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Abstract: We implement a paraxial azimuthally-radially

polarized beam (ARPB), a novel class of structured light

beams that can be optimal chiral (OC), leading to maximum

chirality density at a given energy density. By using vectorial

light shaping techniques, we successfully generated a parax-

ial ARPB with precise control over its features, validating

theoretical predictions. Ourfindings demonstrate the ability

to finely adjust the chirality density of the ARPB across

its entire range by manipulating a single beam parame-

ter. Although our experimental investigations are primarily

focused on the transverse plane, we show that fields whose

transverse components satisfy the optimal chirality condi-

tion are optimally chiral in all directions, and our results

highlight the promising potential of OC structured light for

applications in the sensing and manipulation of chiral par-

ticles. We show that helicity density is more general than

the concept of handedness. This work represents a signifi-

cant advancement toward practical optical enantiosepara-

tion and enantiomer detection at the nanoscale.

Keywords: azimuthally-radially polarized beam (ARPB);

optimally chiral light (OCL); optical chirality; helicty density;

chirality; structured light

1 Introduction

Part of this study was inspired by the work of Prof. Federico

Capasso, to whom this special issue is dedicated. The many

topics Prof. Capasso worked on include helicity, chirality of
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light and the interaction with chiral matter, most notably

in Refs. [1]–[3]. Some of the material of this paper was

presented and discussed during the 2024 NanoPlasm Con-

ference in Cetraro (IT) where Prof. Capasso’s 75th birthday

was celebrated. The study of structured light is important

for various applications, including the detection of chiral

nanoparticles [1]–[3]. Chirality is a property of objects that

are not superimposable with their mirror image [4]. Impor-

tantly, many biologically relevant molecules exist in chiral

pairs, known as enantiomers [5]. The chiral nature of elec-

tromagnetic fields can be described using helicity density

[6]–[8]. Traditionally, the “handedness” of circularly polar-

ized light has been associated with the chirality of light,

but here we show that the chirality density of light is much

more general than the simple concept of handedness. For

monochromatic beams with the implicit time dependence

e−i𝜔t, where 𝜔 is the angular frequency of light, the time-

average helicity density h is [9]–[11].

h = 1

2𝜔c
J
(
E ⋅ H∗)

, (1)

where E and H represent the electric and magnetic field

phasors of light, respectively. The term c = 1∕√𝜀0𝜇0 is the
speed of light in vacuum.

In Ref. [10], it was shown that the magnitude of the

helicity density of a monochromatic field, at a given time-

average energy density u = 𝜀0|E|2∕4+ 𝜇0|H|2∕4 [12], has

an upper bound, i.e., |h| ≤ u∕𝜔 always. Light fields that

reach the upper bound |h| = u∕𝜔 are known as optimal

chiral light (OCL). Circularly polarized light (CPL) is themost

intuitive example of OCL [5], and the sign of h is related

to the handedness of the CPL. The same upper bound for

the magnitude of the helicity density was stated in Ref.

[13] involving fields whose Fourier spectrum representation

contains only plane waves with one circular polarization.

However, the concepts of helicity density and optimal chi-

rality hold true for any kind of monochromatic structured

light, including cases where the magnetic and electric fields

are polarized along a single (e.g., the beam’s longitudinal)

direction, and the concept of handedness cannot be applied.

The necessary and sufficient condition for fields to be locally

optimally chiral is
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E = ±i𝜂0H, (2)

where 𝜂0 =
√
𝜇0∕𝜀0 is the intrinsic impedance of free space

[10]. This condition, referred to as the optimal chirality con-

dition, stipulates that optimally chiral fields are thosewhose

electric and magnetic field phasors have balanced mag-

nitudes and a quarter-period phase delay between them.

Fields that satisfy this condition also display a remarkable

electric-magnetic symmetry in their energy and spin den-

sities [10]. Under this optimal chirality condition, one has

h = ±𝜇0|H|2∕(2𝜔) = ±𝜀0|E|2∕(2𝜔).
The concepts of optimal chirality and self-duality are

equivalent for monochromatic beams. Self-duality refers to

fields that are unchanged by the duality transformationE→

B and B→ −E [13], [14]. These fields are eigenvectors of the
curl [15], i.e., ∇ × E = kE. As shown in Ref. [16] without

connecting the concepts of optimal chirality and self-duality,

monochromatic fields satisfying the optimal chirality condi-

tion from Eq. (2) are eigenvectors of the curl operator, and

therefore self-dual fields.Hereweuse the concept of optimal

chirality instead of self-duality because we focus on the

chirality features of the beam, rather than on the broader

electromagnetic symmetries displayed by self-dual beams.

Additionally, few self-dual fields seem to have been studied

experimentally [17].

Optimally chiral structured beams are important

because they combine two powerful effects: vectorially

shaped light and maximized chirality density at a given

energy density. This combination is advantageous because it

allows for the control of enhanced interaction of the beam

with chiral matter. As a result, optimally chiral structured

beams open new possibilities for controlled sensing and

manipulation of chiral particles. Moreover, the topology

of tailored beams enables creative designs for chirality-

discriminating optical traps [18], which aim at trapping

an enantiomer while repelling its mirror image [1], [11],

[19]–[22].

The unprecedented control over the amplitude and

phase of structured light [12], [23] also results in an excep-

tional ability to finely tune the helicity density h of a probing

beam. This precise control allows one to tune the interaction

between a chiral particle and an illuminating field by adjust-

ing h [5] and it leads to a more detailed characterization of

the interactions between the chiral sample and the fields,

even beyond the commonly used dipolar approximation

(the dipolar photoinduced chiral forces are described in Ref.

[24]). The importance of higher-order multipoles on chiral

interactions is investigated in Ref. [25]. Additionally, the

control over the helicity density enables rapid changes in

its sign (similar to reversing the “handedness” of circularly

polarized light), facilitating the creation of dynamic optical

potentials [26], [27] for enantioseparation and the exper-

imental investigation of the chiral effects of higher-order

multipoles.

However, the ability to generate optimally chiral struc-

tured beams is constrained. One must design an optical

beam that satisfies the optimal chirality condition from

Eq. (2) and effectively generate it. Here we implement a

previously proposed example of a structured beam that dis-

plays optimal chirality: the azimuthally-radially polarized

beam (ARPB) [10], [28], [29]. The ARPB consists of a phase-

shifted combination of an azimuthally polarized beam and

a radially polarized beam. It has been theoretically studied

in the past, see Refs. [10], [28], [30], [31], and most compre-

hensively in Ref. [16]. The optimally chiral ARPB (OC-ARPB)

combines the extraordinary properties of OCL with the spa-

tial separation between its transverse fields, which vanish

on the beam axis, and the longitudinal fields. OCL is present

along the beam axis, solely due to Ez and Hz. Consequently,

the ARPB has the potential to be used for controlled, on-axis

separation of enantiomers or for enantiomer detection. The

ARPB has also been recently studied in Refs. [32] and [33],

without focusing on the chiral features of the ARPB.

Our work presents an experimental implementation of

the ARPB, with a focus on characterizing its chirality and

demonstrating its ability to achieve optimal chirality [10],

[16]. By employing advanced vectorial shaping techniques,

we have overcome limitations to the field’s stability and

local polarization control to successfully generate a paraxial

APRBwith precisemanipulation over its features, validating

theoretical predictions. Importantly, we show that the helic-

ity density of the ARPB can be tuned across its full range of

possible values by varying a single beam parameter. While

our findings are confined to studying the chirality density

in the transverse plane, they demonstrate the potential of

optimally chiral structured light for designing enantiosepa-

rating optical traps and advancing practical schemes for the

sensing and manipulation of chiral particles. Additionally,

we show in Section 4 that if the transverse fields of a beam

satisfy the optimal chirality condition from Eq. (2), the lon-

gitudinal fields satisfy it as well.

2 Methods

2.1 Helicity density

The field phasors of the ARPB are [16]
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E = fV

k𝑤2

[
k𝜌

(
A
𝜌
+ iB

𝜌

)
𝝆̂+ k𝜌V̂ei𝜓 𝝋̂

+ 2i
(
Az + iBz

)
ẑ

]
,

H = − fV

k𝑤2𝜂0

[
k𝜌V̂ei𝜓

(
A
𝜌
+ iB

𝜌

)
𝝆̂

− k𝜌 𝝋̂+ 2iV̂ei𝜓
(
Az + iBz

)
ẑ

]
,

(3)

where V is a complex amplitude with units of Volts. The

parameters V̂ and 𝜓 represent the relative amplitude

and phase between the electric and magnetic azimuthal

components, respectively, normalized by the character-

istic impedance 𝜂0. This relationship is expressed as

E
𝜑
∕(𝜂0H𝜑 ) = V̂ei𝜓 . The dimensionless shorthand parame-

ters f ,A
𝜌
,B

𝜌
,Az, and Bz are

f = 2√
𝜋
e−(𝜌∕𝑤)2𝜁e−2i tan

−1(z∕zR )eikz,

A
𝜌
= 1+ 1

kzR

𝜌2 − 2𝑤2
0

𝑤2
+
(

2z𝜌

𝑤2 kzR

)2

,

B
𝜌
= − 4

(k𝑤)2
z

zR

(
1− 𝜌2

𝑤2

)
,

Az = 1− 𝜌2

𝑤2
,

Bz =
z

zR

𝜌2

𝑤2
,

(4)

where 𝑤 is the beam radius, defined as 𝑤 =
𝑤0

√
1+ (z∕zR )2, and 𝑤0 is defined as half the beam

waist parameter at z = 0. The Gouy phase is 𝜁 = 1− iz∕zR,
and the Rayleigh range is denoted as zR = 𝜋𝑤2

0
∕𝜆, where

𝜆 is the wavelength in free space. The wavenumber

is k = 2𝜋∕𝜆. While f is a complex scalar, the other

parameters A
𝜌
, B

𝜌
, Az, and Bz in Eq. (4) are real valued.

Adjusting the phase-shift 𝜓 (referred to as the phase

parameter of the ARPB) and the relative amplitude V̂

enables the creation of an ARPB that meets the optimal

chirality condition described in Eq. (2). This specific config-

uration occurs for 𝜓 = ±𝜋∕2 and V̂ = 1 [10], [16]. Note that

the OC-ARPB is a structured, monochromatic, and self-dual

beam.

Most notably, theARPBhas transverse fields that vanish

on the beam axis (𝜌 = 0), where the longitudinal fields per-

sist [10], [28], [30], [31]. This spatial separation between the

transverse and longitudinal components of the beam results

in vanishing linear and angularmomentumdensities on the

beam axis [16], where only the energy and helicity densities

(u and h respectively) associatedwith the longitudinal fields

persist. For the ARPB, the time-average energy and helicity

densities across the entire beam are [16]

u = u0D(1+ V̂2 )∕2,

h = h0DV̂ sin 𝜓,
(5)

where

D = (k𝜌)2
(
1+ A2

𝜌
+ B2

𝜌

)
+ 4

(
A2
z
+ B2

z

)
, (6)

and u0 = 𝜀0

2k2𝑤4 | f |2|V|2 and h0 = 𝜀0

2𝜔k2𝑤4 | f |2|V|2 are normal-
ization constants with units of energy density (J∕m3) and

helicity density (Ns∕m2), respectively. They are related as

h0 = u0∕𝜔, leading to

h = u

𝜔

2V̂

1+ V̂2
sin 𝜓 . (7)

2.2 Vectorial beam shaping

The paraxial ARPB is produced experimentally using spatial

light modulators (SLMs), which introduce a digitally con-

trolled spatially variable phase shift 𝜙(x, y) to an incident

optical field. The pixelated liquid crystal cells in an SLM

differentially delay the phase of incident fields according to

the voltage applied over each pixel. The SLM is controlled

via a desktop computer (Dell XPS). For a calculated scalar

field E, the hologram is produced by mapping the required

phase values to voltages applied over the SLM screen. Since

these are typically input into the SLM as 8-bit grayscale

values, a pre-calibrated a lookup table is used to ensure a

linear phase shift.

To ensure the desired wave function is accurately

reproduced by the SLM, each phase we wish to imprint on

a beam must be processed such that the desired phase and

amplitude information are imparted to the beam while fil-

tering unwanted intensity and diffraction orders. Although

amplitudemodulation is not directly availablewith a phase-

only SLM, pseudo-amplitude modulation is possible. Ampli-

tudemodulation can be created using a scatteringmask; the

inverse amplitude, given by 1− |E|2∕max |E|2, is multiplied
by a matrix of random integers and then applied to the

grayscale phase hologram (see Figure 2(c)). This modulation

redistributes unwanted power into higher spatial frequency

components in k-space (see Ref. [34] for details). It is per-

tinent to understand that the radially symmetric intensity

profile appears asymmetric in Figure 2(c); however, this is

only a visual artifact arising from the use of a noncyclical

grayscale map that must be used when displaying holo-

grams on an SLM. The perceived asymmetry is a result

of phase differences at the edge of the range which roll

over into the adjacent wavefront appearing high contrast,

where the same difference away from the bounds appears

relatively low contrast. Lastly, a blazed grating is applied

(see Figure 2(d)) to tilt the shaped beam and preferentially
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Figure 1: Diagram illustrating the experimental setup used to generate

the ARPBs with variable 𝜓 . A diagonally polarized He–Ne laser is first

collimated and expanded by a beam expander (BE), then aligned by

folding mirrors (FM) before vertical and horizontal polarizations are

separated by a polarized beam splitter (PBS) onto two twin spatial light

modulators (SLM1 and SLM2). Each SLM dynamically modulates

the power and phase of the beam returning through the PBS. Separate

calculated phases are applied to the orthogonally polarized beams

before recombination at the PBS. The beam is then Fourier filtered (FF),

and focused using a 0.25NA objective (MO 1). Polarization imaging is

performed with a 0.85NA objective (MO 2) in the focal plane of the ARPB,

which is captured using a Kiralux polarization camera. Updating the ARPB

with a new value of 𝜓 simply involves displaying holograms generated

with the modified transverse electric field components on the SLMs.

directs power into the first-order diffraction spot [35]. The

first order is then Fourier-filtered (FF), as shown in Figure 1,

to eliminate non-diffracted light (in the zero order) and

unwanted higher harmonics. Once set up, this holography

process may remain static across all datasets and has a

negligible impact on processing time.

Most commonly, SLMs are used to produce scalarwaves

with a constant polarization direction. Here, however, we

use two SLMs to produce a vectorially shaped beam. The

paraxial ARPB is generated using a twin SLM setup illus-

trated in Figure 1, initially introduced in Ref. [23] to generate

obscured bottle beams. This method uses the twin SLMs to

holographically control the beam’s transverse field compo-

nents, Ex and Ey, separately.

To create such vectorially shaped beams, we first

extract the complex field components of the corresponding

Jones vector

E =
(
Ex

Ey

)
=

(|Ex|ei𝜙x

|Ey|ei𝜙 y

)
,

and then independently convert each component into a

hologram. The phases of the Ex and Ey components of an

ARPB with 𝜓 ranging from −𝜋∕2 to 𝜋∕2 are shown in the

plots of Figure 3. Phases are processed into a hologram and

displayed on two corresponding orthogonally aligned SLMs,

which are aligned tomatch the polarization of the field com-

ponent they display. The SLMs in this configuration provide

control of phase and intensity of Ex and Ey individually,

Figure 2: Hologram generation process at each step for the separate

orthogonal polarization components of an ARPB with 𝜓 = 𝜋∕2: Ex(left),
and Ey (right); (a) calculated phase and amplitude of ARPB components;

(b) conversion of phase to grayscale; (c) addition of amplitude

modulation; (d) addition of a blazed grating. The final holograms (d) are

displayed on the orthogonal SLMs to shape the beams immediately

followed by recombination using a polarized beam splitter to create

the final complex wave.

resulting in control of the local polarization state of the

structured beam. The difference in amplitude modulation

on each SLM rotates the orientation angle of the polariza-

tion according to arctan
(|Ey|2∕|Ex|2), while phase shifting

𝜙x relative to 𝜙y controls the ellipticity of the polarization

state. The combination of these methods allows for local

control of phase, amplitude, and polarization of the beam

concurrently [36]. It is notable that to maintain system sta-

bility, a fixed optical path lengthmust be preserved between

each SLM. Although relative phase or position changes will

not cause interference between the orthogonal field com-

ponents, such changes can alter the outgoing polarization

angle and ellipticity. Therefore, the system has been engi-

neered to maximize rigidity.

In this paper, we produce five different paraxial ARPBs

(which are assumed to have (Ez = 0) under the zeroth-order

approximation [37]), with unity relative amplitude V̂ = 1
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Figure 3: Calculated phase for the separate orthogonal polarization

components of the ARPB for varying𝜓 values from−𝜋∕2 to 𝜋∕2: Ex(left),
and Ey (right). The color represents phase and saturation represents

the intensity. Comparisons between phase values at a given point on

an orthogonal pair reveal the resulting ellipticity upon combination.

and a phase parameter 𝜓 ranging from −𝜋∕2 to 𝜋∕2. Gen-
erating or updating ARPBs with a new value of 𝜓 simply

involves processing hologramswith the appropriate electric

field components for display on the SLMs.

2.3 Helicity and Stokes parameters

For each beam we simultaneously record the intensi-

ties I for the horizontal x, vertical y, diagonal d, and

anti-diagonal a polarizations by using a polarization-

sensitive camera (Thorlabs, Kiralux). These polarizations

are at 0◦, 90◦, 45◦,−45◦ with respect to the horizontal x axis,
respectively. From the polarized intensity measurements

we calculate the Stokes parameters S0, S1, and S2 [38], [39],

i.e.,

S0 =
(
Ix + Iy

)
=

(
Id + Ia

)
,

S1 =
(
Ix − Iy

)
,

S2 =
(
Id − Ia

)
.

(8)

The intensity is defined herein as the squared of the

field amplitudes [40], [41], i.e., I = |E|2. Here we define the
normalized Stokes parameters as si = Si∕S0 for i = 1, 2, 3.

For monochromatic beams, they are related as [42]

s2
1
+ s3

2
+ s2

3
= 1, (9)

where S3 = ILCP − IRCP is the difference between the inten-

sity of left-handed and right-handed CPL, and s3 = S3∕S0.
Therefore, we can extract the magnitude of the third nor-

malized Stokes parameter |s3| = 1− s2
1
− s3

2
from linear

polarizationmeasurements. This normalized Stokes param-

eter is directly related to the helicity density of parax-

ial beams whose longitudinal fields are neglected (see

Appendix A for details)

s3 = h𝜔∕u. (10)

The concept of optimal chirality states that the magni-

tude of the helicity density h for any kind ofmonochromatic

structured light has the upper bound of u∕𝜔, as demon-
strated in Ref. [30]. Therefore, we find it convenient to use

the concept of the normalized helicity density ĥ = h𝜔∕u,
as in Ref. [16], whose value is bounded by −1 ≤ ĥ ≤ 1. We

conclude that under the paraxial approximation, s3 = ĥ,

and that |s3| ≤ 1 is consistent with the concept of OCL that

states that for any structured light |ĥ| ≤ 1.

For the ARPB, the normalized helicity density is

ĥ = 2V̂

1+ V̂2
sin 𝜓, (11)

and when we use unity relative amplitude, V̂ = 1, we have

ĥ = sin 𝜓 . In this work, we restrict our analysis to paraxial

beamswith negligible longitudinal fields, for which the nor-

malized helicity density is equivalent to the third normal-

ized Stokes parameters, ĥ = s3. In Section 3, we will exper-

imentally verify that h = s3 = sin 𝜓 for the paraxial ARPB.

For non-paraxial beams, which have a helicity density with

a contribution from the non-negligible longitudinal fields,

ĥ ≠ s3.
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3 Experimental results

The main result presented herein is the characterization

of the magnitude of the third normalized Stokes parame-

ter |s3| of a paraxial ARPB with unity relative amplitude,

V̂ = 1, and different values of the phase parameter 𝜓 . The

figures in Figure 4 depict the predicted and experimental

values of |s3| on the transverse plane for ARPBs with 𝜓 =
−𝜋∕2,−𝜋∕4, 0, 𝜋∕4, 𝜋∕2. The first row, (a)–(e), illustrates
the theoretical s3 of an ARPB at focus, while the second row,

(f)–(j), presents its magnitude, |s3|, calculated via exper-

imental results. The colorbars on the right of the figures

illustrate that blue represents a negative s3 value, and red

signifies a positive one. In the experimental data, the sign of

s3 is selected to more effectively display the variation in

s3 for an ARPB as 𝜓 changes. The theoretical predictions

display an annular ring around the beam center, with max-

imum absolute values for 𝜓 = ±𝜋∕2, and zero for 𝜓 =
0. Intermediate values are observed for ARPBs with 𝜓 =
±𝜋∕4. The experimental results align consistently with the
theoretical predictions, particularly for𝜓 = ±𝜋∕2 and𝜓 =
±𝜋∕4. Although we anticipated |s3| to be null across the

transverse plane for an ARPB with 𝜓 = 0, a residual |s3|
is evident in experimental measurements, albeit at much

lower intensities than those at 𝜓 = ±𝜋∕4. We speculate

that this residue stems from the unwanted presence of

small anisotropic effects within the optical setup shown in

Figure 1. These additional phase shifts between the x and

y field components result in non-zero contributions to the

third normalized Stokes parameter s3.

To confirm that the measured residue for the 𝜓 =
0 ARPB does not indicate a real chirality density in the

transverse plane, we add a quarter-wave plate (QWP)

with the fast axis on the horizontal (x) axis before the

polarization camera in the setup from Figure 1. The QWP

transforms left/right-handed circularly polarized light into

anti/diagonally polarized light. Therefore, in the new anal-

ysis, the normalized helicity density of the paraxial ARPB is

proportional to the second normalized Stokes parameter s2
in the imaging plane. This behavior is depicted in Figure 5,

which displays the measured s2 after a quarter-wave plate

(QWP) with the fast axis at 0
◦
for an ARPB with 𝜓 = 0.

Indeed, it is shown in Figure 5 that s2 ≈ 0 on average, and

that the residue shown in Figure 4(h) is not indicative of

a non-zero helicity density but rather of small anisotropic

effectswithin the optical setup that distort the local polariza-

tion of the field. This notion is supported by the fact that the

sign of the helicity density of the ARPB is independent of the

position (𝜌,𝜑, z) where it is evaluated, as shown in Eq. (7).

The measured s2 after the QWP (equivalent to s3 without

it), however, changes with the position where the field is

measured. The ideal ARPB has azimuthal symmetry and

the faint residual |s3|, shown as s2 after-QWP in Figure 5,

does not display. This suggests the residual helicity is due

to sub-wavelength curvature imbalance between the two

SLMs.

Figure 6 illustrates the relationship between the nor-

malized helicity density ĥ and the phase parameter 𝜓 of an

ARPB with V̂ = 1. The theoretical values, represented by a

black line, follow the sinusoidal dependence from Eq. (11).

Figure 4: Predicted (above) and experimental (below) third normalized Stokes parameter s3 on the transverse plane for ARPBs with

𝜓 = −𝜋∕2,−𝜋∕4, 0, 𝜋∕4, 𝜋∕2 (and unity relative amplitude V̂ = 1). The first row, (a)–(e), displays theoretical S3 at focus, while the second row,

(f)–(j), presents the experimental results. As indicated by the colorbars on the right side of the figure, blue denotes a negative s3, while red indicates

a positive s3. For the experimental results, the sign of s3 = ±|s3| has been chosen to better visually represent the change in the s3 of an ARPB with 𝜓 .
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Figure 5: Second normalized Stokes parameters s2 of an ARPB with

V̂ = 1 and 𝜓 = 0 after a QWP, equivalent to s3 without the QWP. On

average, s2 ≈ 0, confirming the lack of chirality of ARPBs with 𝜓 = 0.

Figure 6: Normalized helicity density ĥ plotted against phase parameter

𝜓 for an ARPB with V̂ = 1. The black line shows theoretical values

computed from Eq. (11), while the blue circles represent averaged

experimental values, and the vertical blue lines indicate their standard

deviations. The sign of the experimental s3 has been included for

illustrative purposes. Varying 𝜓 it is possible to obtain any value of

helicity density.

The calculated values of |ĥ| are obtained by normalizing

the experimental |S3| by their respective S0 (as shown in

Figure 4), where the values of S0 below a certain threshold

are neglected to avoid division by zero outside of the beam.

The average of the resulting values of |ĥ| is denoted by
a blue circle, with vertical blue lines indicating the standard

deviations of the filtered |ĥ| for each value of 𝜓 . In the

figures presented, we depicted the quantity ĥ (and equiv-

alently s3) under the assumption that we have knowledge

of its sign. This assumption is made for illustrative purposes

to visually represent the change in the normalized helicity

density of the experimental ARPB with respect to the value

of its phase parameter 𝜓 .

The local polarization of structured light can be visual-

ized using polarization textures where the angle and ellip-

ticity of the electric field at a point are represented by pro-

jecting the arrows (normalized) pointing from the center of

the Poincaré sphere to the direction of the respective polar-

ization state on the Poincaré sphere. Linear polarization is

represented as arrows fully in the x, y plane, circular polar-

ization as arrows on the z axis (so only a dot is visible), and

elliptical polarization is represented as arrows outside of

the x, y plane (projected arrows are shorter than those rep-

resenting linear polarization that have full length). These

arrows are then plotted at various points in the transverse

x, y plane of the beam, revealing the texture. The polar-

ization textures of the implemented ARPBs are shown in

Figure 7, with theoretical predictions on the left and exper-

imental results on the right. The figures are organized in

pairs with the same value of 𝜓 enclosed in bordered boxes,

and arranged vertically in increasing order of 𝜓 , ranging

from −𝜋∕2 to 𝜋∕2. We observe that the theoretical OC-

ARPBs with𝜓 = ±𝜋∕2, (shown in the left of Figure 7(a) and
(e)), exhibit local (left and right, respectively) circular polar-

ization away from the beam edges. As the phase parameter

𝜓 approaches zero, these chiral polarizations transition to

linear polarizations. The lack of circularly polarized compo-

nents for an ARPBwith𝜓 = 0 is proof of its lack of chirality.

Indeed, we see that the degree of circular polarization away

from the center and edges of the beam reaches a maxi-

mum for ARPBs with 𝜓 = ±𝜋∕2, and a minimum for 𝜓 =
0. These results reinforce the demonstration of optimally

chiral structured light discussed in relation to Figures 4 and

6. By comparing the right and left columns in Figure 7, we

can appreciate that the experimental results largely agree

with the theoretical predictions, particularly away from the

beam edges, where the experimental polarization textures

show some variability.

4 Relevant properties of OCL

The results presented in the previous sections are impor-

tant because they have demonstrated precise control over

the helicity density of the ARPB by only tuning the phase

parameter 𝜓 . These investigations were conducted under

the paraxial approximation [37]. Since the ratio 𝑤0∕𝜆 is

significantly larger than unity, the longitudinal fields are

effectively smaller than the transverse ones in most of the
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Figure 7: Theoretical (left) and experimental (right) polarization textures

of the transverse electric fields at the focus of an ARPB varying the phase

parameter 𝜓 . The figures are arranged in order of increasing 𝜓 from

−𝜋∕2 to 𝜋∕2. Arrow color represents local position on the Poincaré

sphere according to polarization angle 2Ψ (not to be confused with

phase parameter 𝜓 seen throughout this paper) and ellipticity 2𝜒 .

By varying 𝜓 is possible to change the handedness of the ARPB’s

chirality, seen as the circularly polarized regions gradually flip from

2𝜒 = −𝜋∕4 in (a), to 2𝜒 = 𝜋∕4 in (e).

transverse focal plane (see Ref. [43] for details). Further-

more, the measurement setup shown in Figure 1 only dis-

tinguishes fields polarized in the transverse plane. Conse-

quently, the excellent agreement between the theoretical

and experimental normalized helicity densities shown in

Section 3 further validates the use of the paraxial approx-

imation and the neglecting of the longitudinal fields of an

ARPB with a large beam waist parameter compared to the

wavelength. Here, we expand on this aspect by showing that

any field (it does not need to be a beam) that satisfies the

optimal chirality condition from Eq. (2) in the transverse

plane, i.e., E
⊥
= ±i𝜂0H⊥, is a total OC field. To establish this,

weuseMaxwell’s equations to derive the expressions for the

longitudinal fields in terms of the transverse fields:

Hz =
−i
𝜔𝜇0

(∇× E
⊥
) ⋅ z,

Ez =
i

𝜔𝜀0

(∇× H
⊥
) ⋅ z.

(12)

Assuming the field exhibits optimal chirality in the

transverse plane, i.e., E
⊥
= ±i𝜂0H⊥, and substituting this

relationship into Eq. (12), it follows that Ez = ±i𝜂0Hz. The

longitudinal fields display the same magnitude ratio and

phase shift between the electric and magnetic fields as the

transverse fields. This calculation shows that optimal chi-

rality in the transverse plane necessarily extends to the

longitudinal direction as well.

For an ARPB, all field components display the same

phase shift between the electric and magnetic fields regard-

less of whether it is optimally chiral. This is observed by

following Ref. [16], where the helicity density was decom-

posed into its component contributions as h = h
𝜌
+ h

𝜑
+

hz, where each component is hn = J
(
EnH

∗
n

)
∕(2𝜔c), for n =

𝜌,𝜑, z. Specifically, for the ARPB we have

h
𝜌
= h0(k𝜌)

2
(
A2
𝜌
+ B2

𝜌

)
V̂ sin 𝜓,

h
𝜑
= h0(k𝜌)

2V̂ sin 𝜓,

hz = 4h0
(
A2
z
+ B2

z

)
V̂ sin 𝜓 .

(13)

The parameters A
𝜌
,Az,B𝜌,Bz from Eq. (4) and V̂ are

real-valued, and therefore the sign of each helicity density

component hn is solely determined by the term sin 𝜓 . This

means that for an ARPB, all components hn share the same

sign of helicity density, hence they all contribute construc-

tively to having a specific helicity sign.

Additionally, optimally chiral structured light can be

obtained without circular polarization, as it happens for

a focused OC-ARPB [16]. Therefore, circular polarization is

not a necessary condition for three-dimensional light to be

optimally chiral.

Here, we further demonstrate that an optimally chiral

beam under the paraxial approximation is necessarily cir-

cularly polarized. This latter statement is demonstrated by

combining the optimal chirality condition, E = ±i𝜂0H, with
the Faraday equation, leading to

∇× E = ±kE, (14)

which is a necessary and sufficient condition to having opti-

mal chiral light [16]. Eq. (14) shows that optimally chiral
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light has fields that are eigenvectors of the curl operator

[17]. Therefore, monochromatic optimally chiral beams are

self-dual [15].

For a three-dimensional field, using cartesian coordi-

nates, i.e., E = Exx̂+ Eyŷ+ Ezẑ, we have

𝜕Ez
𝜕y

−
𝜕Ey

𝜕z
= ±kEx,

𝜕Ex
𝜕z

− 𝜕Ez
𝜕x

= ±kEy,

𝜕Ey

𝜕x
− 𝜕Ex
𝜕y

= ±kEz.

(15)

Under the paraxial approximation,
𝜕

𝜕z
≫

𝜕

𝜕 y
,
𝜕

𝜕 y
[44]

(where the authors show the phase variation along an axis

in terms of the wavenumber), and assuming that the field

propagates along z as E ∝ eikz, the equations in Eq. (15) are

simplified to

−ikEy = ±kEx,

ikEx = ±kEy,

|Ez|∕|E⊥|≪ 1,

(16)

implying that the field is circularly polarized, i.e.,Ey = ±iEx ,
wherein the two transverse components have equal mag-

nitudes and a 𝜋∕2 phase delay between them. Analogous

proof holds for the transverse magnetic field that is also

circularly polarized. For paraxial fields whose longitudinal

fields are negligible compared to the transverse field com-

ponents (for intermediate radial distance from the beam

axis), the concept of optimally chiral light is equivalent to

that of circular polarization on the focal plane, and only for

intermediate radial distance as discussed for theARPB in the

next section. However, upon the introduction of structured

light with considerable longitudinal fields, optimal chirality

can be obtained without circular polarization.

5 Discussion

The presented results not only provide the first experi-

mental analysis and confirmation of the realizability of an

optimally chiral structured beam, the OC-ARPB, but also

contribute to the limited experimental investigations of self-

dual fields. While the primary focus of this paper is not on

self-duality, our work aligns with observations in Ref. [17],

where monochromatic self-dual electromagnetic fields are

identified as eigenvectors of the curl operator.

The experiments described in this work demonstrate

precise control over the helicity density of the ARPB via the

tuning of the phase parameter𝜓 , following the relation ĥ =

sin 𝜓 when V̂ = 1. Therefore, we have shown that the helic-

ity density of the ARPB can be tuned across its full range of

possible values, namely, −u∕𝜔 ≤ h ≤ u∕𝜔, by only varying
the single beam parameter𝜓 (with V̂ = 1). Modifying other

beam parameters, such as 𝑤0 and 𝜆, shapes the topology

of the beam instead. For example, reducing the 𝑤0∕𝜆 ratio
leads to higher energy and helicity densities at the beam

focus (z = 0), as shown in Ref. [16].

Additionally, we have been able to verify the local

polarization of the paraxial ARPBs on the transverse plane

with the polarization textures shown in Figure 7. The parax-

ial OC-ARPBs (i.e., when 𝜓 = ±𝜋∕2 and V̂ = 1) exhibit the

highest degree of local circular polarization. The experi-

mental results are in agreement with what was discussed

after Eq. (20) in Ref. [16] that paraxial OC-ARPBs are primar-

ily circularly polarized at the beam focal plane z = 0. The

transverse fields of an OC-ARPB are

E
⊥
= 𝜌

𝑤2
fV
[(
A
𝜌
+ iB

𝜌

)
𝝆̂± i 𝝋̂

]
,

H
⊥
= ∓iE

⊥
∕𝜂0.

(17)

Here, we further observe from Eq. (4) that for OC-

ARPBs with a large waist relative to the wavelength (𝑤0 ≫

𝜆) on the focal plane z = 0, one has A
𝜌
≈ 1 and B

𝜌
= 0,

resulting in circular polarization in the transverse plane.

Note that however when 𝜌 ≫ 𝑤0, then A
𝜌
is not close to

unity anymore. Therefore we do not have circular polariza-

tion at the edges of the beam, as shown in Figure 7 in both

theory and experiment.

Additionally, the transverse circular polarization of

paraxial OC-ARPB is also lost near the beam axis. This

result is appreciated in Figure 7(a), where the local polar-

ization of the theoretical OC-ARPB becomes elliptical near

the beam axis. When 𝜌 ≪ 𝑤0, the longitudinal fields cannot

be neglected. This occurs when the term Az is no longer

much less than k𝜌A
𝜌
at z = 0. Consequently, near the beam

axis ĥ ≠ s3, in agreementwith the property of structured OC

fields displaying optimal chirality (|ĥ| = 1) without being

circularly polarized (|s3| = 1). This result is consistent with

the discussion in Ref. [15] stating that transversely finite

beams which are circularly polarized everywhere in a fixed

plane do not exist.

In summary, while circular polarization is a sufficient

condition to attain optimal chirality, it is not a necessary one

since a focused OC-ARPB displays optimal chirality without

circular polarization. Even when the OC-ARPB has a large

beamwaist (𝑤0 ≫ 𝜆), it still displays optimal chirality with-

out circular polarization near the axis and far away from it.

Our investigation has directly verified the optimal chi-

rality of the paraxial OC-ARPB with V̂ = 1 and 𝜓 = ±𝜋∕2
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only in the transverse plane, and at distances that are not

near the axis nor far away from it. Even though our setup,

illustrated in Figure 1, cannot differentiate the longitudinal

components of light, the OC features of Ez andHz have been

theoretically demonstrated by using Maxwell’s equations.

The ARPB is expected to show exceptional promise in

the control and manipulation of chiral molecules in the

Rayleigh regime, where the size of the particle is signifi-

cantly smaller than the beam’s wavelength. This regime is

well characterized in the context of electromagnetic scat-

tering [45]. Subwavelength-sized particles can be trapped

in the region surrounding the beam axis where the lon-

gitudinal fields dominate. In that region, the energy and

helicity densities dominate over the linear and angular

momentum densities as discussed in Ref. [16], leading to

enhanced control over the forces exerted on dipolar chi-

ral molecules. The photoinduced forces exerted on chiral

dipolar particles from structured light fields are described

in Ref. [24].Since the ARPB offers promising avenues for

precise probing andmanipulation of chiral particles, future

research will explore the optical helicity of non-paraxial

ARPBs that display strong longitudinal fields on the beam

axis.

6 Conclusions

We have successfully generated an ARPB using a versatile

optical setup with two SLMs employing orthogonal polar-

izations (x and y). By adjusting the phase parameter 𝜓 , we

demonstrated the ability to manipulate the chirality density

of the ARPB across its full range of possible values. Notably,

we found that the paraxial ARPB can achieve optimal chi-

rality for 𝜓 = ±𝜋∕2, showcasing the existence of optimally
chiral structured light.

While the experiments realized herein are restricted

to the transverse plane, we have also theoretically shown

that three-dimensional fields whose transverse components

satisfy the optimal chirality condition are optimally chiral

in all directions. Additionally, we have demonstrated that

circular polarization is a sufficient but not necessary condi-

tion for structured fields to be optimally chiral, and that it is

equivalent to the concept of optimal chirality only under the

paraxial approximation and when the longitudinal fields

are negligible compared to the transverse field components.

We found that the local polarization of the OC-ARPB is cir-

cular away from the center or edges of the beam. In those

regions, the local circular polarization is lost even though

optimal chirality is maintained.

Additionally, we have shown that monochromatic opti-

mally chiral fields are self-dual since their electric andmag-

netic fields are the eigenvectors of the curl operator, leading

to maximal chirality density among other self-dual electro-

magnetic features. The OC-ARPB generated in this work rep-

resents an example of a structured self-dualmonochromatic

beam, of which few have been studied experimentally.

Importantly, the results of this study verify the first

practical implementation of an OC structured beam, of

which the OC-ARPB is only a specific example. This new

tool provides unprecedented control over fundamental chi-

ral light–matter interactions, with future applications of

enhanced sensing and manipulation of chiral particles.

Given the ubiquity and importance of chirality in biol-

ogy, the development of precise tools to characterize and

control chiral molecules is of supreme importance in the

field of biophotonics and single-isomer drug discovery. The

ability to dynamically control the helicity density of the

ARPB allows for the innovative design of dynamic, enan-

tioselective optical traps. Considering the importance of the

polarization of the chiral field components on light–matter

interactions, future researchmight explore chirality of non-

paraxial ARPBs on the beam axis, which is solely attributed

to the chiral longitudinal fields.
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Appendix A

Section A: Proof of equivalency between the
normalized helicity density and the degree of
circular polarization for paraxial beams

Under the paraxial approximation, we neglect the small lon-

gitudinal z components of the electric and magnetic fields

[37], [46], i.e., E ≈ E
⊥
and H ≈ H

⊥
. The transverse electro-

magnetic fields of a generic paraxial beam are of the form

E
⊥
= A(𝜌,𝜑, z)

(
x+my√
1+ |m|2

)
,

H
⊥
≈

(
z × E

⊥

)
∕𝜂0,

(A.1)

where m = Ey∕Ex and A(𝜌,𝜑, z) = Ex
√
1+ |m|2 are com-

plex valued. The time-average energy density u is [12]

u = 𝜀0

4
|E|2 + 𝜇0

4
|H|2, (A.2)

and the time-average helicity density is [10]

h = 1

2𝜔c
J
(
E ⋅ H∗). (A.3)

Substituting the fields from Eq. (A.1) into Eqs. (A.2) and

(A.3), we obtain

u = 𝜀0

2
|A(𝜌, z)|2,

h = 1

2𝜔c

|A(𝜌, z)|2
𝜂0

2I(m)√
1+ |m|2 .

(A.4)

Note that this last expression is not a good approxi-

mation for tightly focused beams where the longitudinal

components are not negligible. In terms of the fields from

Eq. (A.1), the normalized Stokes parameters are [24], [47]

s1 =
1− |m|2
1+ |m|2 ,

s2 =
2R(m)

1+ |m|2 ,
s3 =

2J(m)
1+ |m|2 .

(A.5)

For monochromatic beams, s2
1
+ s2

2
+ s2

3
= 1. These

three parameters describe the degree of the x∕y lin-

ear polarizations, 45◦/-45◦ linear polarizations, and left-

hand/right-hand circular polarizations, respectively [46].

Using the concept of normalized helicity density ĥ = h𝜔∕u,
introduced in Ref. [16], we find that for paraxial beams

with negligible longitudinal fields, ĥ = s3. For non-paraxial

beams, ĥ ≠ s3, since S3 does not consider the longitudinal

fields, which do contribute to the helicity density. This is

especially the case for focused ARPBswithwaist dimensions

comparable to the wavelength.
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