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Abstract: We present a framework for the efficient and

accurate computation of resonance modes in photonic

waveguides. The framework is based on AAA rational

approximation with the application of special light sources.

It allows one to calculate only relevant modes, such as the

fundamental resonance modes localized in the central core

of thewaveguides.We demonstrate the framework using an

example from the literature, a hollow-core photonic crystal

fiber. This waveguide supports many other modes, such as

cladding modes and higher-order modes. These nonrele-

vant modes are not calculated, so that challenging post-

processing with mode filtering is not required.

Keywords: photonic crystal fiber; fundamental modes; AAA

rational approximation; nanostructured waveguide; leaky

modes

1 Introduction

Resonance effects localize optical fields in dielectric fibers

and other waveguides and allow for well-defined propaga-

tion of light over large distances. Application areas include

communication technology [1], nonlinear optics [2], sensing

[3], and imaging [4]. Resonances are the solutions to the

source-free Maxwell’s equations with open boundary con-

ditions and they are given by electromagnetic fields, the so-

called resonance modes, with complex-valued eigenvalues
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[5]. Numerical methods are used to compute the resonances

[6], [7], where often many modes of different types are cal-

culated within a dense spectrum.

The functionality of photonic devices based on waveg-

uides is driven by the so-called fundamental resonance

modes. These modes are characterized by a localization of

the electromagnetic field energy in the central core of the

waveguides, which enables low-loss guidance of the light.

Furthermore, microstructuring [8], [9] of the waveguides

leads to modes that are localized in the cladding of the

systems [10], and fibers with a hollow core support higher-

ordermodes [11]. Such types ofmodes are often nonrelevant

and make the calculation of the fundamental resonance

modes a challenge, as a large number of modes must be

calculated and the fundamental resonancemodesmust then

be selected by post-processing. Another challenge is that

the eigenvalues of the fundamental resonance modes can

have extremely small imaginary parts compared to the real

parts due to the low losses [12], [13]. This leads to very high

demands on the numerical accuracy. Therefore, there is a

need for approaches that can calculate the fundamental

resonance modes of photonic waveguides efficiently and

accurately.

Rational approximation is an effective approach for

investigating resonant photonic systems. The resulting

approximations give the poles and other key figures of

the corresponding photonic response functions. The AAA

algorithm [14] is a powerful tool for rational approximation.

It can be used for the approximation of nonlinear eigen-

problems, where the resulting rational eigenproblems can

then be solved with suitable numerical methods [15]–[17].

Recently, approaches have been presented, where rational

approximation with [18], [19] and without [20] applying the

AAA algorithm is used to directly solve eigenproblems, i.e.,

to compute the resonance modes associated to the poles of

the response functions of interest.

In this work, we present a framework based on AAA

rational approximation to compute the fundamental reso-

nance modes of photonic waveguides. The modes are calcu-

lated with the approach proposed in Ref. [19] using special
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Figure 1: Computation of the fundamental resonance mode of a microstructured waveguide. The waveguide is illuminated with a light source located

at the center of the system. The resulting scattered electromagnetic fields are superposed based on AAA rational approximation. The light source is

chosen so that it couples mainly with the fundamental resonance mode and not with other modes. This special choice of the source enables

an efficient and accurate computation of the fundamental resonance mode of the system.

light sources. We apply the framework to a hollow-core

photonic crystal fiber (HC-PCF), where the microstructur-

ing of the fiber leads to the existence of many cladding

modes and the hollow core enables the presence of higher-

order modes. The framework allows for an efficient and

accurate computation of the fundamental resonance mode,

where the other types ofmodes are not calculated. Challeng-

ing post-processing is therefore not necessary. The results

are compared with the results obtained by the Arnoldi

algorithm, which is a standard tool in the field of compu-

tational photonics.

Figure 1 outlines an application example of the frame-

work. The fundamental resonance mode of a photonic

waveguide is characterized by a localization of the corre-

sponding electromagnetic field energy in the central core

of the waveguide. A specially selected light source, which

is located at the center of the system, has a significant

coupling with the mode. Application of the AAA algorithm

to the fields caused by the source yields the fundamental

resonance mode.

2 Computing resonance modes

with the AAA algorithm

The AAA algorithm [14] gives an approximation of a scalar-

valued function f (z) by a rational function r(z) in a barycen-

tric representation. A number M of freely selectable sam-

pling points zk ∈ Z ⊆ ℂ and corresponding function values

fk = f (zk) are the input for the algorithm. The algorithm

greedily adds sampling points ẑ j to a subset Ẑ ⊂ Z, together

with the corresponding function values f̂ j. Then, each itera-

tion within the algorithm leads to a rational approximation

r(z) of orderm− 1,

r(z) = n(z)

d(z)
=

m∑
j=1

𝑤̂ j f̂ j

z− ẑ j
∕

m∑
j=1

𝑤̂ j

z− ẑ j
, (1)

where the weights 𝑤̂ j minimize the error∑
zk∈Z∖Ẑ

| fk d(zk )− n(zk )|2. (2)

The least squares problem in Eq. (2) is solved using

a singular value decomposition with the constraint∑m

j=1|𝑤̂ j|2 = 1. The solution of the least squares problem

requires m ≤ M∕2. The AAA algorithm also directly

provides the underlying key figures of the rational

approximation, such as the poles z
pole
n ∈ ℂ and the residues

an ∈ ℂ.
In the following, we consider a physical vector-valued

quantity f(z) ∈ ℂN which is the solution of the linear system

of equations

A(z)f(z) = s(z), (3)

where A(z) ∈ ℂN×N is the system matrix and s(z) ∈ ℂN

is an imposed source term. It is further given that fk =
(fk ), where :ℂN → ℂ is a linear mapping and fk are

the function values of the scalar-valued function f (z) as

introduced above. Then, the AAA algorithm also yields the

vector-valued approximation

r(z) =
m∑
j=1

𝑤̂ j f̂ j

z− ẑ j
∕d(z)≈ f(z)

and the corresponding vector-valued residue

an =
m∑
j=1

[
𝑤̂ j

z
pole
n − ẑ j

∕𝜕d
𝜕z

(
z
pole
n

)]
f̂ j, (4)

where the vectors f̂ j are defined by the relation f̂ j = (f̂ j ).

Note that the weights 𝑤̂ j and poles z
pole
n in Eq. (4) are the

same as those used for the scalar-valued rational approxi-

mation r(z) from Eq. (1).

When a pole z
pole
n has a significant influence on the

rational approximation r(z), we assume that an and z
pole
n are

a good approximation to an eigenpair of the corresponding

nonlinear eigenproblem, i.e., A
(
z
pole
n

)
an ≈ 0. This means
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that the resonancemode an corresponding to the eigenvalue

z
pole
n has a significant couplingwith the source term s(z) [19].

Note that, to compute the solution f(z) of Eq. (3), any

black-box solver can be used. For the proposed approach,

only access to the solution is required, i.e., the way in which

the solution is calculated is not taken into account.

3 Application

We apply the approach presented to compute the funda-

mental resonance mode of a photonic waveguide from the

literature, the HC-PCF introduced in Ref. [11]. The system

is sketched in Figure 2. The longitudinal axis of the system

is along the z-direction, and this dimension is much larger

than the diameter of the cross-section of the system. Based

on this, we model the HC-PCF with an infinite length in the

z-direction and we assume a harmonic dependence of the

scattered electric fields E(x, y, z) ∈ ℂ3 and imposed current

densities J(x, y, z) ∈ ℂ3 on the z-coordinate, i.e., E(x, y, z) =
E(x, y)eikzz and J(x, y, z) = J(x, y)eikzz, where kz ∈ ℂ is the

propagation constant. With this, in the steady-state regime,

light scattering in the system can be described by the time-

harmonic Maxwell’s equation in second-order form,

∇kz
× 𝜇−1∇kz

× E(x, y)−𝜔2
0
𝜖E(x, y) = i𝜔0J(x, y), (5)

where ∇kz
= (𝜕x, 𝜕y, ikz )

T . The material is characterized

by the complex-valued permittivity and permeability

Figure 2: Sketch of the HC-PCF presented in Ref. [11]. The diameter

of the central hollow core is D= 30 μm. The core is encircled by six
nontouching glass rings with a wall thickness of t = D × 0.01. The inner

diameter of the glass rings is d = D × 0.68. The HC-PCF is coated with

thick-walled glass. The vacuum wavelength is set to 𝜆0 = 1, 500 nm.

tensors 𝜖(x, y) and 𝜇(x, y), respectively. The angular

frequency 𝜔0 = 2𝜋c∕𝜆0 is a fixed parameter, where 𝜆0 is

the vacuum wavelength.

The electric field in theHC-PCF is excitedwith a singular

electric current density on a line along the z-direction,

J(x, y) = j𝛿((x, y)− (x0, y0 ))e
−ikzz0 ,

where (x0, y0, z0) is the position of the line source, 𝛿 is the

Dirac delta distribution, and j is a constant strength vector.

Since the fundamental resonance mode is localized in the

central hollow core of theHC-PCF,we place the line source at

the center of the system.We further consider an x-polarized

line source, i.e., j = |j| × (1, 0, 0)T .

In order to solve Eq. (5), we use the solver JCMsuite,

which is based on the finite element method (FEM). The

thick-walled glass cladding of the HC-PCF is modeled to

extend to infinity, i.e., open boundaries realized by perfectly

matched layers are applied. We further exploit the double

mirror symmetry of the system in the numerical implemen-

tations. Numerical convergence with respect to the FEM

parameters is ensured. The corresponding settings can be

found in the data publication [21].

3.1 Reference solutions from the Arnoldi
algorithm

Reference solutions are obtained by applying the Arnoldi

algorithm [6], [7], [22] within JCMsuite to the eigenproblem

∇kz,n
× 𝜇−1∇kz,n

× En(x, y)−𝜔2
0
𝜖En(x, y) = 0, (6)

i.e., the source-free form of Eq. (5). The Arnoldi algorithm

requires a guess value for the eigenvalues kz,n, where 𝜔0

is fixed. Then, it iteratively calculates a selected number

of eigenvalues closest to the guess value, together with the

corresponding resonance modes En. The boundary condi-

tions on the symmetry axes are chosen such that the polar-

ization of the modes matches the polarization of the line

source used for the AAA algorithm. In the following, for a

traditional notation, the eigenvalues kz,n are given in the

form of effective refractive indices neff
n

= kz,n∕k0, where
k0 = 2𝜋∕𝜆0.

3.2 Rational approximation and eigenvalues

The optical response resulting from the illumination of the

HC-PCF is investigated by the quantity yTEx ∈ ℂ, where y ∈
ℝm is a random vector [15] with a uniform distribution in

the interval (−1, 1) and Ex ∈ ℂm are the x-components of

the electric field E, which is determined on an equidistantly

spaced cartesian grid in one of the four mirror symmetry
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planes. The circular computational domain with 100 points

in the x- and the y-direction leads to m = 7,787 evaluation

points. The electric field E is obtained by solving the scatter-

ing problem given by Eq. (5) at chosen sampling points neff
j
.

We apply the AAA algorithm to yTEx computed at 40

equidistantly spaced sampling points neff
j
∈ [0.995, 1]. The

absolute values of the resulting rational approximation and

of the underlying function values are shown in Figure 3(a).

In Figure 3(b), the eigenvalues of the system are pre-

sented. We show 512 eigenvalues computed by the Arnoldi

algorithm as reference solutions, where a guess eigenvalue

of 0.9975 is chosen. The eigenvalues correspond to cladding

(a)

(b)

(c)

Figure 3: Illumination of the HC-PCF sketched in Figure 2 with an x-polar-

ized line source located at the center of the system. Application of the

AAA algorithm to the quantity yTEx ∈ ℂ, where y ∈ ℝm is a random

vector and Ex ∈ ℂm are the x-components of the electric field E, which is

evaluated atm spatial points in the computational domain. (a) Absolute

values of the rational approximation based on 40 equidistantly spaced

sampling points neff
j
∈ [0.995, 1]. The absolute values of the function

values at the 40 sampling points are also shown. (b) Eigenvalues neff
1

and neff
2
resulting from the rational approximation and reference

eigenvalues computed by the Arnoldi algorithm. (c) Relative errors

err(Re
(
neff
n

)
) = |(Re(neff

n

)
− Re

(
neff
n,ref

)
)∕Re

(
neff
n,ref

)| over number of
equidistantly spaced sampling points in the interval neff ∈ [0.995, 1],

where the reference solutions neff
n,ref

are computed by the Arnoldi

algorithm. (d) Relative errors of the imaginary parts of the eigenvalues.

modes, higher-order modes, and also to the fundamental

resonance mode. In contrast, the application of the AAA

algorithm with the special line source only yields relevant

eigenvalues. They belong to the rational approximation

shown in Figure 3(a) and they are selected based on the two

significant peaks,markedwith (1) and (2). These eigenvalues

are given by neff
1

= 0.9993596784939+ 0.000000003376i and

neff
2

= 0.996754264645+ 0.00000190093i. The eigenvalue neff
1

has the smallest imaginary part of all eigenvalues in the

chosen range for the effective refractive index. The other

eigenvalues [19] corresponding to the rational approxima-

tion, which arise due to the other peaks, the background

continuum, or the eigenvalues outside the chosen range of

the effective refractive index, and further details on the set-

tings for the algorithm can be found in the data publication

[21].

Figure 3(c) shows the relative errors of the real parts of

the eigenvalues neff
1

and neff
2

over the number of sampling

points for the AAA algorithm. For both eigenvalues, con-

vergence up to errors smaller than 10−14 can be observed.

Figure 3(d) shows the relative errors of the imaginary parts,

where errors smaller than 10−5 and smaller than 10−8 for

neff
1

and neff
2
, respectively, are achieved. The limitation of

the accuracy can be attributed to the accuracy of the FEM

scattering solver.

3.3 Fundamental resonance mode

To compute the fundamental resonancemode of theHC-PCF,

we apply Eq. (4) using the weights, sampling points, and

eigenvalues corresponding to the rational approximation

from Figure 3(a). The matrix A(z) from Eq. (3) is the FEM

system matrix, the vector s(z) corresponds to the imposed

line source, and the vector f(z) is the scattered electric field

in a finite-dimensional FEM basis. This means that, for the

vectors f̂ j in Eq. (4), the FEM coefficient vectors correspond-

ing to the electric fields E are used.

Figure 4(a) and (b) show the electric field intensities

of the resonance modes E1 and E2 corresponding to neff
1

and neff
2
, respectively. We identify E1 as the fundamental

resonance mode, as it has no nodal lines within the field

pattern. Both modes are localized in the central hollow core

of the HC-PCF. The chosen line source for the illumination

of the system is located at the center and therefore exhibits

a significant coupling with the modes. Figure 4(c) shows

the relative errors of the two modes over the number of

sampling points for the AAA algorithm. Convergence up to

errors smaller than 10−5 can be observed.

Note that, in this work, we choose real-valued sam-

pling points. The accuracy of the resonancemodes and their

eigenvalues could be further improved if sampling points in
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Figure 4: Computation of resonance modes of the HC-PCF sketched in Figure 2 using the AAA algorithm. (a) Electric field intensity of the fundamental

resonance mode E1 corresponding to the eigenvalue n
eff
1
. (b) Electric field intensity of the resonance mode E2 corresponding to the eigenvalue n

eff
2
.

The modes are scaled differently. (c) Relative error err(En ) = ‖‖En − En,ref
‖‖∕‖‖En,ref‖‖ over number of equidistantly spaced sampling points

in the interval neff ∈ [0.995, 1] for the AAA algorithm, where the reference solutions En,ref are computed by the Arnoldi algorithm. The norm ‖ ⋅ ‖ is
defined as the square root of the electric field energy in the computational domain. The resonance modes En and En,ref are normalized such that

their x-components at the center of the system are equal.

the complex plane are chosen. Further information on this

topic can be found, e.g., in Refs. [18], [19], where adaptive

sampling schemes are applied.

We further point out that other types of sources could

also be used for the framework presented, e.g., a combina-

tion of multiple line sources, the field distribution of the

fundamental resonance mode of a single-mode fiber, or a

Gaussian beam. In this way, other types of modes than

the fundamental resonance mode could be prioritized in

the computation. For example, higher-order modes could

be calculated by placing multiple line sources at positions

based on the symmetry of the higher-ordermodes. Cladding

modes could be calculated by placing line sources directly in

the part of the fiber cladding of interest.

3.4 Computational performance

The calculation of eigenvalues and resonance modes using

a framework based on AAA rational approximation differs

in several aspects from standard approaches applied in

computational photonics, such as the Arnoldi algorithm [6].

The AAA-based framework presented in this work essen-

tially relies on solving various, independent scattering prob-

lems for obtaining a rational approximation of response

functions, which then allows one to deduce eigenvalues and

resonancemodes. Advantages of this framework include the

following aspects: (i) For systems with material dispersion,

a linearization of the resulting nonlinear eigenproblem is

not necessary. When using the Arnoldi algorithm, such a

linearization must be implemented, which increases the

degrees of freedom of the numerical realization [6]. (ii)

Solving scattering problems enables the incorporation of

sensitivities based on algorithmic differentiation [19], [23].

This means that also the sensitivities of the eigenvalues

with respect to the system parameters are available with

negligible computational costs. (iii) Domain decomposition

algorithms can be applied in a straightforward way, which

allows one to handle systems with multiple scattering [24].

(iv) The solution of a scattering problem within the AAA

algorithm can be accelerated by using a preconditioner
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based on the computation of a solution at a neighboring

sampling point. (v) If several computing nodes are available,

the calculations at the sampling points can be parallelized.

(vi) The use of problem-specific sources makes it possible to

compute specific solutions only, as shown in this work. In

contrast, other methods often rely on computing a larger

spectrum and applying mode filtering a-posteriori, which

implies high computational costs. A detailed and fair quanti-

tative performance benchmark of the framework presented

and standard approaches should investigate various exam-

ples, which enable to quantify the impact of the various

aspects. Such a benchmark is beyond the scope of this work.

4 Conclusions

We presented a framework based on AAA rational approx-

imation to compute the fundamental resonance modes of

photonic waveguides. The framework was applied to an

example from the literature, an HC-PCF supporting many

cladding and higher-order modes. The scattering solutions

at the sampling points for the AAA algorithm were super-

posed, reusing the poles and weights belonging to a cor-

responding scalar-valued rational approximation. The cou-

pling of the underlying light source with the fundamental

resonance mode of the HC-PCF enables an efficient and

accurate computation of the mode.

The results were compared with the eigenpairs

obtained using the Arnoldi algorithm. The Arnoldi

algorithm solves the eigenproblem directly, i.e., without a

source term, and it calculates all resonance modes toge-

therwith the associated eigenvalues closest to a guess eigen-

value. The AAA algorithm is based on solving scattering

problems at chosen sampling points, i.e., with using a

source term, and, therefore, only calculates the modes that

have a significant coupling with the applied source.

The framework presented is beneficial when the sys-

tem of interest supportsmodes that aremuchmore relevant

than other modes, such as in the case studied in this work.

The fundamental resonance mode of the HC-PCF investi-

gated has an intensity maximum at the center of the system

and it can be efficiently excited by a singular line source

located at the center. Many of the additional resonance

modes of the HC-PCF are modes that are localized in the

cladding of the fiber or higher-order modes. They have an

insignificant coupling with the line source, i.e., they are not

calculated when using the AAA algorithm. This means that

challenging post-processing with mode filtering, as may be

necessary with the Arnoldi algorithm, can be avoided.

The computation of resonance modes based on the

AAA algorithm is possible for any resonant system [25].

For example, in Ref. [18], a AAA-based approach is applied

to an electromagnetic and an acoustic problem class and,

in Ref. [19], a chiral photonic metasurface is numerically

investigated using the AAA algorithm.
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