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Abstract: Increasingly, unipolar quantum optoelectronic
devices such as quantum cascade lasers are employed
for the targeted generation of dynamic waveforms in
the mid-infrared and terahertz regime. These include for
example short-pulse trains, frequency combs and solitons.
For the theoretical investigation and targeted development
of these devices, suitable semiclassical models such as
Maxwell-Bloch type equations have been developed, which
employ a two- or multilevel density matrix description for
the electron dynamics and a classical propagation equation
for the optical resonator field. Unipolar devices typically
utilize quantized conduction band states as optical levels.
For quantum well and wire structures, the electron states
are additionally characterized by a wavevector associated
with free motion in the non-confined directions. This degree
of freedom can give rise to nonparabolicity effects as well as
Bloch gain, both leading to gain asymmetry and linewidth
enhancement. However, fully accounting for the wavevec-
tor greatly increases the computational cost of the density
matrix approach. Here, we introduce an effective discrete-
level density matrix model, which includes these effects via
correction factors obtained by suitable wavevector averag-
ing. These parameters can be extracted from carrier trans-
port simulations along with other required input data, yield-
ing a self-consistent model. Coupling the effective density
matrix description to optical propagation equations results
in an effective Maxwell-density matrix approach, which is
well-suited for dynamic simulations of quantum optoelec-
tronic devices.
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1 Introduction

Increasingly, quantum confinement in semiconductor het-
erostructures is exploited to develop quantum optoelec-
tronic devices with enhanced performance and expanded
functionalities. In unipolar devices, the lasing transition
occurs between quantized states in the conduction band,
and thus the optical properties do not depend on the semi-
conductor bandgap. This opens up enormous possibilities
for custom-tailoring lasing wavelengths, optical nonlinear-
ities and other active region properties by quantum engi-
neering the confined states. Specifically, the quantum cas-
cade laser (QCL) utilizes optical intersubband transitions in
the conduction band to access a wide range of mid-infrared
(MIR) and terahertz (THz) wavelengths [1], [2]. Here, a peri-
odic multi-quantum well design is used, allowing for the
generation of multiple photons by a single injected electron.
Also amplifiers [3], [4], modulators [5] and detectors [6], [7]
have been realized based on this principle. Generally, unipo-
lar quantum well devices have an enormous potential for
long-wavelength optoelectronic applications [8]. Further-
more, also semiconductor quantum wire structures with
two-dimensional quantum confinement are attractive can-
didates for developing intersubband optoelectronics [9].
Recently, dynamic waveform generation with unipolar
devices has become a vibrant research field, motivated by
a wide range of applications in, e.g., metrology and com-
munications. In particular, mode-locking techniques have
been employed for generating short-pulse trains [10], [11]
and broadband frequency combs [12]-[14], i.e., discrete,
equally spaced spectra associated with periodic temporal
waveforms. In this context, also harmonic operation in QCLs
has attracted considerable interest, where the waveform
period is a harmonic of the cavity roundtrip time [15]-[20].
Moreover, the formation of dissipative solitons in QCLs has
recently caught wide attention [21]-[24]. For a systematic
design of such waveform-generating nanostructured lasers
and improved understanding of their dynamics, accurate
and efficient numerical models are essential [25]. More
generally, such dynamic modeling approaches are poten-
tially relevant for high-speed systems employing unipolar
quantum optoelectronic devices. To account for quantum
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coherence effects, these approaches are frequently based
on a density matrix (DM) formalism describing the elec-
tron dynamics in the quantum active region, coupled to
Maxwell’s equations capturing the optical field propagation
in the cavity. Since often simulations over many hundred
or thousand cavity roundtrips are required to reach steady
state operation [26], the model is commonly simplified to
reduce the numerical load. For example, optoelectronic
devices with a waveguide cavity typically feature an invari-
ant transverse field distribution, enabling the use of a one-
dimensional optical propagation model which only depends
on time t and a single spatial coordinate x [25]. Furthermore,
the dependence on the electron in-plane wavevector k is
typically ignored in the dynamic DM equations [25], greatly
reducing the numerical load in comparison to fully k depen-
dent models [27]-[30]. This is justified for optical transitions
between subbands with nearly parallel dispersion relation-
ships [25], [31], as is often ideally assumed for QCLs [1], but
not for interband transitions since the energy dispersions in
the conduction and valence bands have opposite curvatures
[25], [32]. However, also operation in unipolar quantum well
and wire devices can be affected by residual nonparabol-
icity [33]-[36] as well as by Bloch gain [34], [37]-[40], both
leading to gain asymmetry and linewidth enhancement.
Restricting the description of the quantum active
region to two energy levels results in the semi-
phenomenological Maxwell-Bloch (MB) equations, which
include dissipation in terms of empirical relaxation rates
[25]. Various strategies have been employed to derive
effective MB equations for bipolar semiconductor lasers
and amplifiers from microscopic models by adequate k
averaging over the electron and hole distributions [32],
[41], [42]. These models include a linewidth enhancement
factor (LEF) to describe nonparabolicity effects. For
unipolar devices, the so-called effective semiconductor
MB equations (ESMBEs) have been derived by combining
the MB equations with a phenomenological expression
for an asymmetric material susceptibility [43], [44], and
employed for studying the dynamic QCL operation in
both ring and Fabry-Perot configurations [35], [43]-[46].
Also the Bloch gain has been implemented in the MB
framework [39]. On the other hand, fully quantitative
modeling of quantum-engineered optoelectronic devices
requires explicit consideration of all relevant mechanisms
and quantized energy levels. This can be achieved in the
framework of an advanced Maxwell-DM model, featuring a
multilevel DM and a generalized system Hamiltonian, which
generally includes tunneling in addition to light—matter
interaction [25], [47]. Dissipation is here described using
the Lindblad formalism [25], [48]. The Lindblad-type
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relaxation terms and Hamiltonian matrix elements can be
extracted from carrier transport simulations or microscopic
descriptions, resulting in a self-consistent device model
[26], [31]. This approach has been employed for quantitative
simulations of various advanced THz and MIR QCL devices
in Fabry—Perot and ring configurations, yielding excellent
agreement with experiment and providing insights into
device operation. Examples include the modeling of
soliton generation [22], short-pulse mode-locked operation
[11], [47], and fundamental [26], [31], harmonic [20], [49]
as well as difference-frequency comb [50] generation.
The multilevel DM naturally includes gain asymmetry
due to multiple optical transitions, which can have a
significant influence on the optical dynamics [17]. However,
contributions of nonparabolicity and Bloch gain have
to date not been considered in Maxwell-DM approaches
beyond the two-level approximation. In the present work,
these effects are systematically incorporated by suitable k
averaging of the microscopic DM equations. The resulting
correction factors, such as effective transition frequencies
and LEF-related quantities, are in our approach not treated
as fitting parameters, but can be extracted from carrier
transport simulations together with the other required
parameters. Thus, the resulting effective Maxwell-DM
equations preserve the self-consistent nature of the
simulation model.

2 Microscopic model

For interband transitions, the derivation of effective two-
level models by suitable wavevector summation has been
addressed in previous work [32], [41], [42]. Here, we focus on
unipolar devices. Asillustrated in Figure 1, these utilize opti-
cal transitions between quantized energy levels n, each con-
sisting of a quasi-continuum of states |n, k) with eigenen-
ergies E, . The associated transition frequencies are given
by @pnx = (Epmx — Enx)/h, with the reduced Planck con-
stant 7. Specifically for quantum well structures, quantum
confinement in growth direction z results in the formation
of quantized states n, and the free in-plane carrier motion
is described by the two-dimensional in-plane wavevector k.
Nonparabolicity can be included by allowing for an energy
dependent effective mass when solving the Schrédinger
equation. This yields for each subband n the corresponding
wavefunction y, (z) and the electron dispersion relation

E,x =E, + R*k]*/(2m}), )]

with the subband effective mass m} and E, = E, _, [51],
[52]. Here, we assume decoupling between the in-plane
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Figure 1: Schematic representation of level schemes for unipolar
devices. Additionally, parabolic electron dispersion relations as given in
Eq. (1) are illustratively sketched. The upper and lower levels of the optical
transition are indicated by blue and red colors, respectively. For QCLs,

a periodic repetition of identical stacks (marked by rectangles) is used.

motion and the confinement direction implying k indepen-
dent wavefunctions y,(z), which is a good approximation
for not too narrow finite quantum wells [53]. Within this
model, the effect of nonparabolicity is accounted for by the
different value of m} for each subband. We note however
that the treatment of nonparabolicity in our effective DM
equations derived in Section 3.2 is not restricted to disper-
sion relations of the form Eq. (1).

The DM elements are given by (m,k|4|n,K) = py0
and reduction to an effective discrete-level description
using DM elements of the form p,, requires suitable k
averaging. Also semiconductor quantum wire structures
with two-dimensional quantum confinement are attractive
candidates for developing intersubband devices [9]. They
can be described analogously; in this case, the free carrier
motion in the remaining direction is characterized by a
one-dimensional wavevector [25]. Besides, our approach is
not restricted to the parabolic dispersion relations given in
Eq. .

The diagonal DM elements p,, = p, ) can be written
as

Pnx = pnfn,k/an,k = an,k? v
k

where the distribution function f, , gives the electron occu-
pation probability of a state |n, k). The scaling factor S may
be chosen such that p, = S Y, f, x corresponds, e.g., to the
carrier number density in level n, or that the normalization

C. Jirauschek: Effective discrete-level density matrix model for unipolar devices === 3445

condition Y p, =1 is fulfilled. The off-diagonal elements
pijx contain the coherence between states |i, k) and |}, k).
The DM evolution equation is given by

0p = = | 5] + [08] ®

with the collision term [d,/] . DM elements between dif-
ferent wavevectors need not be considered due to the k
conservation of optical transitions. This also applies for first-
order tunneling processes, which can straightforwardly be
included in the Hamiltonian by employing adequately local-
ized basis states [54], [55]. For an orthogonal basis set, we
obtain from Eq. (3)

OtPmnk = %Z(pmi,kHin,k — HpixPink) + [atpmn,k] wr @
i

The Hamiltonian in Eq. (4) can be represented as H =
H, + H;, where H,, is the Hamiltonian of the unperturbed
system, with Hy ,, = E, . Off-diagonal elements can, e.g.,
arise from the inclusion of resonant tunneling. For example,
in QCL designs electron transport across thick injection
or extraction barriers is mediated by tunneling between
closely aligned states. Using a localized basis, such as tight-
binding states |m, k) and |n, k) located at the left and right
of the barrier [55], [56] or EZ states [57], the corresponding
DM elements can for small |a)mn‘k| be written as H ,,, =
Hy ym = 1€, Assuming k independent wavefunctions as
discussed above, also the coupling energy AQ,., = hQ,,
does not depend on k [55], [56]. For an optical transition
between two states |m, k) and |n, k), light—matter interac-
tion can in dipole approximation be described by the corre-
sponding matrix elements of the interaction Hamiltonian,
Hy .y = Hyy = —Ed,,,, with the optical field E(t). Here,
Ay = dp, Tepresents the dipole matrix element, which is
again k independent under above assumptions. The model
for the collision term in Eq. (4) used here is discussed in
Appendix A. We note that within above framework, second-
order effects connecting states with different wavevectors,
such as Bloch gain and second-order tunneling, are not yet
included. Various approaches have been discussed in liter-
ature to consider these contributions in effective discrete-
level DM models [39], [58], [59]. In Section 3.2.1, we give a
detailed discussion on the implementation of Bloch gain.

In the following, we restrict our discussions to a field
E with moderate bandwidth and in close resonance with
the optical transition(s), i.e., w, = |a;mn’k| where o, denotes
the optical carrier frequency. Furthermore assuming non-
excessive field strengths as is typically justified in opto-
electronics, the widely used rotating wave approximation
(RWA) can be invoked to increase the numerical efficiency
of the model [25]. Here, the fast oscillations of E and the
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related DM elements p,,, , around @, can be removed by
representing these quantities in terms of the slowly varying
envelope functions €,,, and #,,, x,

(5a)
(5b)

Prnk = Mmnx €XP [_iwc Sgn(wmn,k)t]’
dpnE /T = [€y exp(—io t) + €5, exp(imt)] /2.

More specifically, the field envelope €,,, = €, is here
expressed in terms of the corresponding (instantaneous)
Rabi frequency. The asterisk denotes the complex conju-
gate, and sgn represents the sign function. The evolution
equations for the DM elements in RWA are then obtained
in the usual manner by substituting Eqgs. (5a) and (5b)
into (4) and discarding the rapidly oscillating terms (see
Appendix B). Since a coarser spatiotemporal grid can be
used to resolve the dynamics of the envelope functions, the
computational load gets significantly reduced as compared
to full-wave simulations.

3 Effective discrete-level model

For the DM-based dynamic modeling of semiconductor
lasers and other optoelectronic devices, typically a two- or
multilevel model featuring discrete energy levels is used,
where the wavevector dependence of the states is not
explicitly taken into account [25]. Besides the considerable
decrease of numerical complexity as compared to fully
microscopic models [25], discrete-level approaches facilitate
the development of compact and intuitive descriptions of
the laser dynamics [45], [60]-[62]. However, the wavevector
dependence may leave a direct imprint on the DM dynam-
ics beyond microscopic interactions, e.g., in form of an
asymmetric susceptibility and the closely related linewidth
enhancement resulting from the nonparabolicity effect or
Bloch gain [32], [35], [39], [43]. Thus, rather than simply
ignoring the wavevector dependence of the microscopic
states, a systematic removal of this quantity from the model
by adequate k summation is more appropriate.

The transition from the microscopic, k-resolved
description to an effective model is achieved by defining
effective DM elements obtained via k summation,

Pmn = men,k’
k

Nmn = ann,ks (6)
k

where the diagonal DM elements, p,, = p,, are related to
the total population of level n, and the elements #,,, to the
polarization of the optical transition m — n. For a stationary
optical field with frequency w, #,,, is directly proportional
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Figure 2: Schematic representation of harmonic and Bloch contribution
to the susceptibility y for parabolic subbands and for nonparabolicity.
Here, @,, and y,, are the resonance frequency at k = 0 and

the dephasing rate.

to y&,,, with the complex susceptibility y(w). In Figure 2, y
is schematically illustrated for the case of parallel subbands
and for nonparabolicity, resulting from different effective
masses of the upper and lower subband. Here, population
inversion is assumed. For the complex field convention
introduced in Eq. (5b), J{ y } is proportional to the loss coef-
ficient. For parallel subbands, both the harmonic gain and
the real part of the Bloch susceptibility assume the typical
Lorentzian shape. An asymmetric susceptibility is obtained
for nonparabolicity, or also for parallel subbands if both the
harmonic and Bloch contributions are present.

3.1 Populations

Since the equations for the level populations (see Eq. (B.1) in
Appendix B) do not contain products of k dependent quan-
tities, k summation can be directly performed, resulting in

atpn = iZ(Qinpni - Qniioin)

i#n
+ Z j{“;:inni} + Z j{enir]m‘}
a)nil>0 a)m-l<0
+ Z TinPi — pnzrni' (7)
i#n i#n

The collision term describing intersubband scattering
in Eq. (B.1) is here modeled using Eq. (A.1b), and k averaging
yields

[atpn] col = Z TinPi — pnzrm’- (8)
i#n i#n
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The effective rates r,,, are given by
Fon = 2 Waiena S (1= 20 )/ 2 fope O
kg k

where W, 4 denotes the microscopic scattering rate from
a state |m,Kk) to |n, ). The resulting r,,, are already cor-
rected for Pauli blocking, which can however often be
neglected in QCLs due to the relatively low doping levels
[52]. The rates for various relevant intersubband scattering
mechanisms in quantum well and wire structures, such as
electron—electron, electron—phonon and electron-impurity
interactions, have been discussed in literature [52], [63],
[64]. We note that the inclusion of carrier—carrier scatter-
ing yields rates which are themselves dependent on the
carrier distribution [52], [63]. For simplicity, constant rates
r.» have been assumed in Eq. (9) by replacing the carrier
distributions f;, with their values fl"k at the operating point.
For self-consistent modeling, these can bhe extracted from
fully k dependent stationary carrier transport simulations,
implying that the temporal modulation of the carrier pop-
ulations around their steady-state values is not excessive
[47], [56].

3.2 Two-level coherence

Let us assume an intersubband optical transition with a
single upper and lower level u and ¢, which are coupled
to other levels only by incoherent scattering transitions.
In Figure 1, this corresponds to the case where the optical
levels are not coherently coupled to further states. Such
a transition can be described by an open two-level quan-
tum system. Indeed, available models for the QCL dynamics
including gain asymmetry and linewidth enhancement are
commonly based on a two-level quantum system approach
[35], [39], [43]. Under above assumptions, Eq. (7) simplifies
to

0ipn = Sgn(a)nm)j{ngnuf}

+ Zrinpi - pnz Tnis

i#n i#n

(10)

with n =u, m = ¢ and m = u, n = ¢, respectively. For the
two-level case, Eq. (B.3) simplifies to

atnuf,k = _suf,knuf,k

+ %guf(pf,k - pu,k)' (11)

A straightforward k summation is impeded by the term
SusxMuex- A Naive ansatz, where Y, s,/ x#,,x iS approx-
imated by a term s, .7,, With some complex-valued
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parameter Sy, o = Yy o + 1(@yp of — @), is Mot produc-
tive since this just leads to a modified resonance frequency
and dephasing of the transition, but not to an asymmet-
ric lineshape. Instead, we apply the approach by Yao et al.
[32], originally developed to describe the nonparabolicity
of optical transitions between the conduction and valence
bands. Here, both sides of Eq. (11) are divided by Sus ko and
subsequently, the k summation is performed. This yields
after multiplication with I",

i
atnuf = _Fufrluf + Eguf<clul};fpf - ngyupu» (12)

where the nonparabolicity parameter is given by ¢ =

n] ut,i
Iﬂ“fﬁ"-ug,i’ and
T:ij = Zs;;,kpi,k/ Pis (13a)
k
(13b)

— z -1
Fuf - nuf/ Suf,kr]ut’,k'
k

Rather than using cL‘;i and I, in Eq. (12) as fitting
parameters to experimental data, we derive them from fully
k dependent stationary carrier transport modeling at the
operating point of the device, similarly as for the rates
in Eq. (9). Here, we use the corresponding results for the
carrier distributions flok and populations p? along with the
obtained dephasing rates to evaluate Eq. (13). While 7, ;
can be straightforwardly calculated from Eq. (13a), Eq. (13b)
requires computing the stationary value of 77, and 7, at
the operating point by setting 0, = 0 in Eqgs. (11) and (12),
respectively. This yields with Eq. (2)

o 1

Mye e = zsfufs;},k(f;{k - ;k), (14a)

i _
My = ieufru;<cgg,fp; - ng,up;i)' (14b)
Thus, we obtain from Eq. (13) the nonparabolicity

parameters

Tll:g,i = Zs;;,kﬁ?k/ Zf;'?k’ (15a)
X X

23_1 ( 0 __ {0 )
uz k\ /uk 7.k

k

23—2 0 __ fO ’
k u? k\ 7 uk 7.k

For modeling the combined optical and electronic
device dynamics in a self-consistent manner, the DM model
is coupled to optical propagation equations for the res-
onator field, where also spatial hole burning (SHB) aris-
ing from standing-wave patterns must be considered (see
Appendix C).

Ly = (15b)
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3.2.1 Bloch gain

In the following, we assume a quantum well structure with
in-plane isotropy, which is generally justified for direct
bandgap semiconductors as used for QCLs. Thus, the elec-
tron energies, distribution functions, dephasing rates etc.
just depend on the wavevector magnitude k = |k|. We fur-
thermore restrict ourselves to a parabolic dispersion rela-
tion for each subband, described in Eq. (1). The inclusion of
Bloch gain into Eq. (14a) then yields the total DM element
(371, [39]

1
”ltuf,k = nzf,k + iseuf (guf,uk - guf,fk)9 (16)
with
yisk(fiok- B iok>H(kiz)
Eutik = — , 17)
uk éuf,ksuf,k
and

K= (m}/mi)k* — 2minT"6,, s
K = (m/mi)k* + 2mEh "6y pmo-

H denotes the Heaviside step function, 6,,, and s,
are defined in Eq. (B.4), and y; is the broadening of state
[i,K), with ¥, x = ¥k + ¥ 7 k- We make the ansatz

i
atnuf = _Fufr]uzf’ + iguf [Cuf,fpf - Cuf,upu]’

— AP — o b
Curi = Cypy + Cori = Fuzf(T *7

ut i uf,i)’ (18)

where the parameter ¢?  =T,,7", . represents the Bloch
gain,whilec)? =T ,,7.; is the nonparabolicity parameter
obtained from Eq. (15). Setting d;, = 0 in Eq. (18) yields the
stationary solution
_ i -1 b

Mo = Mg = Eeub”ruf(czf,upﬂ - Cuf,fp;)’ (19)
where the second contribution contains the Bloch gain. We
thus obtain with Egs. (16) and (19)

Zguf,ik
=iKX :
Dy
" i,k

b
Tue,i

(20)

3.2.2 Interpretation

The meaning of the physical parameters in Eq. (18), and
correspondingly in Eq. (12), can be understood from cal-
culating #,,, which is closely related to the complex sus-
ceptibility y, as a function of the detuning frequency
A = w — w,. To this end, we insert a frequency-detuned
field ,, — £,,(A) exp(—iAt) and the corresponding DM
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element #,, — 1,,(A) exp(—iAt) into Eq. (18). After can-
celling exp(—iAt) from both sides, we obtain the stationary
solution (9, = 0)

— Cur e Py

_ 1 Cuf,upu
”qu(A) - zguK(A) A + iruf . (21)
By analogy with Eq. (B.4) we can expressI',, as
Ly =7, +i(0f, — o), (22)

ie,y;, and , are the effective dephasing rate and reso-
nance frequency in the effective discrete-level model. For
simulations featuring a single optical transition, the opti-
cal carrier frequency can be chosen as w, = @;,, such
that Eq. (22) simplifies to I, = y;. This is not possible in
devices featuring heterogeneous active regions, or multiple
sections with different transition frequencies. To recover
the usual dependence of Egs. (18) and (21) on the popula-
tion inversion p, — p,, as found in the conventional MB
equations [25], we can write the population dependent term
appearing in Eqgs. (21) and (18) as

CuruPu =~ Cur e Pe = Cuf(pu - pf)' 23)
Evaluating Eq. (23) at the operating point yields
c 0 —c 0
Cyp = uf,upu uf,fpf (24)

Pu— P

Away from the operating point, the right-hand side of
Eq. (23) with ¢, given in Eq. (24) is a good approximation if
Cypu R Cyp s> OT if the population in one of the two levels is
negligible. For example, p, ~ 0 is assumed in the ESMBEs
[43], [44]. The general form of the population dependence
given by the left-hand side of Eq. (23) can be decomposed
into two terms « (p, — p,) and « (p, + p, ), respectively.
In the context of the Bloch gain, it has been noted that the
contribution  (p, + p,) can lead to residual gain even
without population inversion [39].

From Egs.(2) and (23), we find that
J{c. /(A +1il,,) } atthe operating point has an extremum
for the detuning frequency

A, = (w0, — o)+ y,ff(x— Vx* +1)

with x =R{c,,}/JI{c, )}, corresponding to the gain (or
absorption) peak.

For computing the linewidth enhancement factor, we
must consider that intensity-induced changes 6p, and 6p,
of the upper and lower laser level populations at a given
working point are generally related via 6p, = —{dp,,
where the factor ¢ can be extracted from the scattering,
optical and tunneling rates in the system [65]. Specifically,

(25)
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¢ = 0 for ideal depopulation of the lower laser level, and
¢ =1 for a closed two-level model where p, + p, is pre-
served. Using that the susceptibility y is proportional to
Nye / €4 and taking the complex field convention introduced
in Eq. (5b), we obtain with Eq. (21) the frequency dependent
linewidth enhancement factor

_ 9,01}
a,,I{x}

— ER{( ufu+CCuff)(w wuf_ J/W,)}
{ ufu+CCuff)(w_w _le }

(26)

3.2.3 Analytical evaluation of parameters

Under certain assumptions, the parameters Tu;)l I',, and

7, f’i givenin Eqgs. (15) and (20) can be analytically computed.
Similarly as in Section 3.2.1, we restrict the discussion to a
quantum well structure with a parabolic dispersion rela-
tion of the form Eq. (1) for each subband. Nonparabolicity
related to different effective masses of the laser levels then

yields with Eqs. (1) and (B.4)

Sur = Supo + Sy W = Yyp +16,,0 +16 w0, (27
where Sur0 = Oypr=o — @ and 5, =
h~'m, [(mj)_1 — (m;)_l]. Here, we have introduced
an energy variable

2 2
= Pk 8)
2m,

defined such that the in-plane kinetic energy in a sub-
band i is given by wm,/m where m, is the electron
mass. If we can also describe the dephasing part of
Eq. (27) by a linear energy dependence, y,, = v, + y,: LW

with y,, 0 = ¥y, (w = 0) and y/, = d,,y,,(w = 0), we have
Suro = Yurp T10y,9and s/ =y’ +1ié! inEq. (27). Analo-
gously, we can use y; = y; + yl.’ w in Eq. (17). However, the
linear approximation does not always provide a good fit for
the dephasing, in which case it is better to describe y,, and
v; by a constant, suitably averaged value [56]. Furthermore,
we assume that the kinetic electron distributions are ther-
malized and can thus for each subband i be characterized
by an electron temperature T; [52]. For moderate doping
levels, as is often the case in QCLs, f; in Eq. (2) is then
approximately given by a Maxwell-Boltzmann distribution
[52]. For analytical evaluation, we express Eq. (2) as

piw) = me(mkaTi)_lpi exp[—wm,/(m;kyT;)]
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with the Boltzmann constant kg, and replace the sums
Dk--- fl°k in Egs. (15) and (20) by integrals over w. Defining

I(a,b):/eXIIbX)dx b~'E,(a/b) exp(a/b),
0
p= [ EPCN 4y = h1a! — I(a,b
J@@,b) = x +b) '[a (a,b)]

with the exponential integral E; (x)
can express Eq. (15) as

= [t exp(—xt)dt, we

Tlil?l =I(Sur 05 Spei)s  (299)
np P
F . pzrufu - p(z; uff (29b)
ut — >

P (Sur0 SiypWu) = PUT (Sur 00 Sip W)

where w; = kyT;m} /m,. Furthermore defining the function
G(a,b,c,d, u,xy) as

_ y (¢ + dx) exp(—x)
G_/'J{a+bx}(a+bx)dx

Xo

= (a2 B+ )

da; — cb;

- ua, ua,
(ab — b,a)b, EXp< b, )El<“x° bl> (30)

with u >0, x, €R, and a; = J{a}, b; = T{b}, we can
express Eq. (20) as

+

b _; / /
Tuei =1 exp(D;)G(Syz.0» Sy Wis Yig» ¥{ Wi My X;)

—1G(Syr.00 Sy Wi Yi0» Vi Win 1, X;), (3D

where Hy = m:/m;1 He = m;/m:’ Du = héut’,k:O/(kBTu)’
D, = —hé,s 1=/ (ksT,), and x; =max(0,D;/p;). If we
assume equal electron temperatures T, in both subbands
and neglect nonparabolicity as well as the energy depen-
dence of dephasing (ie, u; =1, s/, = y/ = 0), Eq. (30) sim-
plifiesto G = c(al-a)_1 exp(—X, ). Furthermore choosing the
optical carrier frequency w, as the transition frequency
@y, EQ. (31) becomes with §,,, ;o — 0

I n Yio
usi — =+ >
kT, Yue o

(32)

where the “+” and “—” sign is fori=u and i = ¢, respec-
tively. WithI",, = v, and ru i yu ,» We recover the mod-
ified Maxwell-Bloch equations introduced in ref. [39] by

assuming Yio = Yuf,o/ 2.
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3.3 Generalization to multiple levels

The procedure for deriving the effective parameters can
straightforwardly be extended to optical and tunneling tran-
sitions involving multiple levels. This is the case if a laser
transition has more than one upper or lower laser level,
or for coherent coupling of the laser levels to other states
by resonant tunneling. For the level scheme illustratively
sketched in Figure 1, injection into the upper or extraction
from the lower laser level may, e.g., be dominated by reso-
nant tunneling, described in the model by a corresponding
equation of the form Eq. (B.2). Given a subset of N lev-
els in the quantum system which interact coherently, each
corresponding off-diagonal DM element is governed by an
evolution equation of the form

ato-mn,k = _Smn,ko-mn,k + Z‘):mn,ino-mi,k
i#n

+ Z&mn,migin,k'

i#m

(33)

For a near-resonant optical transition between two lev-
els i and j, oy, represents the corresponding off-diagonal
DM element in RWA, i.e., Ciix = Mijxo and Sijk is given by
Eq. (B.4). For a closely aligned pair of levels i and j, o) =
Pijto AN Sppyc = ¥ ppk + 10y - The constants &, ; repre-
sent the coefficients in Egs. (B.2) and (B.3), related to £; and
respectively.

For deriving the effective DM equations, the stationary
carrier densities ag,k = pgk and the average optical inten-
sity I, at the operating point are extracted from the car-
rier transport simulations (if the operating point is close to
threshold, an arbitrary small value for I, can be assumed).
The &, ; related to the optical field are then obtained from

€

& = dy[20, / (Weyeng)] (34)
with the vacuum speed of light ¢, vacuum permittivity
€, and refractive index n;. Writing down Eq. (33) for all
non-zero off-diagonal DM elements o, associated with
the subset of coherently interacting levels and setting 0, =
0, a linear equation system is obtained which allows us
to compute the stationary solutions o7 . Similarly as in
Section 3.2, both sides of Eq. (33) are d1v1ded by $ynx. and
subsequently, the k summation is performed. For a quan-
tum well structure with in-plane isotropy, the k summa-
tion can be replaced by integration over the energy w
defined in Eq. (28), see Section 3.2.3. Using Eq. (6), we define

0 — 0 0 — o 1 i
op = 2Py and oy, = Yyon - Weintroduce the effective

. . -1 _ -1
parameters Iy, ; via setting stmn,kaij»k =I,, 401 and

using the stationary solutions for the ;. This yields as a
generalization of Eq. (13)
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/Zsmn kal]k (35)

Specifically, for k independent s,,,, we obtain I',,, ; =
Smn- FOr more compact notation, we write I", ., =T,
After multiplication with I',,, we obtain with ¢,,;; =
[, [} the effective DM equation

mn,ij

mn ij =

ato-mn = _ano-mn + ngn,incmn,miami
i#n

+ Zimn,micmn,in Oin-

i#m

(36)

Equation (36) contains the effect of nonparabolicity.
For o,,, describing optical transitions, Bloch gain may be
included similarly as in Eq. (18) by defining

— —1 b
Crnnjii = F <an ii mn,i)

with i = m,n, where z* _is given by Eq. (20). For the inclu-
sion of SHB and coupling of the DM description to optical
propagation equations, see Appendix C.

(37

4 Examples

Nonparabolicity is usually much more pronounced in mid-
infrared (MIR) than in terahertz QCLs, since the larger
energy spacing between the upper and lower laser lev-
els tends to enhance the difference between the effective
masses. Furthermore, the nonparabolicity effect increases
with electron temperature since higher k states get occu-
pied. Thus, in the following we focus on high-temperature
MIR QCL structures.

4.1 Analytical effective parameter model

In order to validate the analytical effective parameter
model introduced in Section 3.2.3, we choose m: =12 m; =
0.06 m,, p, = p,/3, T, =15T, =900K, y,, = 10 ps~* cor-
responding to a Lorentzian gain bandwidth of y,, /7 =
3.2THz, and y, =y, =y,./2. These are realistic values
for MIR QCLs and give rise to a pronounced nonparabol-
icity. From Eqs. (18), (29) and (31), the effective parameter
values ¢, = 0.886 +0.2281, ¢, , = 0.796 + 0.248i, ¢}, =
—0.013 + 0 054i, cg s =0012-0.035, and I'), =14.2—
5.2i ps~! are obtained. For validating the effective model,
we compare the frequency dependent susceptibility y o
Nyur/ €yr computed from Eq. (21) with the result of the fully
k dependent calculation, obtained by solving Eq. (11) in
analogy to Eq. (21) and employing Eq. (6). In Figure 3(a),
the obtained susceptibility is shown for the effective and
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Figure 3: Calculated (a) susceptibility ¥ and (b) harmonic and Bloch
contributions to y as a function of the normalized frequency detuning
A/y,, for a two-level system. The results from the analytical effective
parameter model, introduced in Section 3.2.3, are compared to
calculations based on the conventional discrete-level and the fully k
resolved DM model.

fully k dependent model as well as for the conventional
discrete-level DM equations, obtained by setting I',, =
Sye and ¢, = ¢, , =1 in Eq. (21). Figure 3(b) displays
the harmonic and Bloch contributions to y. Overall, we
find good agreement between the full and the effective
model. As expected, the conventional discrete-level DM
equations do not capture the asymmetry and broaden-
ing of y and o caused by nonparabolicity and the Bloch
contribution.

4.2 Multilevel effective parameter model

As a test case for the general effective multilevel DM model
of Section 3.3, we choose a diagonal bound-to-continuum
room temperature QCL design emitting at 8.5 pm [66],
which has been widely used as a reference structure for
validating modeling approaches [65]-[67]. In Figure 4(a),
the energy levels of a representative stage, which have
been computed with a Schrédinger—Poisson solver, are
displayed. Furthermore, DM-Monte Carlo carrier transport
simulations have been performed [56], [65]. The simulated
energy dependent distribution functions and dephasing
rates are shown in Figure 4(b) and (c), respectively. The
electron dispersion relation is here modeled using Eq. (1).
The effective masses of the upper and lower laser lev-
els u and ¢ are 0.0604 and 0.0547, giving rise to a pro-
nounced nonparabolicity. Additionally, Bloch gain between
the laser levels and the coherent coupling of the upper
laser level to the tunneling injector t contribute to the
asymmetry. For this subset of coupled subbands, Eq. (33)
becomes
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Figure 4: Carrier transport simulation results for the investigated QCL.
(a) Conduction band profile with energy levels and probability densities.
(b) Electron distribution functions f;(w) for the upper laser level (u),
lower laser level (¢), and tunneling injector (t) as a function of the energy
w, defined in Eq. (28). (c) Dephasing rates y;(w) and Yij(w).

suf,k iQtu 0

Mue k Mue k

o, Nex | = — 1Qq Stz k ESW Ner k
.

Pruk 0 EE“ . Stk Pruk

%guf (pf,k - pu,k)

+ 0 , (38)

iQ‘tu (pt,k - pu,k)

with p; = Sf; where the scaling factor S introduced in
Eq. (2) can be freely chosen. Taking advantage of the in-
plane isotropy, we represent the k dependence in terms
of the energy variable w introduced in Eq. (28). The p;(w)
and s;;(w) are provided by the carrier transport simulations
at the operating point as shown in Figure 4; furthermore,
h€,, = 3.2meV is obtained. Assuming operation close to
threshold, an arbitrary small value for €,, can be assumed.
Setting 0, =0, a linear equation system is obtained for
ai"j(w) = e (W), 1y (W) and p,, (w). Plugging the results in
Eq. (35) and replacing the summation over k by integration
over w, the correction coefficients I',,, ; are obtained. The
reduced effective DM equations are then given by
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Fut’ icuf N Qtu 0
’7uf i
Ol 1y | = — i urQLu Ly ictf,tu‘c’uf
i *
ptu 0 ictu.tfguf Ftu
i
Mue o Euw (CurrePe = CurauPu)
N |+ 0 ., 39
Pru igtu(ctu,ttpt - Ctu,uupu)
where €y = Dyl p @nd Eq. (37) has been used to

include Bloch gain.

Forvalidating Eq. (39), we again compare the frequency
dependent susceptibility y « #,,/€,- Similarly as for
Eq. (21), the frequency dependent #,,, is obtained by insert-
ing a frequency-shifted field ¢,, — £,,(A) exp(—iAt) and
corresponding optical DM elements 7;; — 77;;(A) exp(—iAt)
into Eq.(39), where A = ® — w,. Cancelling the factor
exp(—iAt) and setting 0, = 0 yields a linear equation sys-
tem for the stationary solution, which is solved in depen-
dence of A to obtain #,,(A). The exact result is obtained by
computing #,,,(A) in an analogous manner from Eq. (38),
and performing the k summation according to Eq. (6). As
can be seen from Figure 5(a), the susceptibility obtained
with the effective discrete-level DM model agrees well with
exact result of the fully k dependent DM simulation, while
the conventional discrete-level DM equations, obtained by
setting ', = Sy, @nd ¢y = 11n Eq. (39), do not provide a
good fit. The results shown in Figure 5(b) are for the same
device, but the carrier transport simulations have been per-
formed under lasing conditions [65], resulting in gain satu-
ration. Again, the effective DM model yields good agreement
with the exact results.

(b)

Full DM model

— — - Effective DM
........ Conventional DM

R{x} (arb. u.)

-5 0 5
Frequency detuning (THz) Frequency detuning (THz)

Figure 5: Susceptibility y for a three-level system, consisting of the laser
levels and a tunneling injector, as a function of the frequency detuning
A /(2r) for the (a) unsaturated and (b) saturated case. The results from
the generalized effective parameter model, introduced in Section 3.3,
are compared to calculations based on the conventional discrete-level
and the fully k resolved DM model.
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4.3 Dynamic simulations

Finally, we present simulations based on the effective
Maxwell-DM approach to assess the numerical performance
of the model, and to investigate the influence of nonparahol-
icity and Bloch gain on the QCL dynamics. For the dynamic
simulations, Egs. (C.3)—(C.9) in Appendix C are solved on
a spatiotemporal grid, using an explicit 3rd order Adams-
Bashforth method for Egs. (C.3)-(C.7) and a finite difference
scheme for Eq. (C.8) [25]. To obtain realistic results, SHB
and group velocity dispersion are included in the model.
Furthermore, spontaneous emission noise is considered in
Eq. (C.8) to account for the associated field fluctuations and
to emulate the buildup of lasing. As an exemplary struc-
ture, we choose a Fabry—Perot cavity with a vertical two-
phonon resonance active region, featuring room tempera-
ture operation at around 9 pm [68], [69]. This design has
for example been used for investigating the formation of
dense and harmonic multimode spectra under different
driving conditions [70]. Similarly as in Figure 4(a), we model
injection into the upper laser level by tunneling though
the thick injection barrier. Thus, the coherent coupling
between the injection, upper and lower laser levels can
again be described by Eq. (39). As outlined in Section 4.2, the
Hamiltonian matrix elements, scattering/dephasing rates
and effective parameters are extracted from carrier trans-
port simulations. In Figure 6(a), the computed susceptibility
at lasing threshold is shown as a function of frequency for
the same models as in Figure 5, again yielding excellent
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— —Effective

(b) Bioch

Harmonic

o
o w
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o
w

o
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Figure 6: Simulation results for QCL multimode operation: (a) active

region susceptibility y at threshold, calculated with different models;
(b) Bloch and harmonic contributions to y according to the effective

parameter model; (c) and (d) multimode spectra obtained with

the (c) effective and (d) conventional Maxwell-DM approach.
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agreement between the effective and full DM approach. In
addition, the Bloch and harmonic contributions are dis-
played in Figure 6(b) for the effective DM model. Both the
nonparabolicity and the Bloch gain contribute to the gain
asymmetry, resulting in a noticeable shift of the gain peak
to lower frequencies.

In the following, we focus on dense multimode oper-
ation, since the emergence of harmonic spectra in free-
running lasers is quite elusive, critically depending on the
drive history, sample used and other factors [19], [49], [70].
Exemplarily, we investigate the effect of nonparabolicity,
since the influence of Bloch gain on the QCL dynamics
has already been studied in detail for a similar active
region design [39]. In Figure 6(c) and (d), simulation results
of the effective and conventional Maxwell-DM model are
shown for a moderate two-facet output power of ~50 mW.
Both approaches yield a dense multimode spectrum already
slightly above threshold, as also observed in experiment
[70]. Although multimode operation in Fabry—Perot cav-
ities is largely governed by SHB [71], [72], the spectrum
is clearly broader for the effective model, featuring a 20-
dB bandwidth of 0.71 THz (i.e., 2.1 % relative bandwidth)
versus 0.54 THz (1.6 %) for the conventional approach.
This illustrates the contribution of nonparabolicity-induced
linewidth enhancement to multimode formation. In addi-
tion, the spectrum obtained with the effective model is
downshifted in frequency and thus agrees somewhat bet-
ter with the experimentally observed wavelength range
[70], which however has been found to depend signifi-
cantly on the growth process and facility [73]. Simulations at
higher output powers likewise yield broader and frequency-
downshifted spectra for the effective model, providing a
better overall match to experiment as expected. The numer-
ical stability and efficiency of the effective Maxwell-DM
approach has been further validated by applying it to other
test structures. Since the effective parameters can directly
be extracted from the carrier transport simulations and the
effective Maxwell-DM equations have the same complexity
as the conventional model, the computational cost is com-
parable for both approaches. Thus, the effective Maxwell-
DM model is well-suited for dynamic QCL modeling, and
specifically for the investigation of operating regimes where
gain asymmetry plays a pronounced role, such as comb and
soliton formation in ring cavities [21]-[24], [39], [43], [45],
[74] and harmonic operation [15]-[20], [70].

5 Conclusions

An effective DM model has been derived for unipolar quan-
tum optoelectronic devices by adequate summation over
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the electron wavevector, which characterizes the free car-
rier motion in the directions without quantum confinement.
The resulting effective discrete-level DM equations differ
from models for true discrete-level quantum systems, such
as quantum dots, by containing additional effective param-
eters. This extended description includes gain asymmetry
and linewidth enhancement by considering effects such as
nonparabolicity and Bloch gain. Here, the effective parame-
ters are extracted from carrier transport simulations, pro-
viding a self-consistent model without phenomenological
parameters. Good agreement with fully wavevector depen-
dent simulations is found. By coupling the DM description
to optical propagation equations, an effective Maxwell-DM
model is obtained for the combined optical and electronic
device dynamics. The approach is validated by exemplary
QCL simulations, achieving numerical performance compa-
rable to the conventional discrete-level model while offering
greatly improved accuracy and versatility. Thus, the effec-
tive Maxwell-DM equations are well-suited for the theoret-
ical investigation of dynamic operating regimes, such as
comb generation in ring cavities or the formation of solitons
and harmonic states. The predictive power of the model
may be further enhanced by taking into account the con-
tributions of non-resonant optical transitions to linewidth
enhancement. Perspectively, an adaption of the presented
approach to bipolar quantum optoelectronic devices would
be highly attractive. In this context, interband cascade
lasers (ICLs) [75] are of particular interest, since they
have recently shown great potential for the generation of
dynamic waveforms in the mid-infrared regime, such as
short pulses [76], broadband frequency combs [77], [78] and
harmonic comb states [79]. Suitable approaches for micro-
scopic carrier transport simulations, required as input for
the self-consistent dynamic device model introduced in this
paper, are meanwhile available for ICLs [80]. Generally,
for bipolar optoelectronic devices a main challenge is that
computing the effective parameter integrals may involve
divergence problems [32], which must be adequately
handled.
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Appendix A: Collision term model

The collision terms [0,pp x|, and [0;9,x] ., N EQ @),
which account for dissipative processes, can be imple-
mented based on a full quantum description as is done
in quantum-kinetic approaches [81]-[84], or under certain
assumptions by employing a more amenable relaxation rate
model [25], [81], [85]. Using the latter approach, we use a
dissipation model of the form [25], [52]

[afp mn,k] col — ~YmnkPmnk> (Ala)
[atp",k] col = Z Z [I/Viq,nkpi,q (1 - fn,k)
i q
~ Wik igPrx (1= fig)] (A.1b)

where the terms (1 f;y) and (1 - f;,) account for Pauli
blocking. The dephasing rate is denoted by y,,,), with

Ymnx = Vnmx- The scattering rates W, ;; include all the rel-

evant scattering mechanisms, i.e., Wy g = ZSW,(SE iq where
the index s labels the different mechanisms. The W< i

can for example be derived from microscopic models, and
may themselves depend on the carrier distribution, e.g., for
carrier-carrier scattering [52].

Appendix B: Rotating wave
approximation

The evolution equations for the DM elements in RWA are
obtained from Eq. (4) by making the substitutions given in
Eq. (5) and discarding the rapidly oscillating terms. For the
diagonal DM elements, we obtain

0P = iz (Qin/’ni,k - Qniﬂin,k)
i#n

+ Z J{ektux} + Z I nithnixc}
i i

@3>0 @y <0

+ [0:Punc] oo (B.1)

The off-diagonal DM elements for transitions between
closely aligned levels (’wmn,k < w,) are with Eq. (A.1a)
obtained as
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atpmn,k = _(ymn,k + iwmn,k)pmn,k
+ izginpmi,k - izgmipin,k
i#n i#m
i i
+ 5 Z €y iflink + 2 Z Emillink
win.:(>0 win.:(<0
i i
) Z g;kn"lmi,k —3 Z Eintlmi k- (B.2)
wmi.lk>0 wm:k<0

For the off-diagonal DM elements in near-resonance
with the optical field (@, x ® @) with @, > 0, we obtain
with Egs. (4) and (A.1a) in the RWA

atnmn,k = _smn,knmn,k

+1 Z Qin"]mi,k_i Z Q'mi"]in,k

a),ii:;o wffknlo
+ %Ze’"ipi”’k - %Zsinpmi,k» (B.3)
t 1
with
Smnx = Ymnk + 1@y = @) = Vo + 10pnxe (B4

The remaining elements with @, <0 are then
obtained using #,,,x = n;m’k. Importantly, for compatibil-
ity with the RWA, we assume that in Eqgs. (B.1)-(B.3) all
off-diagonal DM elements p;;, refer to closely aligned lev-

els (’a)ijgk| < @), and all n;, are associated with near-

resonant optical transitions |wi j’k| & .. The remaining off-
diagonal DM elements are set to 0 in our RWA model, and
transitions between the corresponding levels are assumed
to be exclusively mediated by incoherent scattering, consid-
ered in Eq. (B.1) by the collision term.

Appendix C: Optical propagation
and spatial hole burning

For realistic device simulations, SHB in form of an inversion
grating, resulting from the interference of counterpropagat-
ing waves in a resonator, must be considered [25], [60], [61],
[71], [86]. In the following, we proceed as in ref. [47]. We
note that the DM elements are regarded as position depen-
dent, i.e,, p,, (x, ) and 7, (x,t) denote the DM elements
of a representative quantum system at position x in the
resonator. Since SHB is counteracted by diffusion, we add



DE GRUYTER

a term 0,p,, = ... + Dy 0%py, to the evolution equation
of a given DM element p,,, (and analogously for #,,),
where D,,, denotes the corresponding diffusion coefficient.
Including the grating to lowest order, we write the spatial
dependence of the optical field as €,,, = ;" exp(iﬂx) +
€on exp(—iﬂx), where f is the propagation constant of the
guided mode and the envelopes £ (x,t) are assumed to
vary slowly in space and time. For introducing #Z, (x, o),
we proceed analogously. The remaining DM elements are
represented as p,,, = p%, + X, = exp(+2ifx). For m =
n, we have p2* = (p?7)" (with p2* := p%).

C.1 Two-level model

Discarding higher order oscillation terms, we obtain from
Egs. (10) and (18)

0,0% = sgn (@) I{ (e1,) "1 + (3,) Mg, |

+ Z Ty — sz Tis

i#n i#n

* *

s 1 0\ .
o Pt = 2 Sg0 (@) ['S;f(nwf’) - (£u1f) nuf]

2.
+ E rmpii - Pit 2 Thi — 4ﬂ2Dnnpii’
i#n i#n

(cy
withn =u,m=¢and m = u, n = ¢, respectively, and
+= + 1 + np 0 np 0
Oty = —Luetly, + ieuf(cuf,fpf - Cuf,upu)

i -
+ Eszf(cuf,fpii - Cuf,u/’lz,i) - ﬁzDuM;- (C2)

We note that in this model, similarly as in previous
work [39], [44], a possible influence of SHB on the param-
etersI',,, ¢, and ¢, , has been neglected.

C.2 Generalized multilevel model

Analogously, SHB can be included into the generalized
multilevel model. From Eq. (7), we obtain for the occupa-
tions

atp?m = ZZJ{Qm-p?H}
i#n
= 2 e+ et
a)m»l>0
+ Z JI{nte + el

i
;<0

+ Z"ml’?,- - pfmzrm,

i#n i#n

(C.3)
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atﬂf;ﬁ = iz‘,(gimf’ﬁ'r - Qniﬂ?f)

i#n
i * o+ F\E £
+ i Z [gninin - (52—1) nni]
w,u-l>0
i FV\EE ot
+ i Z [(6:1) rlin - 6nir]ni]
a)m-l<0
+ Z Tinf" = Pifz T = 4" Dppy,  (CH)
i#n #n

with p2t = (p%-)". The off-diagonal DM elements for tran-
sitions between closely aligned levels ()wmn’k < w,) are

described by

0 _ 0
0P = ~LmnPrnn
i 0 3 0
+ lzgincmn,mipmi - lzgmicmn,inpin

i#n #m
i _ _
+ i Z Cmn,in[('E;i)*”i: + (6mi)*’7in]
a)i,,l>0

+ % Z Con,in (E;i”; + 5;,,]];1)
i

;<0
i kv
) Z Cmn,mi[(ein) M (2) ”mi]
i
W >0
i e
) Z Cmn,mi<£in’7mi + Einnmi)’ (€3)
i
@, <0
2+ 2 2+
atpmn = _(an +4p Dmn)pmn
: 2 2+
+ lzgincmn,mipmi - lzgmicmn,inpin
i#n i#m
i F\* + 1 + +
9 2 (er) Conanly + 9 Ly EmiCmninlin
i i
@, >0 ;<0
i F\* + 1 + +
3 Z (Ein) Conn,mitly; — 2 €5 Conmil Ty
i i
@i >0 Wy <0
(C6)

thus fulfilling p% = ( Pgm)*’ pE = ( p?;n)*. Regarding the
off-diagonal DM elements in near-resonance with the opti-

cal field (w,,, ® ®.), we obtain for w,,, > 0

at’/lrﬁn = _(an + ﬂszn)rlin

. + . +

+1 Z Qincmn,mi’]mi —1 2 Qmicmn,innm
i#n i#m
Wpi>0 iy >0
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i + 0 4 F o
+ izcmn,irI(E;ipin +EnPin)
i

i -
- iz Cornni (E5uPrmi + € ) €7
1

and use 7%, = (n7,)"
elements.

For the simulation of devices featuring a modulated
bias u(x,t) along the waveguide, as applies, e.g., for
actively mode-locked QCLs, the model has to be somewhat
generalized by treating €2, (u) and w,,,(u) as u dependent
parameters [47]. This description can also be extended to the
scattering and dephasing rates r,,,(w) and y ,,,(w), assuming
that they follow the bias change instantaneously. With s,,,, =
Y mn + 10, for closely aligned levels (Egs. (C.5), (C.6)) and
Smn = Ymn +1(@py — @) for near-resonant optical transi-
tions (Eq. (C.7)), we can then approximately write I',,,(u) =
Sy /8%, where the superscript o indicates the values
at the operating point. For small modulations, a first order
Taylor expansion of the bias dependent parameters around
the DC value of u is sufficient [47]. As described in Section 3,
the ¢, ; are evaluated at the operating point and are thus
modulation independent.

to compute the remaining DM

C.3 Coupling to optical propagation
equation

The Maxwell-DM equations, forming a closed model for the
combined optical and electronic dynamics in the device, are
obtained by coupling Eqs. (C.1) and (C.2) or (C.3)-(C.7) to the
optical propagation equation [25]

a

0 O E* + O,E% = —_ f0PE* —

E* +ip, +S}. (C8)
Here, a, Ug and f, are the waveguide power loss coeffi-
cient, group velocity, and background group velocity disper-
sion coefficient, and &, = h='d, E*. If the DM is normal-
ized such that ), p, =1 for each representative quantum
system, the polarization term p, in Eq. (C.8) is given by

(C.9)

with the electron number density ng,, vacuum speed of
light ¢, vacuum permittivity €,, and overlap factor I'. For a
single optical transition, we have m =u, n="~¢. Sip repre-
sents spontaneous emission, which is numerically modeled
as distributed random noise [87].
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