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Abstract: Increasingly, unipolar quantum optoelectronic

devices such as quantum cascade lasers are employed

for the targeted generation of dynamic waveforms in

the mid-infrared and terahertz regime. These include for

example short-pulse trains, frequency combs and solitons.

For the theoretical investigation and targeted development

of these devices, suitable semiclassical models such as

Maxwell–Bloch type equations have been developed, which

employ a two- or multilevel density matrix description for

the electron dynamics and a classical propagation equation

for the optical resonator field. Unipolar devices typically

utilize quantized conduction band states as optical levels.

For quantum well and wire structures, the electron states

are additionally characterized by a wavevector associated

with freemotion in the non-confined directions. This degree

of freedom can give rise to nonparabolicity effects as well as

Bloch gain, both leading to gain asymmetry and linewidth

enhancement. However, fully accounting for the wavevec-

tor greatly increases the computational cost of the density

matrix approach. Here, we introduce an effective discrete-

level density matrix model, which includes these effects via

correction factors obtained by suitable wavevector averag-

ing. These parameters can be extracted from carrier trans-

port simulations alongwith other required input data, yield-

ing a self-consistent model. Coupling the effective density

matrix description to optical propagation equations results

in an effective Maxwell-density matrix approach, which is

well-suited for dynamic simulations of quantum optoelec-

tronic devices.
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1 Introduction

Increasingly, quantum confinement in semiconductor het-

erostructures is exploited to develop quantum optoelec-

tronic devices with enhanced performance and expanded

functionalities. In unipolar devices, the lasing transition

occurs between quantized states in the conduction band,

and thus the optical properties do not depend on the semi-

conductor bandgap. This opens up enormous possibilities

for custom-tailoring lasing wavelengths, optical nonlinear-

ities and other active region properties by quantum engi-

neering the confined states. Specifically, the quantum cas-

cade laser (QCL) utilizes optical intersubband transitions in

the conduction band to access a wide range of mid-infrared

(MIR) and terahertz (THz) wavelengths [1], [2]. Here, a peri-

odic multi-quantum well design is used, allowing for the

generation of multiple photons by a single injected electron.

Also amplifiers [3], [4], modulators [5] and detectors [6], [7]

have been realized based on this principle. Generally, unipo-

lar quantum well devices have an enormous potential for

long-wavelength optoelectronic applications [8]. Further-

more, also semiconductor quantum wire structures with

two-dimensional quantum confinement are attractive can-

didates for developing intersubband optoelectronics [9].

Recently, dynamic waveform generation with unipolar

devices has become a vibrant research field, motivated by

a wide range of applications in, e.g., metrology and com-

munications. In particular, mode-locking techniques have

been employed for generating short-pulse trains [10], [11]

and broadband frequency combs [12]–[14], i.e., discrete,

equally spaced spectra associated with periodic temporal

waveforms. In this context, also harmonic operation inQCLs

has attracted considerable interest, where the waveform

period is a harmonic of the cavity roundtrip time [15]–[20].

Moreover, the formation of dissipative solitons in QCLs has

recently caught wide attention [21]–[24]. For a systematic

design of such waveform-generating nanostructured lasers

and improved understanding of their dynamics, accurate

and efficient numerical models are essential [25]. More

generally, such dynamic modeling approaches are poten-

tially relevant for high-speed systems employing unipolar

quantum optoelectronic devices. To account for quantum
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coherence effects, these approaches are frequently based

on a density matrix (DM) formalism describing the elec-

tron dynamics in the quantum active region, coupled to

Maxwell’s equations capturing the optical field propagation

in the cavity. Since often simulations over many hundred

or thousand cavity roundtrips are required to reach steady

state operation [26], the model is commonly simplified to

reduce the numerical load. For example, optoelectronic

devices with a waveguide cavity typically feature an invari-

ant transverse field distribution, enabling the use of a one-

dimensional optical propagationmodel which only depends

on time t and a single spatial coordinate x [25]. Furthermore,

the dependence on the electron in-plane wavevector k is

typically ignored in the dynamic DM equations [25], greatly

reducing the numerical load in comparison to fully k depen-

dentmodels [27]–[30]. This is justified for optical transitions

between subbands with nearly parallel dispersion relation-

ships [25], [31], as is often ideally assumed for QCLs [1], but

not for interband transitions since the energy dispersions in

the conduction and valence bands have opposite curvatures

[25], [32]. However, also operation in unipolar quantumwell

and wire devices can be affected by residual nonparabol-

icity [33]–[36] as well as by Bloch gain [34], [37]–[40], both

leading to gain asymmetry and linewidth enhancement.

Restricting the description of the quantum active

region to two energy levels results in the semi-

phenomenological Maxwell-Bloch (MB) equations, which

include dissipation in terms of empirical relaxation rates

[25]. Various strategies have been employed to derive

effective MB equations for bipolar semiconductor lasers

and amplifiers from microscopic models by adequate k

averaging over the electron and hole distributions [32],

[41], [42]. These models include a linewidth enhancement

factor (LEF) to describe nonparabolicity effects. For

unipolar devices, the so-called effective semiconductor

MB equations (ESMBEs) have been derived by combining

the MB equations with a phenomenological expression

for an asymmetric material susceptibility [43], [44], and

employed for studying the dynamic QCL operation in

both ring and Fabry–Perot configurations [35], [43]–[46].

Also the Bloch gain has been implemented in the MB

framework [39]. On the other hand, fully quantitative

modeling of quantum-engineered optoelectronic devices

requires explicit consideration of all relevant mechanisms

and quantized energy levels. This can be achieved in the

framework of an advanced Maxwell-DM model, featuring a

multilevel DManda generalized systemHamiltonian,which

generally includes tunneling in addition to light–matter

interaction [25], [47]. Dissipation is here described using

the Lindblad formalism [25], [48]. The Lindblad-type

relaxation terms and Hamiltonian matrix elements can be

extracted from carrier transport simulations ormicroscopic

descriptions, resulting in a self-consistent device model

[26], [31]. This approach has been employed for quantitative

simulations of various advanced THz and MIR QCL devices

in Fabry–Perot and ring configurations, yielding excellent

agreement with experiment and providing insights into

device operation. Examples include the modeling of

soliton generation [22], short-pulse mode-locked operation

[11], [47], and fundamental [26], [31], harmonic [20], [49]

as well as difference-frequency comb [50] generation.

The multilevel DM naturally includes gain asymmetry

due to multiple optical transitions, which can have a

significant influence on the optical dynamics [17]. However,

contributions of nonparabolicity and Bloch gain have

to date not been considered in Maxwell-DM approaches

beyond the two-level approximation. In the present work,

these effects are systematically incorporated by suitable k

averaging of the microscopic DM equations. The resulting

correction factors, such as effective transition frequencies

and LEF-related quantities, are in our approach not treated

as fitting parameters, but can be extracted from carrier

transport simulations together with the other required

parameters. Thus, the resulting effective Maxwell-DM

equations preserve the self-consistent nature of the

simulation model.

2 Microscopic model

For interband transitions, the derivation of effective two-

level models by suitable wavevector summation has been

addressed in previouswork [32], [41], [42]. Here, we focus on

unipolar devices. As illustrated in Figure 1, these utilize opti-

cal transitions between quantized energy levels n, each con-

sisting of a quasi-continuum of states |n,k⟩ with eigenen-

ergies En,k. The associated transition frequencies are given

by 𝜔mn,k =
(
Em,k − En,k

)
∕ℏ, with the reduced Planck con-

stant ℏ. Specifically for quantum well structures, quantum

confinement in growth direction z results in the formation

of quantized states n, and the free in-plane carrier motion

is described by the two-dimensional in-plane wavevector k.

Nonparabolicity can be included by allowing for an energy

dependent effective mass when solving the Schrödinger

equation. This yields for each subband n the corresponding

wavefunction 𝜓n(z) and the electron dispersion relation

En,k = En + ℏ2|k|2∕(2m∗
n

)
, (1)

with the subband effective mass m∗
n
and En = En,k=0 [51],

[52]. Here, we assume decoupling between the in-plane
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Figure 1: Schematic representation of level schemes for unipolar

devices. Additionally, parabolic electron dispersion relations as given in

Eq. (1) are illustratively sketched. The upper and lower levels of the optical

transition are indicated by blue and red colors, respectively. For QCLs,

a periodic repetition of identical stacks (marked by rectangles) is used.

motion and the confinement direction implying k indepen-

dent wavefunctions 𝜓n(z), which is a good approximation

for not too narrow finite quantum wells [53]. Within this

model, the effect of nonparabolicity is accounted for by the

different value of m∗
n
for each subband. We note however

that the treatment of nonparabolicity in our effective DM

equations derived in Section 3.2 is not restricted to disper-

sion relations of the form Eq. (1).

The DM elements are given by
(
m,k|𝜌|n,k⟩ = 𝜌mn,k,

and reduction to an effective discrete-level description

using DM elements of the form 𝜌mn requires suitable k

averaging. Also semiconductor quantum wire structures

with two-dimensional quantum confinement are attractive

candidates for developing intersubband devices [9]. They

can be described analogously; in this case, the free carrier

motion in the remaining direction is characterized by a

one-dimensional wavevector [25]. Besides, our approach is

not restricted to the parabolic dispersion relations given in

Eq. (1).

The diagonal DM elements 𝜌nn,k = 𝜌n,k can be written

as

𝜌n,k = 𝜌n fn,k∕
∑
k

fn,k = S fn,k, (2)

where the distribution function fn,k gives the electron occu-

pation probability of a state |n,k⟩. The scaling factor S may
be chosen such that 𝜌n = S

∑
k
fn,k corresponds, e.g., to the

carrier number density in level n, or that the normalization

condition
∑
𝜌n = 1 is fulfilled. The off-diagonal elements

𝜌ij,k contain the coherence between states |i,k⟩ and | j,k⟩.
The DM evolution equation is given by

𝜕t𝜌 = − i

ℏ

[
Ĥ, 𝜌

]
+
[
𝜕t𝜌

]
col
, (3)

with the collision term
[
𝜕t𝜌

]
col
. DM elements between dif-

ferent wavevectors need not be considered due to the k

conservation of optical transitions. This also applies for first-

order tunneling processes, which can straightforwardly be

included in the Hamiltonian by employing adequately local-

ized basis states [54], [55]. For an orthogonal basis set, we

obtain from Eq. (3)

𝜕t𝜌mn,k =
i

ℏ

∑
i

(
𝜌mi,kHin,k − Hmi,k𝜌in,k

)
+
[
𝜕t𝜌mn,k

]
col
. (4)

The Hamiltonian in Eq. (4) can be represented as Ĥ =
Ĥ0 + ĤI, where Ĥ0 is the Hamiltonian of the unperturbed

system, with H0,nn,k = En,k. Off-diagonal elements can, e.g.,

arise from the inclusion of resonant tunneling. For example,

in QCL designs electron transport across thick injection

or extraction barriers is mediated by tunneling between

closely aligned states. Using a localized basis, such as tight-

binding states |m,k⟩ and |n,k⟩ located at the left and right
of the barrier [55], [56] or EZ states [57], the corresponding

DM elements can for small
|||𝜔mn,k

||| be written as H0,mn =
H0,nm = ℏΩmn. Assuming k independent wavefunctions as

discussed above, also the coupling energy ℏΩmn = ℏΩnm

does not depend on k [55], [56]. For an optical transition

between two states |m,k⟩ and |n,k⟩, light–matter interac-
tion can in dipole approximation be described by the corre-

sponding matrix elements of the interaction Hamiltonian,

HI,mn = HI,nm = −Edmn, with the optical field E(t). Here,

dmn = dnm represents the dipole matrix element, which is

again k independent under above assumptions. The model

for the collision term in Eq. (4) used here is discussed in

Appendix A. We note that within above framework, second-

order effects connecting states with different wavevectors,

such as Bloch gain and second-order tunneling, are not yet

included. Various approaches have been discussed in liter-

ature to consider these contributions in effective discrete-

level DM models [39], [58], [59]. In Section 3.2.1, we give a

detailed discussion on the implementation of Bloch gain.

In the following, we restrict our discussions to a field

E with moderate bandwidth and in close resonance with

the optical transition(s), i.e.,𝜔c ≈
|||𝜔mn,k

|||where𝜔c denotes

the optical carrier frequency. Furthermore assuming non-

excessive field strengths as is typically justified in opto-

electronics, the widely used rotating wave approximation

(RWA) can be invoked to increase the numerical efficiency

of the model [25]. Here, the fast oscillations of E and the
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related DM elements 𝜌mn,k around 𝜔c can be removed by

representing these quantities in terms of the slowly varying

envelope functions 𝜀mn and 𝜂mn,k,

𝜌mn,k = 𝜂mn,k exp
[
−i𝜔c sgn

(
𝜔mn,k

)
t
]
, (5a)

dmnE∕ℏ =
[
𝜀mn exp

(
−i𝜔ct

)
+ 𝜀∗

mn
exp

(
i𝜔ct

)]
∕2. (5b)

More specifically, the field envelope 𝜀mn = 𝜀nm is here

expressed in terms of the corresponding (instantaneous)

Rabi frequency. The asterisk denotes the complex conju-

gate, and sgn represents the sign function. The evolution

equations for the DM elements in RWA are then obtained

in the usual manner by substituting Eqs. (5a) and (5b)

into (4) and discarding the rapidly oscillating terms (see

Appendix B). Since a coarser spatiotemporal grid can be

used to resolve the dynamics of the envelope functions, the

computational load gets significantly reduced as compared

to full-wave simulations.

3 Effective discrete-level model

For the DM-based dynamic modeling of semiconductor

lasers and other optoelectronic devices, typically a two- or

multilevel model featuring discrete energy levels is used,

where the wavevector dependence of the states is not

explicitly taken into account [25]. Besides the considerable

decrease of numerical complexity as compared to fully

microscopicmodels [25], discrete-level approaches facilitate

the development of compact and intuitive descriptions of

the laser dynamics [45], [60]–[62]. However, the wavevector

dependence may leave a direct imprint on the DM dynam-

ics beyond microscopic interactions, e.g., in form of an

asymmetric susceptibility and the closely related linewidth

enhancement resulting from the nonparabolicity effect or

Bloch gain [32], [35], [39], [43]. Thus, rather than simply

ignoring the wavevector dependence of the microscopic

states, a systematic removal of this quantity from the model

by adequate k summation is more appropriate.

The transition from the microscopic, k-resolved

description to an effective model is achieved by defining

effective DM elements obtained via k summation,

𝜌mn =
∑
k

𝜌mn,k,

𝜂mn =
∑
k

𝜂mn,k, (6)

where the diagonal DM elements, 𝜌nn=: 𝜌n, are related to

the total population of level n, and the elements 𝜂mn to the

polarization of the optical transitionm→ n. For a stationary

optical field with frequency 𝜔, 𝜂mn is directly proportional

Figure 2: Schematic representation of harmonic and Bloch contribution

to the susceptibility 𝜒 for parabolic subbands and for nonparabolicity.

Here,𝜔21 and 𝛾21 are the resonance frequency at k = 0 and

the dephasing rate.

to𝜒𝜀mn with the complex susceptibility𝜒 (𝜔). In Figure 2,𝜒

is schematically illustrated for the case of parallel subbands

and for nonparabolicity, resulting from different effective

masses of the upper and lower subband. Here, population

inversion is assumed. For the complex field convention

introduced in Eq. (5b),I{𝜒} is proportional to the loss coef-
ficient. For parallel subbands, both the harmonic gain and

the real part of the Bloch susceptibility assume the typical

Lorentzian shape. An asymmetric susceptibility is obtained

for nonparabolicity, or also for parallel subbands if both the

harmonic and Bloch contributions are present.

3.1 Populations

Since the equations for the level populations (see Eq. (B.1) in

Appendix B) do not contain products of k dependent quan-

tities, k summation can be directly performed, resulting in

𝜕t𝜌n = i
∑
i≠n

(
Ωin𝜌ni −Ωni𝜌in

)

+
∑
i

𝜔ni>0

I
{
𝜀∗
ni
𝜂ni

}
+

∑
i

𝜔ni<0

I{𝜀ni𝜂ni}

+
∑
i≠n

rin𝜌i − 𝜌n
∑
i≠n

rni. (7)

The collision term describing intersubband scattering

in Eq. (B.1) is heremodeled using Eq. (A.1b), and k averaging

yields [
𝜕t𝜌n

]
col

=
∑
i≠n

rin𝜌i − 𝜌n
∑
i≠n

rni. (8)
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The effective rates rmn are given by

rmn =
∑
k,q

Wmk,nq f
o
m,k

(
1− f o

n,q

)
∕
∑
k

f o
m,k
, (9)

whereWmk,nq denotes the microscopic scattering rate from

a state |m,k⟩ to |n,q⟩. The resulting rmn are already cor-

rected for Pauli blocking, which can however often be

neglected in QCLs due to the relatively low doping levels

[52]. The rates for various relevant intersubband scattering

mechanisms in quantum well and wire structures, such as

electron–electron, electron–phonon and electron-impurity

interactions, have been discussed in literature [52], [63],

[64]. We note that the inclusion of carrier–carrier scatter-

ing yields rates which are themselves dependent on the

carrier distribution [52], [63]. For simplicity, constant rates

rmn have been assumed in Eq. (9) by replacing the carrier

distributions fi,k with their values f
o
i,k
at the operating point.

For self-consistent modeling, these can be extracted from

fully k dependent stationary carrier transport simulations,

implying that the temporal modulation of the carrier pop-

ulations around their steady-state values is not excessive

[47], [56].

3.2 Two-level coherence

Let us assume an intersubband optical transition with a

single upper and lower level u and 𝓁, which are coupled

to other levels only by incoherent scattering transitions.

In Figure 1, this corresponds to the case where the optical

levels are not coherently coupled to further states. Such

a transition can be described by an open two-level quan-

tum system. Indeed, available models for the QCL dynamics

including gain asymmetry and linewidth enhancement are

commonly based on a two-level quantum system approach

[35], [39], [43]. Under above assumptions, Eq. (7) simplifies

to

𝜕t𝜌n = sgn
(
𝜔nm

)
I
{
𝜀∗
u𝓁𝜂u𝓁

}
+
∑
i≠n

rin𝜌i − 𝜌n
∑
i≠n

rni, (10)

with n = u, m = 𝓁 and m = u, n = 𝓁, respectively. For the
two-level case, Eq. (B.3) simplifies to

𝜕t𝜂u𝓁,k = −su𝓁,k𝜂u𝓁,k

+ i

2
𝜀u𝓁

(
𝜌𝓁,k − 𝜌u,k

)
. (11)

A straightforward k summation is impeded by the term

su𝓁,k𝜂u𝓁,k. A naive ansatz, where
∑

k
su𝓁,k𝜂u𝓁,k is approx-

imated by a term su𝓁,eff𝜂u𝓁 with some complex-valued

parameter su𝓁,eff = 𝛾u𝓁,eff + i
(
𝜔u𝓁,eff −𝜔c

)
, is not produc-

tive since this just leads to a modified resonance frequency

and dephasing of the transition, but not to an asymmet-

ric lineshape. Instead, we apply the approach by Yao et al.

[32], originally developed to describe the nonparabolicity

of optical transitions between the conduction and valence

bands. Here, both sides of Eq. (11) are divided by su𝓁,k, and

subsequently, the k summation is performed. This yields

after multiplication with Γu𝓁

𝜕t𝜂u𝓁 = −Γu𝓁𝜂u𝓁 +
i

2
𝜀u𝓁

(
c
np

u𝓁,𝓁𝜌𝓁 − c
np

u𝓁,u𝜌u

)
, (12)

where the nonparabolicity parameter is given by c
np

u𝓁,i
=

Γu𝓁𝜏
np

u𝓁,i
, and

𝜏
np

u𝓁,i
=

∑
k

s−1
u𝓁,k𝜌i,k∕𝜌i, (13a)

Γu𝓁 = 𝜂u𝓁∕
∑
k

s−1
u𝓁,k𝜂u𝓁,k. (13b)

Rather than using c
np

u𝓁,i
and Γu𝓁 in Eq. (12) as fitting

parameters to experimental data, we derive them from fully

k dependent stationary carrier transport modeling at the

operating point of the device, similarly as for the rates

in Eq. (9). Here, we use the corresponding results for the

carrier distributions f o
i,k
and populations 𝜌o

i
along with the

obtained dephasing rates to evaluate Eq. (13). While 𝜏u𝓁,i
can be straightforwardly calculated from Eq. (13a), Eq. (13b)

requires computing the stationary value of 𝜂u𝓁,k and 𝜂u𝓁 at

the operating point by setting 𝜕t = 0 in Eqs. (11) and (12),

respectively. This yields with Eq. (2)

𝜂o
u𝓁,k =

i

2
S𝜀u𝓁s

−1
u𝓁,k

(
f o𝓁,k − f o

u,k

)
, (14a)

𝜂o
u𝓁 =

i

2
𝜀u𝓁Γ−1

u𝓁

(
c
np

u𝓁,𝓁𝜌
o
𝓁 − c

np

u𝓁,u𝜌
o
u

)
. (14b)

Thus, we obtain from Eq. (13) the nonparabolicity

parameters

𝜏
np

u𝓁,i
=

∑
k

s−1
u𝓁,k f

o
i,k
∕
∑
k

f o
i,k
, (15a)

Γu𝓁 =

∑
k

s−1
u𝓁,k

(
f o
u,k

− f o
𝓁,k

)
∑
k

s−2
u𝓁,k

(
f o
u,k

− f o
𝓁,k

) . (15b)

For modeling the combined optical and electronic

device dynamics in a self-consistent manner, the DM model

is coupled to optical propagation equations for the res-

onator field, where also spatial hole burning (SHB) aris-

ing from standing-wave patterns must be considered (see

Appendix C).
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3.2.1 Bloch gain

In the following, we assume a quantum well structure with

in-plane isotropy, which is generally justified for direct

bandgap semiconductors as used for QCLs. Thus, the elec-

tron energies, distribution functions, dephasing rates etc.

just depend on the wavevector magnitude k = |k|. We fur-

thermore restrict ourselves to a parabolic dispersion rela-

tion for each subband, described in Eq. (1). The inclusion of

Bloch gain into Eq. (14a) then yields the total DM element

[37], [39]

𝜂t
u𝓁,k = 𝜂

o
u𝓁,k +

1

2
S𝜀u𝓁

(
gu𝓁,uk − gu𝓁,𝓁k

)
, (16)

with

gu𝓁,ik =
𝛾i,k

(
f o
i,ki

− f o
i,k

)
H
(
k2
i

)
𝛿u𝓁,ksu𝓁,k

, (17)

and

k2
u
=

(
m∗
u
∕m∗

𝓁

)
k2 − 2m∗

u
ℏ−1𝛿u𝓁,k=0,

k2𝓁 =
(
m∗

𝓁∕m
∗
u

)
k2 + 2m∗

𝓁ℏ
−1𝛿u𝓁,k=0.

H denotes the Heaviside step function, 𝛿u𝓁,k and su𝓁,k
are defined in Eq. (B.4), and 𝛾 i,k is the broadening of state|i,k⟩, with 𝛾u𝓁,k = 𝛾u,k + 𝛾𝓁,k . We make the ansatz

𝜕t𝜂u𝓁 = −Γu𝓁𝜂u𝓁 +
i

2
𝜀u𝓁

[
cu𝓁,𝓁𝜌𝓁 − cu𝓁,u𝜌u

]
,

cu𝓁,i = c
np

u𝓁,i
+ cb

u𝓁,i = Γu𝓁

(
𝜏
np

u𝓁,i
+ 𝜏b

u𝓁,i

)
, (18)

where the parameter cb
u𝓁,i

= Γu𝓁𝜏
b
u𝓁,i

represents the Bloch

gain, while c
np

u𝓁,i
= Γu𝓁𝜏

np

u𝓁,i
is the nonparabolicity parameter

obtained from Eq. (15). Setting 𝜕t = 0 in Eq. (18) yields the

stationary solution

𝜂t
u𝓁 = 𝜂

o
u𝓁 −

i

2
𝜀u𝓁Γ−1

u𝓁

(
cb
u𝓁,u𝜌

o
u
− cb

u𝓁,𝓁𝜌
o
𝓁

)
, (19)

where the second contribution contains the Bloch gain. We

thus obtain with Eqs. (16) and (19)

𝜏b
u𝓁,i = i

∑
k

gu𝓁,ik∑
k

f o
i,k

. (20)

3.2.2 Interpretation

The meaning of the physical parameters in Eq. (18), and

correspondingly in Eq. (12), can be understood from cal-

culating 𝜂u𝓁 , which is closely related to the complex sus-

ceptibility 𝜒 , as a function of the detuning frequency

Δ = 𝜔−𝜔c. To this end, we insert a frequency-detuned

field 𝜀u𝓁 → 𝜀u𝓁(Δ) exp
(
−iΔt

)
and the corresponding DM

element 𝜂u𝓁 → 𝜂u𝓁(Δ) exp
(
−iΔt

)
into Eq. (18). After can-

celling exp
(
−iΔt

)
from both sides, we obtain the stationary

solution (𝜕t = 0)

𝜂u𝓁(Δ) =
1

2
𝜀u𝓁(Δ)

cu𝓁,u𝜌u − cu𝓁,𝓁𝜌𝓁
Δ+ iΓu𝓁

. (21)

By analogy with Eq. (B.4) we can express Γu𝓁 as

Γu𝓁 = 𝛾eu𝓁 + i
(
𝜔e
u𝓁 −𝜔c

)
, (22)

i.e., 𝛾e
u𝓁 and 𝜔

e
u𝓁 are the effective dephasing rate and reso-

nance frequency in the effective discrete-level model. For

simulations featuring a single optical transition, the opti-

cal carrier frequency can be chosen as 𝜔c = 𝜔e
u𝓁 , such

that Eq. (22) simplifies to Γu𝓁 = 𝛾eu𝓁 . This is not possible in
devices featuring heterogeneous active regions, or multiple

sections with different transition frequencies. To recover

the usual dependence of Eqs. (18) and (21) on the popula-

tion inversion 𝜌u − 𝜌𝓁 , as found in the conventional MB

equations [25], we canwrite the population dependent term

appearing in Eqs. (21) and (18) as

cu𝓁,u𝜌u − cu𝓁,𝓁𝜌𝓁 = cu𝓁
(
𝜌u − 𝜌𝓁

)
. (23)

Evaluating Eq. (23) at the operating point yields

cu𝓁 =
cu𝓁,u𝜌

o
u
− cu𝓁,𝓁𝜌

o
𝓁

𝜌ou − 𝜌o𝓁
. (24)

Away from the operating point, the right-hand side of

Eq. (23) with cu𝓁 given in Eq. (24) is a good approximation if

cu𝓁,u ≈ cu𝓁,𝓁 , or if the population in one of the two levels is

negligible. For example, 𝜌𝓁 ≈ 0 is assumed in the ESMBEs

[43], [44]. The general form of the population dependence

given by the left-hand side of Eq. (23) can be decomposed

into two terms ∝
(
𝜌u − 𝜌𝓁

)
and ∝

(
𝜌u + 𝜌𝓁

)
, respectively.

In the context of the Bloch gain, it has been noted that the

contribution ∝
(
𝜌u + 𝜌𝓁

)
can lead to residual gain even

without population inversion [39].

From Eqs. (21) and (23), we find that

I
{
cu𝓁∕

(
Δ+ iΓu𝓁

)}
at the operating point has an extremum

for the detuning frequency

Δ p =
(
𝜔e
u𝓁 −𝜔c

)
+ 𝛾e

u𝓁

(
x −

√
x2 + 1

)
(25)

with x =R{cu𝓁}∕I{cu𝓁}, corresponding to the gain (or

absorption) peak.

For computing the linewidth enhancement factor, we

must consider that intensity-induced changes 𝛿𝜌u and 𝛿𝜌𝓁
of the upper and lower laser level populations at a given

working point are generally related via 𝛿𝜌𝓁 = −𝜁𝛿𝜌u,
where the factor 𝜁 can be extracted from the scattering,

optical and tunneling rates in the system [65]. Specifically,
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𝜁 = 0 for ideal depopulation of the lower laser level, and

𝜁 = 1 for a closed two-level model where 𝜌u + 𝜌𝓁 is pre-

served. Using that the susceptibility 𝜒 is proportional to

𝜂u𝓁∕𝜀u𝓁 and taking the complexfield convention introduced
in Eq. (5b), we obtain with Eq. (21) the frequency dependent

linewidth enhancement factor

𝛼 =
𝜕𝜌uR{𝜒}
𝜕𝜌uI{𝜒}

=
R
{(
cu𝓁,u + 𝜁cu𝓁,𝓁

)(
𝜔−𝜔e

u𝓁 − i𝛾e
u𝓁

)}
I
{(
cu𝓁,u + 𝜁cu𝓁,𝓁

)(
𝜔−𝜔e

u𝓁 − i𝛾e
u𝓁

)} . (26)

3.2.3 Analytical evaluation of parameters

Under certain assumptions, the parameters 𝜏
np

u𝓁,i
, Γu𝓁 and

𝜏b
u𝓁,i

given in Eqs. (15) and (20) can be analytically computed.

Similarly as in Section 3.2.1, we restrict the discussion to a

quantum well structure with a parabolic dispersion rela-

tion of the form Eq. (1) for each subband. Nonparabolicity

related to different effective masses of the laser levels then

yields with Eqs. (1) and (B.4)

su𝓁 = su𝓁,0 + s′
u𝓁𝑤 = 𝛾u𝓁 + i𝛿u𝓁,0 + i𝛿′

u𝓁𝑤, (27)

where 𝛿u𝓁,0 = 𝜔u𝓁,k=0 −𝜔c and 𝛿′
u𝓁 =

ℏ−1me

[(
m∗
u

)−1 − (
m∗

𝓁

)−1]
. Here, we have introduced

an energy variable

𝑤 = ℏ2|k|2
2me

, (28)

defined such that the in-plane kinetic energy in a sub-

band i is given by 𝑤me∕m∗
i
where me is the electron

mass. If we can also describe the dephasing part of

Eq. (27) by a linear energy dependence, 𝛾u𝓁 = 𝛾u𝓁,0 + 𝛾 ′u𝓁𝑤
with 𝛾u𝓁,0 = 𝛾u𝓁(𝑤 = 0) and 𝛾 ′

u𝓁 = 𝜕𝑤𝛾u𝓁(𝑤 = 0), we have

su𝓁,0 = 𝛾u𝓁,0 + i𝛿u𝓁,0 and s
′
u𝓁 = 𝛾

′
u𝓁 + i𝛿′

u𝓁 in Eq. (27). Analo-

gously, we can use 𝛾i = 𝛾i,0 + 𝛾 ′i𝑤 in Eq. (17). However, the

linear approximation does not always provide a good fit for

the dephasing, in which case it is better to describe 𝛾u𝓁 and

𝛾 i by a constant, suitably averaged value [56]. Furthermore,

we assume that the kinetic electron distributions are ther-

malized and can thus for each subband i be characterized

by an electron temperature Ti [52]. For moderate doping

levels, as is often the case in QCLs, fi in Eq. (2) is then

approximately given by a Maxwell-Boltzmann distribution

[52]. For analytical evaluation, we express Eq. (2) as

𝜌i(𝑤) = me

(
m∗
i
kBTi

)−1
𝜌i exp

[
−𝑤me∕

(
m∗
i
kBTi

)]

with the Boltzmann constant kB, and replace the sums∑
k
… f o

i,k
in Eqs. (15) and (20) by integrals over𝑤. Defining

I(a, b) =
∞

∫
0

exp(−x)
a+ bx

dx = b−1E1
(
a∕b

)
exp

(
a∕b

)
,

J(a, b) =
∞

∫
0

exp(−x)
(a+ bx)

2
dx = b−1

[
a−1 − I(a, b)

]

with the exponential integral E1(x) = ∫ ∞
1
t−1 exp(−xt)dt, we

can express Eq. (15) as

𝜏
np

u𝓁,i
= I

(
su𝓁,0, s

′
u𝓁𝑤i

)
, (29a)

Γu𝓁 =
𝜌o
u
𝜏
np

u𝓁,u − 𝜌
o
𝓁𝜏

np

u𝓁,𝓁

𝜌ou J
(
su𝓁,0, s

′
u𝓁𝑤u

)
− 𝜌o𝓁 J

(
su𝓁,0, s

′
u𝓁𝑤𝓁

) , (29b)

where𝑤i = kBTim
∗
i
∕me. Furthermore defining the function

G
(
a, b, c, d, 𝜇, x0

)
as

G =
∞

∫
x0

(
c + dx

)
exp(−𝜇x)

I{a+ bx}(a+ bx)
dx

= cb− da(
aib− bia

)
b
exp

(
𝜇a

b

)
E1

(
𝜇x0 +

𝜇a

b

)

+ dai − cbi(
aib− bia

)
bi
exp

(
𝜇ai
bi

)
E1

(
𝜇x0 +

𝜇ai
bi

)
(30)

with 𝜇 > 0, x0 ∈ ℝ, and ai = I{a}, bi = I{b}, we can

express Eq. (20) as

𝜏b
u𝓁,i = i exp

(
Di

)
G
(
su𝓁,0, s

′
u𝓁𝑤i, 𝛾i,0, 𝛾

′
i
𝑤i, 𝜇i, xi

)
− iG

(
su𝓁,0, s

′
u𝓁𝑤i, 𝛾i,0, 𝛾

′
i
𝑤i, 1, xi

)
, (31)

where 𝜇u = m∗
u
∕m∗

𝓁 , 𝜇𝓁 = m∗
𝓁∕m∗

u
, Du = ℏ𝛿u𝓁,k=0∕

(
kBTu

)
,

D𝓁 = −ℏ𝛿u𝓁,k=0∕
(
kBT𝓁

)
, and xi = max

(
0,Di∕𝜇i

)
. If we

assume equal electron temperatures Te in both subbands

and neglect nonparabolicity as well as the energy depen-

dence of dephasing (i.e., 𝜇i = 1, s′
u𝓁 = 𝛾

′
i
= 0), Eq. (30) sim-

plifies toG = c
(
aia

)−1
exp

(
−x0

)
. Furthermore choosing the

optical carrier frequency 𝜔c as the transition frequency

𝜔u𝓁 , Eq. (31) becomes with 𝛿u𝓁,k=0 → 0

𝜏b
u𝓁,i = ±i ℏ

kBTe

𝛾i,0
𝛾u𝓁,0

, (32)

where the “+” and “−” sign is for i = u and i = 𝓁, respec-
tively. With Γu𝓁 = 𝛾u𝓁 and 𝜏

np

u𝓁,i
= 𝛾−1

u𝓁 , we recover the mod-

ified Maxwell–Bloch equations introduced in ref. [39] by

assuming 𝛾 i,0 = 𝛾u𝓁,0∕2.
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3.3 Generalization to multiple levels

The procedure for deriving the effective parameters can

straightforwardly be extended to optical and tunneling tran-

sitions involving multiple levels. This is the case if a laser

transition has more than one upper or lower laser level,

or for coherent coupling of the laser levels to other states

by resonant tunneling. For the level scheme illustratively

sketched in Figure 1, injection into the upper or extraction

from the lower laser level may, e.g., be dominated by reso-

nant tunneling, described in the model by a corresponding

equation of the form Eq. (B.2). Given a subset of N lev-

els in the quantum system which interact coherently, each

corresponding off-diagonal DM element is governed by an

evolution equation of the form

𝜕t𝜎mn,k = −smn,k𝜎mn,k +
∑
i≠n
𝜉mn,in𝜎mi,k

+
∑
i≠m
𝜉mn,mi𝜎in,k. (33)

For a near-resonant optical transition between two lev-

els i and j, 𝜎ij,k represents the corresponding off-diagonal

DM element in RWA, i.e., 𝜎ij,k = 𝜂ij,k, and sij,k is given by

Eq. (B.4). For a closely aligned pair of levels i and j, 𝜎ij,k =
𝜌ij,k, and smn,k = 𝛾mn,k + i𝜔mn,k. The constants 𝜉mn,ij repre-

sent the coefficients in Eqs. (B.2) and (B.3), related toΩij and

𝜀ij, respectively.

For deriving the effective DM equations, the stationary

carrier densities 𝜎o
ii,k

= 𝜌o
i,k

and the average optical inten-

sity Io at the operating point are extracted from the car-

rier transport simulations (if the operating point is close to

threshold, an arbitrary small value for Io can be assumed).

The 𝜉mn,ij related to the optical field are then obtained from

𝜀i j = di j
[
2Io∕

(
ℏ2𝜖0cn0

)]1∕2
(34)

with the vacuum speed of light c, vacuum permittivity

𝜖0 and refractive index n0. Writing down Eq. (33) for all

non-zero off-diagonal DM elements 𝜎mn associated with

the subset of coherently interacting levels and setting 𝜕t =
0, a linear equation system is obtained which allows us

to compute the stationary solutions 𝜎o
mn,k

. Similarly as in

Section 3.2, both sides of Eq. (33) are divided by smn,k, and

subsequently, the k summation is performed. For a quan-

tum well structure with in-plane isotropy, the k summa-

tion can be replaced by integration over the energy 𝑤

defined in Eq. (28), see Section 3.2.3. Using Eq. (6), we define

𝜎o
ii
= ∑

k
𝜌o
i,k
and 𝜎o

mn
= ∑

k
𝜎o
mn,k

. We introduce the effective

parameters Γmn,ij via setting
∑

k
s−1
mn,k

𝜎i j,k = Γ−1
mn,i j

𝜎i j and

using the stationary solutions for the 𝜎ij,k. This yields as a

generalization of Eq. (13)

Γmn,i j = 𝜎oi j∕
∑
k

s−1
mn,k

𝜎o
i j,k
. (35)

Specifically, for k independent smn, we obtain Γmn,ij =
smn. For more compact notation, we write Γmn,mn=:Γmn.

After multiplication with Γmn, we obtain with cmn,i j =
ΓmnΓ−1

mn,i j
the effective DM equation

𝜕t𝜎mn = −Γmn𝜎mn +
∑
i≠n
𝜉mn,incmn,mi𝜎mi

+
∑
i≠m
𝜉mn,micmn,in𝜎in. (36)

Equation (36) contains the effect of nonparabolicity.

For 𝜎mn describing optical transitions, Bloch gain may be

included similarly as in Eq. (18) by defining

cmn,ii = Γmn

(
Γ−1
mn,ii

+ 𝜏b
mn,i

)
(37)

with i = m, n, where 𝜏b
mn,i

is given by Eq. (20). For the inclu-

sion of SHB and coupling of the DM description to optical

propagation equations, see Appendix C.

4 Examples

Nonparabolicity is usually much more pronounced in mid-

infrared (MIR) than in terahertz QCLs, since the larger

energy spacing between the upper and lower laser lev-

els tends to enhance the difference between the effective

masses. Furthermore, the nonparabolicity effect increases

with electron temperature since higher k states get occu-

pied. Thus, in the following we focus on high-temperature

MIR QCL structures.

4.1 Analytical effective parameter model

In order to validate the analytical effective parameter

model introduced in Section 3.2.3, we choosem∗
u
= 1.2 m∗

𝓁 =
0.06 me, 𝜌𝓁 = 𝜌u∕3, T𝓁 = 1.5 Tu = 900 K, 𝛾u𝓁 = 10 ps−1 cor-

responding to a Lorentzian gain bandwidth of 𝛾u𝓁∕𝜋 =
3.2 THz, and 𝛾u = 𝛾𝓁 = 𝛾u𝓁∕2. These are realistic values

for MIR QCLs and give rise to a pronounced nonparabol-

icity. From Eqs. (18), (29) and (31), the effective parameter

values c
np

u𝓁,u = 0.886+ 0.228i, c
np

u𝓁,𝓁 = 0.796+ 0.248i, cb
u𝓁,u =

−0.013+ 0.054i, cb
u𝓁,𝓁 = 0.012− 0.035i, and Γu𝓁 = 14.2−

5.2i ps−1 are obtained. For validating the effective model,

we compare the frequency dependent susceptibility 𝜒 ∝
𝜂u𝓁∕𝜀u𝓁 computed from Eq. (21) with the result of the fully

k dependent calculation, obtained by solving Eq. (11) in

analogy to Eq. (21) and employing Eq. (6). In Figure 3(a),

the obtained susceptibility is shown for the effective and
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(a) (b)

Figure 3: Calculated (a) susceptibility 𝜒 and (b) harmonic and Bloch

contributions to 𝜒 as a function of the normalized frequency detuning

Δ∕𝛾u𝓁 for a two-level system. The results from the analytical effective

parameter model, introduced in Section 3.2.3, are compared to

calculations based on the conventional discrete-level and the fully k

resolved DM model.

fully k dependent model as well as for the conventional

discrete-level DM equations, obtained by setting Γu𝓁 =
su𝓁 and cu𝓁,u = cu𝓁,𝓁 = 1 in Eq. (21). Figure 3(b) displays

the harmonic and Bloch contributions to 𝜒 . Overall, we

find good agreement between the full and the effective

model. As expected, the conventional discrete-level DM

equations do not capture the asymmetry and broaden-

ing of 𝜒 and 𝛼 caused by nonparabolicity and the Bloch

contribution.

4.2 Multilevel effective parameter model

As a test case for the general effective multilevel DM model

of Section 3.3, we choose a diagonal bound-to-continuum

room temperature QCL design emitting at 8.5 μm [66],

which has been widely used as a reference structure for

validating modeling approaches [65]–[67]. In Figure 4(a),

the energy levels of a representative stage, which have

been computed with a Schrödinger–Poisson solver, are

displayed. Furthermore, DM-Monte Carlo carrier transport

simulations have been performed [56], [65]. The simulated

energy dependent distribution functions and dephasing

rates are shown in Figure 4(b) and (c), respectively. The

electron dispersion relation is here modeled using Eq. (1).

The effective masses of the upper and lower laser lev-

els u and 𝓁 are 0.0604 and 0.0547, giving rise to a pro-

nounced nonparabolicity. Additionally, Bloch gain between

the laser levels and the coherent coupling of the upper

laser level to the tunneling injector t contribute to the

asymmetry. For this subset of coupled subbands, Eq. (33)

becomes

(a)

(b) (c)

Figure 4: Carrier transport simulation results for the investigated QCL.

(a) Conduction band profile with energy levels and probability densities.

(b) Electron distribution functions fi(𝑤) for the upper laser level (u),

lower laser level (𝓁), and tunneling injector (t) as a function of the energy
𝑤, defined in Eq. (28). (c) Dephasing rates 𝛾i(𝑤) and 𝛾i j(𝑤).

𝜕t

⎛⎜⎜⎜⎝

𝜂u𝓁,k

𝜂t𝓁,k

𝜌tu,k

⎞⎟⎟⎟⎠
= −

⎛⎜⎜⎜⎜⎝

su𝓁,k iΩtu 0

iΩtu st𝓁,k
i

2
𝜀u𝓁

0
i

2
𝜀∗
u𝓁 stu,k

⎞⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎝

𝜂u𝓁,k

𝜂t𝓁,k

𝜌tu,k

⎞⎟⎟⎟⎠

+

⎛⎜⎜⎜⎜⎝

i

2
𝜀u𝓁

(
𝜌𝓁,k − 𝜌u,k

)
0

iΩtu

(
𝜌t,k − 𝜌u,k

)

⎞⎟⎟⎟⎟⎠
, (38)

with 𝜌i,k = Sfi,k where the scaling factor S introduced in

Eq. (2) can be freely chosen. Taking advantage of the in-

plane isotropy, we represent the k dependence in terms

of the energy variable 𝑤 introduced in Eq. (28). The 𝜌i(𝑤)

and si j(𝑤) are provided by the carrier transport simulations

at the operating point as shown in Figure 4; furthermore,

ℏΩtu = 3.2 meV is obtained. Assuming operation close to

threshold, an arbitrary small value for 𝜀u𝓁 can be assumed.

Setting 𝜕t = 0, a linear equation system is obtained for

𝜎o
i j
(𝑤) = 𝜂u𝓁(𝑤), 𝜂t𝓁(𝑤) and 𝜌tu(𝑤). Plugging the results in

Eq. (35) and replacing the summation over k by integration

over 𝑤, the correction coefficients Γmn,ij are obtained. The

reduced effective DM equations are then given by
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𝜕t

⎛⎜⎜⎜⎝

𝜂u𝓁

𝜂t𝓁

𝜌tu

⎞⎟⎟⎟⎠
= −

⎛⎜⎜⎜⎜⎝

Γu𝓁 icu𝓁,t𝓁Ωtu 0

ict𝓁,u𝓁Ωtu Γt𝓁
i

2
ct𝓁,tu𝜀u𝓁

0
i

2
ctu,t𝓁𝜀

∗
u𝓁 Γtu

⎞⎟⎟⎟⎟⎠

⋅

⎛⎜⎜⎜⎝

𝜂u𝓁

𝜂t𝓁

𝜌tu

⎞⎟⎟⎟⎠
+

⎛⎜⎜⎜⎜⎝

i

2
𝜀u𝓁

(
cu𝓁,𝓁𝓁𝜌𝓁 − cu𝓁,uu𝜌u

)
0

iΩtu

(
ctu,tt𝜌t − ctu,uu𝜌u

)

⎞⎟⎟⎟⎟⎠
, (39)

where cmn,i j = ΓmnΓ−1
mn,i j

, and Eq. (37) has been used to

include Bloch gain.

For validating Eq. (39), we again compare the frequency

dependent susceptibility 𝜒 ∝ 𝜂u𝓁∕𝜀u𝓁 . Similarly as for

Eq. (21), the frequency dependent 𝜂u𝓁 is obtained by insert-

ing a frequency-shifted field 𝜀u𝓁 → 𝜀u𝓁(Δ) exp
(
−iΔt

)
and

corresponding optical DM elements 𝜂i j → 𝜂i j(Δ) exp
(
−iΔt

)
into Eq. (39), where Δ = 𝜔−𝜔c. Cancelling the factor

exp
(
−iΔt

)
and setting 𝜕t = 0 yields a linear equation sys-

tem for the stationary solution, which is solved in depen-

dence ofΔ to obtain 𝜂u𝓁(Δ). The exact result is obtained by
computing 𝜂u𝓁,k(Δ) in an analogous manner from Eq. (38),

and performing the k summation according to Eq. (6). As

can be seen from Figure 5(a), the susceptibility obtained

with the effective discrete-level DM model agrees well with

exact result of the fully k dependent DM simulation, while

the conventional discrete-level DM equations, obtained by

setting Γmn = smn and cmn,ij = 1 in Eq. (39), do not provide a

good fit. The results shown in Figure 5(b) are for the same

device, but the carrier transport simulations have been per-

formed under lasing conditions [65], resulting in gain satu-

ration. Again, the effective DMmodel yields good agreement

with the exact results.

(a) (b)

Figure 5: Susceptibility 𝜒 for a three-level system, consisting of the laser

levels and a tunneling injector, as a function of the frequency detuning

Δ∕(2𝜋) for the (a) unsaturated and (b) saturated case. The results from
the generalized effective parameter model, introduced in Section 3.3,

are compared to calculations based on the conventional discrete-level

and the fully k resolved DM model.

4.3 Dynamic simulations

Finally, we present simulations based on the effective

Maxwell-DMapproach to assess the numerical performance

of themodel, and to investigate the influence of nonparabol-

icity and Bloch gain on the QCL dynamics. For the dynamic

simulations, Eqs. (C.3)–(C.9) in Appendix C are solved on

a spatiotemporal grid, using an explicit 3rd order Adams-

Bashforthmethod for Eqs. (C.3)–(C.7) and a finite difference

scheme for Eq. (C.8) [25]. To obtain realistic results, SHB

and group velocity dispersion are included in the model.

Furthermore, spontaneous emission noise is considered in

Eq. (C.8) to account for the associated field fluctuations and

to emulate the buildup of lasing. As an exemplary struc-

ture, we choose a Fabry–Perot cavity with a vertical two-

phonon resonance active region, featuring room tempera-

ture operation at around 9 μm [68], [69]. This design has

for example been used for investigating the formation of

dense and harmonic multimode spectra under different

driving conditions [70]. Similarly as in Figure 4(a), wemodel

injection into the upper laser level by tunneling though

the thick injection barrier. Thus, the coherent coupling

between the injection, upper and lower laser levels can

again be described by Eq. (39). As outlined in Section 4.2, the

Hamiltonian matrix elements, scattering/dephasing rates

and effective parameters are extracted from carrier trans-

port simulations. In Figure 6(a), the computed susceptibility

at lasing threshold is shown as a function of frequency for

the same models as in Figure 5, again yielding excellent

(a) (b)

(c)

(d)

Figure 6: Simulation results for QCL multimode operation: (a) active

region susceptibility 𝜒 at threshold, calculated with different models;

(b) Bloch and harmonic contributions to 𝜒 according to the effective

parameter model; (c) and (d) multimode spectra obtained with

the (c) effective and (d) conventional Maxwell-DM approach.
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agreement between the effective and full DM approach. In

addition, the Bloch and harmonic contributions are dis-

played in Figure 6(b) for the effective DM model. Both the

nonparabolicity and the Bloch gain contribute to the gain

asymmetry, resulting in a noticeable shift of the gain peak

to lower frequencies.

In the following, we focus on dense multimode oper-

ation, since the emergence of harmonic spectra in free-

running lasers is quite elusive, critically depending on the

drive history, sample used and other factors [19], [49], [70].

Exemplarily, we investigate the effect of nonparabolicity,

since the influence of Bloch gain on the QCL dynamics

has already been studied in detail for a similar active

region design [39]. In Figure 6(c) and (d), simulation results

of the effective and conventional Maxwell-DM model are

shown for a moderate two-facet output power of∼50 mW.

Both approaches yield a densemultimode spectrum already

slightly above threshold, as also observed in experiment

[70]. Although multimode operation in Fabry–Perot cav-

ities is largely governed by SHB [71], [72], the spectrum

is clearly broader for the effective model, featuring a 20-

dB bandwidth of 0.71 THz (i.e., 2.1 % relative bandwidth)

versus 0.54 THz (1.6 %) for the conventional approach.

This illustrates the contribution of nonparabolicity-induced

linewidth enhancement to multimode formation. In addi-

tion, the spectrum obtained with the effective model is

downshifted in frequency and thus agrees somewhat bet-

ter with the experimentally observed wavelength range

[70], which however has been found to depend signifi-

cantly on the growth process and facility [73]. Simulations at

higher output powers likewise yield broader and frequency-

downshifted spectra for the effective model, providing a

better overall match to experiment as expected. The numer-

ical stability and efficiency of the effective Maxwell-DM

approach has been further validated by applying it to other

test structures. Since the effective parameters can directly

be extracted from the carrier transport simulations and the

effective Maxwell-DM equations have the same complexity

as the conventional model, the computational cost is com-

parable for both approaches. Thus, the effective Maxwell-

DM model is well-suited for dynamic QCL modeling, and

specifically for the investigation of operating regimeswhere

gain asymmetry plays a pronounced role, such as comb and

soliton formation in ring cavities [21]–[24], [39], [43], [45],

[74] and harmonic operation [15]–[20], [70].

5 Conclusions

An effective DMmodel has been derived for unipolar quan-

tum optoelectronic devices by adequate summation over

the electron wavevector, which characterizes the free car-

riermotion in the directionswithout quantumconfinement.

The resulting effective discrete-level DM equations differ

from models for true discrete-level quantum systems, such

as quantum dots, by containing additional effective param-

eters. This extended description includes gain asymmetry

and linewidth enhancement by considering effects such as

nonparabolicity and Bloch gain. Here, the effective parame-

ters are extracted from carrier transport simulations, pro-

viding a self-consistent model without phenomenological

parameters. Good agreement with fully wavevector depen-

dent simulations is found. By coupling the DM description

to optical propagation equations, an effective Maxwell-DM

model is obtained for the combined optical and electronic

device dynamics. The approach is validated by exemplary

QCL simulations, achieving numerical performance compa-

rable to the conventional discrete-levelmodelwhile offering

greatly improved accuracy and versatility. Thus, the effec-

tive Maxwell-DM equations are well-suited for the theoret-

ical investigation of dynamic operating regimes, such as

comb generation in ring cavities or the formation of solitons

and harmonic states. The predictive power of the model

may be further enhanced by taking into account the con-

tributions of non-resonant optical transitions to linewidth

enhancement. Perspectively, an adaption of the presented

approach to bipolar quantum optoelectronic devices would

be highly attractive. In this context, interband cascade

lasers (ICLs) [75] are of particular interest, since they

have recently shown great potential for the generation of

dynamic waveforms in the mid-infrared regime, such as

short pulses [76], broadband frequency combs [77], [78] and

harmonic comb states [79]. Suitable approaches for micro-

scopic carrier transport simulations, required as input for

the self-consistent dynamic device model introduced in this

paper, are meanwhile available for ICLs [80]. Generally,

for bipolar optoelectronic devices a main challenge is that

computing the effective parameter integrals may involve

divergence problems [32], which must be adequately

handled.
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Appendix A: Collision termmodel

The collision terms
[
𝜕t𝜌mn,k

]
col

and
[
𝜕t𝜌n,k

]
col

in Eq. (4),

which account for dissipative processes, can be imple-

mented based on a full quantum description as is done

in quantum-kinetic approaches [81]–[84], or under certain

assumptions by employing amore amenable relaxation rate

model [25], [81], [85]. Using the latter approach, we use a

dissipation model of the form [25], [52]

[
𝜕t𝜌mn,k

]
col

= −𝛾mn,k𝜌mn,k, (A.1a)

[
𝜕t𝜌n,k

]
col

=
∑
i

∑
q

[
Wiq,nk𝜌i,q

(
1− fn,k

)

−Wnk,iq𝜌n,k
(
1− fi,q

)]
, (A.1b)

where the terms
(
1− fn,k

)
and

(
1− fi,q

)
account for Pauli

blocking. The dephasing rate is denoted by 𝛾mn,k, with

𝛾mn,k = 𝛾nm,k. The scattering ratesWnk,iq include all the rel-

evant scattering mechanisms, i.e.,Wnk,iq =
∑

sW
(s)

nk,iq
where

the index s labels the different mechanisms. The W (s)

nk,iq

can for example be derived from microscopic models, and

may themselves depend on the carrier distribution, e.g., for

carrier-carrier scattering [52].

Appendix B: Rotating wave

approximation

The evolution equations for the DM elements in RWA are

obtained from Eq. (4) by making the substitutions given in

Eq. (5) and discarding the rapidly oscillating terms. For the

diagonal DM elements, we obtain

𝜕t𝜌nn,k = i
∑
i≠n

(
Ωin𝜌ni,k −Ωni𝜌in,k

)

+
∑
i

𝜔ni,k>0

I
{
𝜀∗
ni
𝜂ni,k

}
+

∑
i

𝜔ni,k<0

I
{
𝜀ni𝜂ni,k

}

+
[
𝜕t𝜌nn,k

]
col
. (B.1)

The off-diagonal DM elements for transitions between

closely aligned levels (
|||𝜔mn,k

|||≪ 𝜔c ) are with Eq. (A.1a)

obtained as

𝜕t𝜌mn,k = −
(
𝛾mn,k + i𝜔mn,k

)
𝜌mn,k

+ i
∑
i≠n

Ωin𝜌mi,k − i
∑
i≠m

Ωmi𝜌in,k

+ i

2

∑
i

𝜔in,k>0

𝜀∗
mi
𝜂in,k +

i

2

∑
i

𝜔in,k<0

𝜀mi𝜂in,k

− i

2

∑
i

𝜔mi,k>0

𝜀∗
in
𝜂mi,k −

i

2

∑
i

𝜔mi,k<0

𝜀in𝜂mi,k. (B.2)

For the off-diagonal DM elements in near-resonance

with the optical field (𝜔mn,k ≈ 𝜔c) with𝜔mn,k > 0,we obtain

with Eqs. (4) and (A.1a) in the RWA

𝜕t𝜂mn,k = −smn,k𝜂mn,k

+ i
∑
i≠n

𝜔mi,k>0

Ωin𝜂mi,k − i
∑
i≠m

𝜔in,k>0

Ωmi𝜂in,k

+ i

2

∑
i

𝜀mi𝜌in,k −
i

2

∑
i

𝜀in𝜌mi,k, (B.3)

with

smn,k = 𝛾mn,k + i
(
𝜔mn,k −𝜔c

)
= 𝛾mn,k + i𝛿mn,k. (B.4)

The remaining elements with 𝜔mn,k < 0 are then

obtained using 𝜂mn,k = 𝜂∗nm,k. Importantly, for compatibil-
ity with the RWA, we assume that in Eqs. (B.1)–(B.3) all

off-diagonal DM elements 𝜌ij,k refer to closely aligned lev-

els (
|||𝜔i j,k

|||≪ 𝜔c), and all 𝜂ij,k are associated with near-

resonant optical transitions
|||𝜔i j,k

||| ≈ 𝜔c. The remaining off-

diagonal DM elements are set to 0 in our RWA model, and

transitions between the corresponding levels are assumed

to be exclusively mediated by incoherent scattering, consid-

ered in Eq. (B.1) by the collision term.

Appendix C: Optical propagation

and spatial hole burning

For realistic device simulations, SHB in form of an inversion

grating, resulting from the interference of counterpropagat-

ing waves in a resonator, must be considered [25], [60], [61],

[71], [86]. In the following, we proceed as in ref. [47]. We

note that the DM elements are regarded as position depen-

dent, i.e., 𝜌mn (x, t) and 𝜂u𝓁 (x, t) denote the DM elements

of a representative quantum system at position x in the

resonator. Since SHB is counteracted by diffusion, we add



C. Jirauschek: Effective discrete-level density matrix model for unipolar devices — 3455

a term 𝜕t𝜌mn = …+ Dmn𝜕
2
x
𝜌mn to the evolution equation

of a given DM element 𝜌mn (and analogously for 𝜂mn),

where Dmn denotes the corresponding diffusion coefficient.

Including the grating to lowest order, we write the spatial

dependence of the optical field as 𝜀mn = 𝜀+mn exp
(
i𝛽x

)
+

𝜀−
mn

exp
(
−i𝛽x

)
, where 𝛽 is the propagation constant of the

guided mode and the envelopes 𝜀±
mn(x, t) are assumed to

vary slowly in space and time. For introducing 𝜂±
mn(x, t),

we proceed analogously. The remaining DM elements are

represented as 𝜌mn = 𝜌0mn +
∑

±𝜌
2±
mn

exp
(
±2i𝛽x

)
. For m =

n, we have 𝜌2+
n

=
(
𝜌2−
n

)∗
(with 𝜌2±

n
:= 𝜌2±

nn
).

C.1 Two-level model

Discarding higher order oscillation terms, we obtain from

Eqs. (10) and (18)

𝜕t𝜌
0
n
= sgn

(
𝜔nm

)
I
{(
𝜀+
u𝓁

)∗
𝜂+
u𝓁 +

(
𝜀−
u𝓁

)∗
𝜂−
u𝓁

}

+
∑
i≠n

rin𝜌
0
i
− 𝜌0

n

∑
i≠n

rni,

𝜕t𝜌
2±
n

= i

2
sgn

(
𝜔nm

)[
𝜀±
u𝓁

(
𝜂∓
u𝓁

)∗ − (
𝜀∓
u𝓁

)∗
𝜂±
u𝓁

]

+
∑
i≠n

rin𝜌
2±
i

− 𝜌2±
n

∑
i≠n

rni − 4𝛽2Dnn𝜌
2±
n
, (C.1)

with n = u,m = 𝓁 andm = u, n = 𝓁, respectively, and

𝜕t𝜂
±
u𝓁 = −Γu𝓁𝜂

±
u𝓁 +

i

2
𝜀±
u𝓁

(
c
np

u𝓁,𝓁𝜌
0
𝓁 − c

np

u𝓁,u𝜌
0
u

)

+ i

2
𝜀∓
u𝓁

(
cu𝓁,𝓁𝜌

2±
𝓁 − cu𝓁,u𝜌

2±
u

)
− 𝛽2Du𝓁𝜂

±
u𝓁 . (C.2)

We note that in this model, similarly as in previous

work [39], [44], a possible influence of SHB on the param-

eters Γu𝓁 , cu𝓁,u and cu𝓁,𝓁 has been neglected.

C.2 Generalized multilevel model

Analogously, SHB can be included into the generalized

multilevel model. From Eq. (7), we obtain for the occupa-

tions

𝜕t𝜌
0
nn
= 2

∑
i≠n

I
{
Ωni𝜌

0
in

}

−
∑
i

𝜔ni>0

I
{
𝜂−
in
𝜀+
ni
+ 𝜂+

in
𝜀−
ni

}

+
∑
i

𝜔ni<0

I
{
𝜂+
ni
𝜀−
ni
+ 𝜂−

ni
𝜀+
ni

}

+
∑
i≠n

rin𝜌
0
ii
− 𝜌0

nn

∑
i≠n

rni, (C.3)

𝜕t𝜌
2±
nn

= i
∑
i≠n

(
Ωin𝜌

2±
ni

−Ωni𝜌
2±
in

)

+ i

2

∑
i

𝜔ni>0

[
𝜀±
ni
𝜂±
in
−
(
𝜀∓
ni

)∗
𝜂±
ni

]

+ i

2

∑
i

𝜔ni<0

[(
𝜀∓
ni

)∗
𝜂±
in
− 𝜀±

ni
𝜂±
ni

]

+
∑
i≠n

rin𝜌
2±
ii

− 𝜌2±
nn

∑
i≠n

rni − 4𝛽2Dnn𝜌
2±
nn
, (C.4)

with 𝜌2+
nn

=
(
𝜌2−
nn

)∗
. The off-diagonal DM elements for tran-

sitions between closely aligned levels (
|||𝜔mn,k

|||≪ 𝜔c) are

described by

𝜕t𝜌
0
mn

= −Γmn𝜌
0
mn

+ i
∑
i≠n

Ωincmn,mi𝜌
0
mi
− i

∑
i≠m

Ωmicmn,in𝜌
0
in

+ i

2

∑
i

𝜔in>0

cmn,in

[(
𝜀+
mi

)∗
𝜂+
in
+
(
𝜀−
mi

)∗
𝜂−
in

]

+ i

2

∑
i

𝜔in<0

cmn,in
(
𝜀−
mi
𝜂+
in
+ 𝜀+

mi
𝜂−
in

)

− i

2

∑
i

𝜔mi>0

cmn,mi

[(
𝜀+
in

)∗
𝜂+
mi
+
(
𝜀−
in

)∗
𝜂−
mi

]

− i

2

∑
i

𝜔mi<0

cmn,mi
(
𝜀−
in
𝜂+
mi
+ 𝜀+

in
𝜂−
mi

)
, (C.5)

𝜕t𝜌
2±
mn

= −
(
Γmn + 4𝛽2Dmn

)
𝜌2±
mn

+ i
∑
i≠n

Ωincmn,mi𝜌
2±
mi

− i
∑
i≠m

Ωmicmn,in𝜌
2±
in

+ i

2

∑
i

𝜔in>0

(
𝜀∓
mi

)∗
cmn,in𝜂

±
in
+ i

2

∑
i

𝜔in<0

𝜀±
mi
cmn,in𝜂

±
in

− i

2

∑
i

𝜔mi>0

(
𝜀∓
in

)∗
cmn,mi𝜂

±
mi
− i

2

∑
i

𝜔mi<0

𝜀±
in
cmn,mi𝜂

±
mi
,

(C.6)

thus fulfilling 𝜌0
mn

=
(
𝜌0
nm

)∗
, 𝜌2+

mn
=

(
𝜌2−
nm

)∗
. Regarding the

off-diagonal DM elements in near-resonance with the opti-

cal field (𝜔mn ≈ 𝜔c), we obtain for 𝜔mn > 0

𝜕t𝜂
±
mn

= −
(
Γmn + 𝛽2Dmn

)
𝜂±
mn

+ i
∑
i≠n
𝜔mi>0

Ωincmn,mi𝜂
±
mi
− i

∑
i≠m
𝜔in>0

Ωmicmn,in𝜂
±
in
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+ i

2

∑
i

cmn,in
(
𝜀±
mi
𝜌0
in
+ 𝜀∓

mi
𝜌2±
in

)

− i

2

∑
i

cmn,mi
(
𝜀±
in
𝜌0
mi
+ 𝜀∓

in
𝜌2±
mi

)
, (C.7)

and use 𝜂±
nm

=
(
𝜂∓
mn

)∗
to compute the remaining DM

elements.

For the simulation of devices featuring a modulated

bias u(x, t) along the waveguide, as applies, e.g., for

actively mode-locked QCLs, the model has to be somewhat

generalized by treating Ωmn(u) and 𝜔mn(u) as u dependent

parameters [47]. This description can also be extended to the

scattering and dephasing rates rmn(u) and 𝛾mn(u), assuming

that they follow the bias change instantaneously.With smn =
𝛾mn + i𝜔mn for closely aligned levels (Eqs. (C.5), (C.6)) and

smn = 𝛾mn + i
(
𝜔mn −𝜔c

)
for near-resonant optical transi-

tions (Eq. (C.7)), we can then approximately write Γmn(u) =
smn(u)Γo

mn
∕so

mn
, where the superscript o indicates the values

at the operating point. For small modulations, a first order

Taylor expansion of the bias dependent parameters around

the DC value of u is sufficient [47]. As described in Section 3,

the cmn,ij are evaluated at the operating point and are thus

modulation independent.

C.3 Coupling to optical propagation
equation

The Maxwell-DM equations, forming a closed model for the

combined optical and electronic dynamics in the device, are

obtained by coupling Eqs. (C.1) and (C.2) or (C.3)–(C.7) to the

optical propagation equation [25]

𝑣−1
g
𝜕tE

± ± 𝜕xE± = − i

2
𝛽2𝜕

2
t
E± − a

2
E± + ip± + S

sp
± . (C.8)

Here, a, 𝑣g and 𝛽2 are the waveguide power loss coeffi-

cient, group velocity, and background group velocity disper-

sion coefficient, and 𝜀±
u𝓁 = ℏ−1du𝓁E±. If the DM is normal-

ized such that
∑

n 𝜌n = 1 for each representative quantum

system, the polarization term p± in Eq. (C.8) is given by

p± = n3D𝜔
2
c

𝜖0𝛽c
2
Γ

∑
𝜔mn>0

dnm𝜂
±
mn
, (C.9)

with the electron number density n3D, vacuum speed of

light c, vacuum permittivity 𝜖0, and overlap factor Γ. For a
single optical transition, we have m = u, n = 𝓁. Ssp± repre-

sents spontaneous emission, which is numerically modeled

as distributed random noise [87].
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