the quadratic potential and the kinetic energy,

mmax. Once this limit is reached, the expansion stops, and

mode dephasing effects appear due to additional contribu-

tions from the quadratic potential. To study a realistic laser

system, we then introduce gain curvature by setting Gc ≠

0, which introduces a non-Hermitian modal-space depen-

dent contribution. In this case, we consider gain saturation

acting on the average intensity in the cavity ⟨I(z)⟩ of the
form g0

(
1− ⟨I(z)⟩∕Is) (equivalent to Is →∞). This slow
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(e) (f) (g)

(h) (i) (j)

(b) (c)
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Figure 2: Linear eigenmodes and nonlinear steady states. (a) And (b) are eigenmodes of Eq. (5) in the cavity space and modal space, respectively.

The eigenmodes are trapped in the quadratic potential, with an upper limit on the maximal available trapped mode. This limit is set by the available

kinetic energy in the system, 4C. (c) And (d) are steady state spectra calculated from simulation for two values of gain curvature, gc = 2 and gc = 0.2,

respectively, presented with the analytical solution. They exhibit a Hermite–Gaussian intensity distribution (blue) with linear intermodal phase

differenceΔ𝜙 (red). The simulated amplitudes Isim(m) and the analytical solution Ia(m) agree well, especially for reduced gc . (e)–(i) Steady-state

instantaneous frequency taken from simulations and compared to the analytical solution for different detuning values above and below the critical

detuningΔ f c = 6.93 MHz. We also present the small amplitude variation, f A, occurring due to gain curvature. (j) Steady state spectrum for

off-resonant modulation withΔ f > Δ f c , derived by simulations and compared to the analytical solutions. Here the phase difference between

the modes has a 0 or 𝜋 difference, typical to electro-optically modulated combs.
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gain saturation effectively normalizes the overall power

without modifying the temporal pulse shape. In this linear

system, it is easy to show that only the eigenmode with

the maximal overlap with the gain will have an infinite

lifetime. Figure 1(g) shows the evolution in time, where the

initial quantum walk from a single mode dissipates into

the first Hermite–Gauss mode with a Gaussian envelope

both in frequency and time, i.e. a pulse of spectral band-

widthW 1 [48]. This also resembles a condensation process

[60], where the system thermalizes to the lowest energy

state. Although this stabilization process is beneficial for

pulse generation, for many applications, frequency comb

sources are required to have broadband spectra, which is

not optimized here. It would be beneficial to utilize the

broadest available bandwidth set by the limitWmax, but in

the discussed slow-gain case, the required spectrally and

temporally delocalized supermodes are inaccessible [48].

The method of driven mode-locking could greatly benefit

from a different approach, which prevents the state from

condensing to the lowest energy, and therefore the lowest

available bandwidthW 1.

5 Synthetic dimension dynamics

in fast-gain lasers: quantum walk

comb laser

As seen in the previous section, resonant modulation of a

laser system alone does not ensure the generation of broad-

band combs, since dissipation leads to destabilization of

spectrally delocalized supermodes and thus a contraction of

the spectrum. Our system, however, contains an additional

term to the CGLE that stems from the fast dynamics of

carriers in semiconductor lasers. When the gain recovery

time is fast, it can support quasi-instantaneous saturation of

the form g0
(
1− I(z)∕Is

)
, effectively forcing constant inten-

sity all around the laser cavity. We note that the fast-gain

is the same property that locks the modes proliferated by

cross-steepening in Fabry–Perot lasers, which requires bi-

directional lasing [30], [36], [37]. When the fast gain term is

considered, the only allowed dynamics in the laser cavity

is given by its phase, effectively changing the focus from

the photon density |E|2, which remains constant, to the pho-
tonic current density j ∝ 𝛽Im

{
E∗ 𝜕E

𝜕x

}
∼ 𝛽

𝜕𝜙

𝜕x
|E|2, which is

also proportional to the instantaneous frequency of the

field, fi = c∕2𝜋 𝜕𝜙

𝜕x
. This type of field in fast-gain lasers can

carrymany frequencies while maintaining a quasi-constant

intensity, extended over the whole cavity. To maximize the

duration of the state in time, fast-gain leads to a different

stabilization process. This means that the system opposes

stabilization on short forms of fields in time like pulses. On

the contrary, fast-gain lasers select the broadest available

modes in time to construct the final state, like the high-order

Hermite–Gauss modes we found above. As a result, instead

of collapsing to the narrow Gaussian mode of bandwidth

W 1, fast-gain lasers under resonant modulation support the

generation of quantum walk comb laser states, i.e. they sta-

bilize on states with the broadest available frequency band-

widthWmax ≫ W 1 in the system, which is highly useful for

OFC applications (Figure 2(c) and (d)).

6 Analytical derivation

of the steady-state

To find the steady states in Eq. (3), we turn back to the

effective space description and propose a solution of the

following form, assuming an eigenfrequencyΔ𝜔, while the
spatial field is copropagating with the modulation:

E = A0
(
1− f (𝜂)

)
exp

(
i𝜙(𝜂)+ iΔ𝜔𝜏

)
. (7)

Here f is a small variation of the amplitude, so that f ≪

1. By substituting E into Eq. (3), we can find the following

set of coupled equations for the real and imaginary parts

(derivation in Appendix A):

Δ𝜔− 𝜙′ΔΩ = −D f ′′(
1− f

) − Gc
2i f ′(
1− f

)𝜙′

+ Gc𝜙
′′ − D𝜙′2 + 2Ccos(𝜂), (8)

f ′(
1− f

)ΔΩ = 1

2
c

[
g0

(
1−

A2
0

(
1− f

)2
Isat

)
− 𝛼𝑤

]
− Gc

f ′′(
1− f

)

+ D
2i f ′(
1− f

)𝜙′ − D𝜙′′ − Gc𝜙
′2. (9)

Due to the suppression of fluctuations and the expected

small intensity variation, we look for solutions with

f , f ′, f ′′ → 0 (later justified). For the first-order solution, we

solve Eq. (8) for the phase. We neglect the contributions of

the gain curvature by taking Gc𝜙
′′ → 0, which is justified in

Appendix B. The condition on the imaginary part turns to

𝜙′ =
ΔΩ±

√
ΔΩ2 − 4DΔ𝜔+ 8CDcos(𝜂)

2D
. (10)

At this point, we do not know the overall eigenfre-

quency Δ𝜔, and therefore we can find a continuum of

states to match this problem. However, we are looking for

a single continuous solution where the frequencies have

both positive and negative values. Such a solution must use

the two branches of 𝜙′, which would be stitched at the
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point 𝜂 where the square root is zero, 𝜂s, and fulfillsΔΩ2 −
4DΔ𝜔+ 8CDcos

(
𝜂s
)
→ 0. To keep also a finite derivative(

𝜙′)′ at this point, we must also require that

𝜙′′ = ∓2Csin
(
𝜂s
)

√
ΔΩ2 − 4DΔ𝜔+ 8CDcos

(
𝜂s
) < ∞. (11)

The stitching points, at which the denominator goes to

zero, also require that sin
(
𝜂s
)
→ 0, which sets 𝜂s = 𝜋 as this

point should provide the lowest value of the cosine function

for the square root to be real (excluding 𝜂s = 0). In this case,

the eigenfrequency is set to Δ𝜔 = ΔΩ2

4D
− 2C. We plug this

value back into the equation and have

𝜙′ = ΔΩ
2D

± 2

√
C

D
cos
(
𝜂

2

)
. (12)

We integrate the solution 𝜙′ to find the phase

𝜙(𝜂) = ΔΩ
2D

𝜂 ± 4

√
C

D
sin
(
𝜂

2

)
+ 𝜙0. (13)

The solution 𝜙 is correct in the whole range of 𝜂 values

only when boundary conditions do not apply. Although the

system is periodic, the periodic boundary conditions set by

the cavity length do not necessarily match the periodicity

of the above form. To find the correct solution, we look for

a range of this solution where the overall phase is peri-

odic, meaning 𝜙
(
𝜂0
)
= 𝜙

(
𝜂0 + 2𝜋

)
. We apply the periodic

boundary conditions to 𝜙, which results in

𝜂0 = 2arcsin

(
∓ ΔΩ√

CD

𝜋

8

)
, (14)

and depends on the offset of the modulation frequencyΔΩ.
Then, the constructed periodic solution will have the form

𝜙s(𝜂) = 𝜙(𝜂)∀𝜂0 ⩽ 𝜂 < 𝜂0 + 2𝜋, where 𝜙s(𝜂) = 𝜙s(𝜂 + 2𝜋).

Figure 2(c) and (d) show a comparison of the steady-state

spectral amplitude and phase differences between simula-

tions of Eq. (3) and the analytical solution from Eq. (12), for

two different values of gain curvature. Here, it is clear that

the state is not aBessel function, as the intermodephases are

not spaced by only 0 or 𝜋. In fact, we observe that the sum

of these differences adds to 2𝜋, which is a beneficial relation

for frequency-modulated combs that span over the whole

cycle. The spectral amplitude is compared to the analytical

solution. When gain curvature is present, the simulation

and analytical solutions slightly differ, but with decreas-

ing gain curvature, the correspondence becomes better. In

the spatial domain, the solution is mainly defined by its

instantaneous frequency. Figure 2(e)–(g) show the value of

the instantaneous frequency found by simulations and the

analytical solution. These are in good agreement, where

the deviation increases for detuning closer to the critical

valueΔΩ~ΔΩc, specifically at the instantaneous frequency

discontinuity. This occurs due to incomplete assumptions

for the solutions at this critical value of detuning.

6.1 Bandwidth at near-resonant modulation

To find the bandwidth of the state when ||ΔΩ|| < ΔΩc, we

look for the largest available phase derivative span in the

signal, with a stitching point at 𝜂0. We expect the global

extrema to appear either at 𝜙′′ = 0, or at the boundaries,

where the extrema values are𝜙′
extrema

= ΔΩ∕2D± 2
√
C∕D.

At the edges we expect

𝜙′
edges

= 𝛥𝛺

2D
± 2

√√√√√C

D

⎛⎜⎜⎝
1−

(
𝛥𝛺√
CD

𝜋

8

)2⎞⎟⎟⎠
, (15)

where we used the relation cos(asin(±x))=
√
(1− x2). As

𝜙
′ it truncated with half a period of a cosine, we expect

only a single local extremum to be included, for example

the positive one, which would be naturally larger than the

positive edge extremum. The lowest𝜙′ value will be then at

the negative edge value, while the negative local extremum

is outside the solution. We conclude that the overall band-

width is limited on one side by a local extremum and the

other by an edge, leaving a bandwidth of

WΔΩ = cK

2𝜋

|||𝜙′
extremum

− 𝜙′
edge

|||
= 2 fr

√
C

D

⎛⎜⎜⎜⎝
1+

√√√√√1−
(

𝛥𝛺√
CD

𝜋

8

)2⎞⎟⎟⎟⎠
.

(16)

At resonant modulation for ΔΩ = 0, the bandwidth is

WΔΩ=0 = 4 fr
√
(C∕D) = Wmax, as expected from the energy

consideration in the synthetic space.

6.2 Amplitude deviation

Although we neglected the amplitude variation to find the

phase, there is a direct impact of the phase on the amplitude.

We derive this impact on the amplitude shape when modu-

lation is in the resonant region. We keep Gc → 0, so that the

equation for the real part is then (justified in Appendix B)

D𝜙′′ = 1

2
c

[
g0

(
1−

A2
0

(
1− fA

)2
Isat

)
− 𝛼𝑤

]
. (17)
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From this formula, we can derive the steady-state

amplitude (Appendix C) and find that

fA ≈
D

c
(
g0 − 𝛼W

)𝜙′′, (18)

where the amplitude is directly impacted by the variations

in the phase. Figure 2(e)–(i) compares the instantaneous

frequency, m(𝜂), which is proportional to 𝜙′, to the ampli-

tude variation, fA. This solution results in a maximal ampli-

tude variation of fA,max = 2
√
DC

c(g0−𝛼W )
∼ 10−3 ≪ 1, which veri-

fies our initial assumption for this range of values.

7 Strong detuning regime

As we observe in the lattice model, detuning imposes an

offset of the minimum of the dispersion-related potential

relative to the point of highest gain. When this offset is suf-

ficiently large, meaning ΔΩ > ΔΩc, the initial conditions

and gain curvature set a different stable nonlinear solution

to the system. To find this family of solutions, we assume

that the detuning is large enough, so that we could use

the approximation ||ΔΩ𝜙′||≫ ||D𝜙′2|| and write the phase

equation as

Gc
ΔΩ𝜙′′ + 𝜙′ = Δ𝜔− 2C

ΔΩ cos(𝜂), (19)

where the solution of this driven linear ordinary differential

equation is

𝜙′ = Δ𝜔
ΔΩ − 2C

ΔΩ
√(

Gc
ΔΩ

)2
+ 1

cos

(
𝜂 + atan

(
Gc
ΔΩ

))
.

(20)

Here, as previously,Δ𝜔 is set by the gain curvature that

chooses the state with the higher overlap with the central

frequencies, i.e. Δ𝜔 = 0. The instantaneous frequency and

spectra associated with this regime are shown in Figure

2(h)–(j),where these states are cosine shaped in their instan-

taneous frequency and consequently Bessel-shaped with

a symmetric spectrum. We notice that in this regime, the

phase is following directly the shape of the modulation, as

would be in the case of linear phasemodulation by an exter-

nal EO modulator. From the point of view of modulation

overlap, this process is resonant and occurs inside the laser,

beingmore similar in its nature to a frequency comb regime

found in actively mode-locked lasers when the modulation

is strongly detuned. In practice, the stabilization processes

are completely different. Here, the gain recovery time is fast,

and the suppression of fluctuations leads to higher stability.

We will analyze this stability in Section 8.

Although we have a general description of the analyt-

ical solutions in both the on- and off-resonant regime, it is

imperative to acquire their spectral shape from the com-

plete and non-approximated CGLE (Eq. (3)). Figure 3(a)–(c)

show the value of the spectral intensity, and amplitude and

instantaneous frequencies in simulations for a range of

detuning values,Δ f = ΔΩ∕2π. Although the spectral shape
in Figure 3(a) is smoothly deforming in the whole range,

Figure 3(b) and (c) present an abrupt transition between

two regimes. When ||ΔΩ|| < ΔΩc, the regime is resonant

and follows a solution of the form presented in Eq. (13),

and for all other values the steady state follows the solu-

tion in Eq. (20). The two regimes are also related to the

two groups of eigenmodes presented in Figure 2(a) and

(b), the trapped Hermite–Gaussians (red) and the Wan-

nier–Stark like modes above the maximum kinetic energy

(blue). Figure 3(d) and (e) show the time evolution of a

state that was initiated with a single mode at m = 0, in

frequency and cavity amplitude, respectively, at a detun-

ing value ΔΩ ∼ ΔΩc. We observe an initial oscillation and

then stabilization on a steady spectrum. This type of oscil-

latory dynamics is experimentally studied in a different

work [29].

8 Effects of significant gain

curvature and third order

dispersion

Although, at first order, gain curvature and third-order dis-

persion are less significant than quadratic dispersion, mod-

ulation and fast gain, these impact the shape of the spec-

trum. To study the impact of gain curvature and third-order

dispersion on the steady state, we perform simulations to

find the dependence of the spectra at different detuning val-

ues on the gain curvature effective parameter, Gc, and third

order dispersion parameterD3 = 1

6
kt,3c

4K3, where kt,3 is the

third-order dispersion is in units of
f s3

mm
. Figure 4(a) dis-

plays the spectrum as a function of detuning, with the same

parameters as in Figures 2 and 3, but with gc = 6, 3 times

larger. It is clear that the spectrum is limited by a condition

related to gain curvature on top of the maximum band-

width limit that is set by only modulation and dispersion.

Figure 4(b) shows the spectra with the same original condi-

tions, but where dispersion has the opposite sign. This also

flips the sign of the instantaneous frequency and reflects the

spectrum symmetrically around m = 0. Figure 4(c) and (d)

show the impact of third-order dispersion on the spectra

(kt3 ≠ 0) as a function of injection detuning.We observe that
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(a) (c) (d)

(e)(b)

Figure 3: Steady states in the quantum walk comb laser versus RF detuning in simulations. (a) Steady state spectrum as a function of RF detuningΔ f .

(b) Intensity in the cavity versus RF detuningΔ f . (c) Two periods in 𝜼 of the instantaneous frequency in units ofm as a function of the detuning

frequencyΔ f . (d) and (e) Time evolution under significant detuningΔ f ∼ ΔΩc∕2𝜋 of a state initialized atm = 0. The evolution shows

an overdamped oscillation and then stabilization into an asymmetric spectrum.

the symmetry between positive and negative detuning is

broken, depending on the sign of the third-order dispersion.

9 Noise and stability

Lasers with fast gain that stabilize through gain saturation

have noise suppression properties that differ from dissipa-

tive slow gain systems. It was shown through an analysis

of fluctuations [61]–[63], that noise that does not match

the phase of the underlying nonlinear steady state in the

specific point where it is located will be quickly suppressed

like in a single mode laser. Therefore, stability would follow

approximately a Shallow-Townes limit [64]. This is in con-

trast to lasers with slow gain that suppress intensity fluc-

tuations on average, with the form g0
(
1− ⟨I(z)⟩∕Is), letting

the state destabilize from its self-preserving shape. Figure 5

shows calculations of noise added to a system with fast and

slow gain in various regimes. We model the noise as an

additional term on the right-hand side of Eq. (3), in the fol-

lowing form AN
√
I0(X(z)+ iY (z))∕Tc, where X, Y ∈ [−1, 1]

are random with a uniform distribution, I0 = Is
(
1− 𝛼∕g0

)
is the steady state intensity and AN is a variable amplitude

of the noise. In the absence of noise, we reach a steady state

of the system and use the noise term above to perturb it. We

then calculate the variance of the intensity 𝜎I (z) relative to

the steady state for 400,000 cycles. Every point in Figure 5

is calculated as Nr =
√∑

𝜎2
I
(z)∕Nl∕2I0AN , which is exactly

AN for a signal that contains only the noise input, andwhere

Nl is the number of points used for the cavity space. When

the detuning, Δ f , is small, there is more than an order

of magnitude difference in the response of the fast gain

compared to the slow gain. The power fluctuation levels

for the fast gain show significantly lower amplitudes than

for slow gain. Further away from resonance, this becomes

even more drastic, reaching a difference of 2–3 orders of

magnitude. This showcases the improved noise properties

of the quantumwalk comb laser compared to regular active

mode locking.

10 Discussion

In this work, we have derived a comprehensive model to

describe the dynamics and steady states of a modulated

backscatter-free ring cavity laser with a fast gain recov-

ery time. We showed that, unlike slow gain systems with

dynamics governed by dissipation, the fast gain supports
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(a) (b)

(c) (d)

Figure 4: Spectra impacted by gain curvature, sign of dispersion, and third-order dispersion. (a)–(d) Spectra versus RF detuning,Δ f , based on the

parameters used in Figure 3(a). In (a) the gain curvature is three times larger, which for this value presents a strong limitation on the spectral shape.

In (b), the sign of the dispersion is flipped, therefore the spectrum is mirrored symmetrically around m = 0. (c) and (d) Have third order dispersion,

positive and negative, respectively. The third-order dispersion deforms the spectral shape and breaks the previous symmetry of flipping both detuning

and the modal axis.

Figure 5: Intensity noise level for slow and fast gain. The relative noise response is the square root of the intensity variance normalized by the total

intensity and noise generation rate. The noise is presented in logscale and shows the supremacy of fast gain lasers in terms of noise for the whole

range of frequencies for various values of gain curvature and noise generation rates.
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the expansion of a quantum walk in a synthetic frequency

dimension. The expansion continues until the maximum

frequency bandwidth limit, set by dispersion and modula-

tion, is reached. Once the system reaches this limit, it stabi-

lizes on the broadest available state in the system that fol-

lows a predictable shape given by the nonlinear analytical

solution that we derived. Interestingly, when Fabry–Perot

fast-gain lasers are stronglymodulated, experiments in [33],

[47], [65] present instantaneous frequencies that resemble

the analytical solutions we have found of a half-sine shape.

The appearance of this signature is related to the compe-

tition between the cross-steepening nonlinearity caused by

spatial hole burning and phase modulation and will be the

subject of future studies.

Moreover, we found that detuning from resonance

reshapes the state until an abrupt transition occurs, and the

state changes its nature to an FM-like comb which directly

follows themodulation.We also studied the noise properties

of such systems and showed that they outperform their slow

gain counterparts, an advantange which we attribute to the

liquid state of the light. Although the repetition rate has

exquisite locking properties, the jitter in the carrier enve-

lope offset frequency can contribute to substantial optical

linewidth broadening. It would be beneficial to study the

effects of optically injecting quantum walk comb sources,

which incorporate coherent pumping schemes, such as in

[66], to reduce the overall optical linewidth of the source.

Along with unique acceptance to shaping the spectrum [50],

we believe that modulated fast-gain lasers will pave the

way to highly controllable, stable andbroadbanddevices for

daily applications.
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Appendix A: Derivation of the

coupled amplitude and phase

equations

Herewe derive the coupled amplitude and phase equations.

We start with the equation

Ė = 1

2
c

[
g0

(
1− I(𝜂, 𝜏)

Isat

)
− 𝛼𝑤

]
E + 1

2

(
i𝛽 + gc

)
K2 𝜕

2E

𝜕𝜂2

+ i
1

2
ca1 cos(𝜂)E,

where we used the copropagating coordinate 𝜂 = Kz−
ΔΩ𝜏 . Due to the instantaneous gain saturation term, we

then assume the field follows the following form

E = A0
(
1− fA(𝜂)

)
ei𝜙(𝜂)+iΔ𝜔𝜏 ,

where the amplitude is quasi constant A0 with a small

amplitude variation fA, and the state has an overall evolu-

tion frequencyΔ𝜔. The LHS is then

Ė =
(
iΔ𝜔− i𝜙′ΔΩ

)
E + A0 f

′
A
ΔΩei𝜙+iΔ𝜔𝜏 .

The second derivative of the field in 𝜂 is

𝜕2

𝜕𝜂2
E = 𝜕

𝜕𝜂

(
𝜕

𝜕𝜂
A0
(
1− fA

)
ei𝜙+iΔ𝜔𝜏

)

= A0
𝜕

𝜕𝜂

(
− f ′

A
ei𝜙+iΔ𝜔𝜏 +

(
1− fA

)
i𝜙′ei𝜙+iΔ𝜔𝜏

)

= A0

(
− f ′′e

i𝜙+iΔ𝜔𝜏

A
− 2 f ′

A
i𝜙′ei𝜙+iΔ𝜔𝜏

+
(
1− fA

)
i𝜙′′ei𝜙+iΔ𝜔𝜏 −

(
1− fA

)
𝜙′2ei𝜙+iΔ𝜔𝜏

)
.

We then get

(
iΔ𝜔− i𝜙′ΔΩ

)
+

f ′
A(

1− fA
)ΔΩ

= 1

2
c

[
g0

(
1−

A2
0

(
1− fA

)2
Isat

)
− 𝛼𝑤

]

+
(
iD+ Gc

)(
−

f ′′
A(

1− fA
) − 2i f ′

A(
1− fA

) i𝜙′ + i𝜙′′ − 𝜙′2
)

+ i2Ccos(𝜂).
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We require that the real and imaginary parts will be

fulfilled separately

(1)

Δ𝜔− 𝜙′ΔΩ = −D f ′′
A(

1− fA
) − Gc

2i f ′
A(

1− fA
)𝜙′ + Gc𝜙

′′

− D𝜙′2 + 2Ccos(𝜂),

(2)

f ′
A(

1− fA
)ΔΩ = 1

2
c

[
g0

(
1−

A2
0

(
1− fA

)2
Isat

)
− 𝛼𝑤

]

− Gc
f ′′
A(

1− fA
) + D

2 f ′
A(

1− fA
)𝜙′ − D𝜙′′ − Gc𝜙

′2.

Appendix B: Rationale for

neglecting gain curvature

To justify neglecting the term Gc𝜙
′′ in equation Eq. (8), we

estimate the values at resonance. The solution for ΔΩ = 0

gives𝜙′′ = ∓
√

C

D
sin
(
𝜂

2

)
, and the ratio between the contri-

butions of gain curvature and dispersion are given by

||||
Gc𝜙

′′

D𝜙′2
|||| =

Gc

√
C

D
sin
(
𝜂

2

)

D4 C
D
cos2

(
𝜂

2

) = Gc

4
√
CD

sin
(
𝜂

2

)

cos2
(
𝜂

2

) .

As long as Gc ≪ 4
√
CD, our approximation is valid,

where we can also express this condition as Gc ≪ Dmtot,

where mtot is the number of populated modes in the

steady state at resonance. For realistic parameters, the ratio
Gc

4
√
CD

∼ 1

40
. Moreover, Gc ∼ D, so that as long as the steady

state is sufficiently broad, the gain curvature is not playing

a significant role in shaping the frequencies. However, at

values of 𝜂 = 𝜋, the cos2
(
𝜂

2

)
drops to zero and the approx-

imation does not hold anymore.

Appendix C: Considerations

for amplitude variation

at the near-resonant regime

We start with the equation for the real part of the field

f ′
A(

1− fA
)ΔΩ = 1

2
c

[
g0

(
1−

A2
0

(
1− fA

)2
Isat

)
− 𝛼𝑤

]

− Gc
f ′′
A(

1− fA
) + D

2 f ′
A(

1− fA
)𝜙′ − D𝜙′′ − Gc𝜙

′2.

We consider Gc → 0, therefore the equation is redu-

ced to

f ′
A
ΔΩ = 1

2
c

[
g0

(
1−

A2
0

(
1− 𝜖 fA

)2
Isat

)
− 𝛼𝑤

]

+ 2D f ′
A
𝜙′ − D𝜙′′.

Taking an order ofmagnitude for the values of𝜙′, 𝜙′′ ∼√
C

D
, we can estimate

𝜖 f ′
A
ΔΩ = 1

2
c

[
g0

(
1−

A2
0

(
1− 𝜖 fA

)2
Isat

)
− 𝛼𝑤

]

+ 2𝜖 f ′
A

√
CD−

√
CD.

Using ΔΩ ≤ Δc which is the limit in the resonant

regime, we can neglect the terms that depend on f ′
A
, as

f ′
A
≪ 1. We finally get

D𝜙′′ = 1

2
c

[
g0

(
1−

A2
0

(
1− fA

)2
Isat

)
− 𝛼𝑤

]
.

From this formula, we can derive the steady state

amplitude

A0
(
1− fA

)
=
√
Is

√
1− 2D

cg0
𝜙′′ − 𝛼W

g0

=
√
Is

√
1− 𝛼W

g0

√
1− 2D

c
(
g0 − 𝛼W

)𝜙′′

≈
√
Is

(
1− 𝛼W

g0

)(
1− D

c
(
g0 − 𝛼W

)𝜙′′
)
.

So that

A0 =
√
Is

(
1− 𝛼

g0

)
and fA =

D

c
(
g0 − 𝛼W

)𝜙′′,

and finally

fA ≈ ∓
√
DC

c
(
g0 − 𝛼W

) sin(𝜂
2

)
.

Appendix D: Parameters

relationship to physical quantities

To relate the normalized parameters to physical quantities

we present in Table A1 a list of physical quantities that cor-

responds to the system we study in this work.
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Table A1: Parameters used for simulations.

Name Symbol Value

Cavity length L 5 mm

Waveguide losses+ output

coupling divided by length

𝛼𝑤 7 cm−1

Dispersion kt 1,000 fs2/mm

Saturation intensity Is 8 ⋅ 1012 V2/m2

Coherence lifetime T2 50 fs

Light velocity in the cavity c c0/n, n= 3

Gain g0 10 cm−1

Detuning (angular

frequency)

ΔΩ ∈ [−2π × 15MHz, 2π × 15MHz]

Coupling strength C 3 ⋅ 108 rad/s

Appendix E: Fast-gain operator

in the synthetic frequency space

We consider a differential equation with a linear operator

local in z and the fast-gain nonlinear term

iĖ = LzE − g0
I

Is
E.

We use a modal description of the field where E(z, 𝜏) =∑
An(𝜏)e

−inKz

i
∑

Ȧn(𝜏)e
−inKz = Lz

∑
An(𝜏)e

−inKz − g0
Is

∑
Aj(𝜏)

× e−i jKz
∑ ∗

A
p
(𝜏)ei pKz

×
∑

Al(𝜏)e
−ilKz.

We multiply both side by e−imKz, integrate over the cav-

ity and get

iȦm(𝜏) =
[
Lz
(
e−imKz

)
eimKz

]
Am(𝜏)

−
∫

g0
Is

∑
Aj(𝜏)

∗
A
p
(𝜏)Al(𝜏)e

i( p− j−l+m)Kzdz

=
[
Lo
(
e−imKz

)
eimKz

]
Am(𝜏)

− g0
Is

∑
j, p,l

A j(𝜏)A
∗
p(𝜏)Al(𝜏)𝛿 j+l− p−m,

therefore, we can write the nonlinear term of the fast gain

as

FNL,m =
∑
jpl

𝛿 j+l−m− pA jAlA
∗
p
,

which is identical to the Kerr term in the modal space,

but with an imaginary factor of i with respect to the field

derivative, making this term nonlinear and non-Hermitian.
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