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Abstract: We present a framework for the efficient and
accurate computation of resonance modes in photonic
waveguides. The framework is based on AAA rational
approximation with the application of special light sources.
It allows one to calculate only relevant modes, such as the
fundamental resonance modes localized in the central core
of the waveguides. We demonstrate the framework using an
example from the literature, a hollow-core photonic crystal
fiber. This waveguide supports many other modes, such as
cladding modes and higher-order modes. These nonrele-
vant modes are not calculated, so that challenging post-
processing with mode filtering is not required.

Keywords: photonic crystal fiber; fundamental modes; AAA
rational approximation; nanostructured waveguide; leaky
modes

1 Introduction

Resonance effects localize optical fields in dielectric fibers
and other waveguides and allow for well-defined propaga-
tion of light over large distances. Application areas include
communication technology [1], nonlinear optics [2], sensing
[3], and imaging [4]. Resonances are the solutions to the
source-free Maxwell’s equations with open boundary con-
ditions and they are given by electromagnetic fields, the so-
called resonance modes, with complex-valued eigenvalues
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[5]. Numerical methods are used to compute the resonances
[6], [7], where often many modes of different types are cal-
culated within a dense spectrum.

The functionality of photonic devices based on waveg-
uides is driven by the so-called fundamental resonance
modes. These modes are characterized by a localization of
the electromagnetic field energy in the central core of the
waveguides, which enables low-loss guidance of the light.
Furthermore, microstructuring [8], [9] of the waveguides
leads to modes that are localized in the cladding of the
systems [10], and fibers with a hollow core support higher-
order modes [11]. Such types of modes are often nonrelevant
and make the calculation of the fundamental resonance
modes a challenge, as a large number of modes must be
calculated and the fundamental resonance modes must then
be selected by post-processing. Another challenge is that
the eigenvalues of the fundamental resonance modes can
have extremely small imaginary parts compared to the real
parts due to the low losses [12], [13]. This leads to very high
demands on the numerical accuracy. Therefore, there is a
need for approaches that can calculate the fundamental
resonance modes of photonic waveguides efficiently and
accurately.

Rational approximation is an effective approach for
investigating resonant photonic systems. The resulting
approximations give the poles and other key figures of
the corresponding photonic response functions. The AAA
algorithm [14] is a powerful tool for rational approximation.
It can be used for the approximation of nonlinear eigen-
problems, where the resulting rational eigenproblems can
then be solved with suitable numerical methods [15]-[17].
Recently, approaches have been presented, where rational
approximation with [18], [19] and without [20] applying the
AAA algorithm is used to directly solve eigenproblems, i.e.,
to compute the resonance modes associated to the poles of
the response functions of interest.

In this work, we present a framework based on AAA
rational approximation to compute the fundamental reso-
nance modes of photonic waveguides. The modes are calcu-
lated with the approach proposed in Ref. [19] using special
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Figure 1: Computation of the fundamental resonance mode of a microstructured waveguide. The waveguide is illuminated with a light source located
at the center of the system. The resulting scattered electromagnetic fields are superposed based on AAA rational approximation. The light source is
chosen so that it couples mainly with the fundamental resonance mode and not with other modes. This special choice of the source enables

an efficient and accurate computation of the fundamental resonance mode of the system.

light sources. We apply the framework to a hollow-core
photonic crystal fiber (HC-PCF), where the microstructur-
ing of the fiber leads to the existence of many cladding
modes and the hollow core enables the presence of higher-
order modes. The framework allows for an efficient and
accurate computation of the fundamental resonance mode,
where the other types of modes are not calculated. Challeng-
ing post-processing is therefore not necessary. The results
are compared with the results obtained by the Arnoldi
algorithm, which is a standard tool in the field of compu-
tational photonics.

Figure 1 outlines an application example of the frame-
work. The fundamental resonance mode of a photonic
waveguide is characterized by a localization of the corre-
sponding electromagnetic field energy in the central core
of the waveguide. A specially selected light source, which
is located at the center of the system, has a significant
coupling with the mode. Application of the AAA algorithm
to the fields caused by the source yields the fundamental
resonance mode.

2 Computing resonance modes
with the AAA algorithm

The AAA algorithm [14] gives an approximation of a scalar-
valued function f(z) by a rational function r(z) in a barycen-
tric representation. A number M of freely selectable sam-
pling points z, € Z C C and corresponding function values
fx = f(z,) are the input for the algorithm. The algorithm
greedily adds sampling points 2 j to a subset 7 C Z, together
with the corresponding function values f j- Then, each itera-
tion within the algorithm leads to a rational approximation
r(z) of orderm —1,

_n(z)_mlf)-- D,
M= =3 /Y ()

where the weights &; minimize the error

> i dz) =z @
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The least squares problem in Eq. (2) is solved using
a singular value decomposition with the constraint
Z;.":lluﬁﬂz = 1. The solution of the least squares problem
requires m < M/2. The AAA algorithm also directly
provides the underlying key figures of the rational
approximation, such as the poles z2°° € C and the residues
a, € C.

In the following, we consider a physical vector-valued
quantity f(z) € CY which is the solution of the linear system
of equations

A(2)f(z) = s(2), ©)]

where A(z) € CM¥ is the system matrix and s(z) € C¥
is an imposed source term. It is further given that f, =
£(f,), where £:CY — C is a linear mapping and f, are
the function values of the scalar-valued function f(z) as
introduced above. Then, the AAA algorithm also yields the
vector-valued approximation

m
1) = Y, L /d) 1)

=1 j

and the corresponding vector-valued residue

m A
a,=y Lpf”f_ /g(zg‘ﬂe)] i, @

j=1 Zj

where the vectors fj are defined by the relation f = E(fj).
Note that the weights 1&; and poles 22 in Eq. (4) are the
same as those used for the scalar-valued rational approxi-
mation r(z) from Eq. ().

When a pole z2 has a significant influence on the
rational approximation r(z), we assume that a, and z° are
a good approximation to an eigenpair of the corresponding

nonlinear eigenproblem, i.e., A(zﬁde)an ~ 0. This means
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that the resonance mode a,, corresponding to the eigenvalue
22 has a significant coupling with the source term s(z) [19].

Note that, to compute the solution f(z) of Eq. (3), any
black-box solver can be used. For the proposed approach,
only access to the solution is required, i.e., the way in which
the solution is calculated is not taken into account.

3 Application

We apply the approach presented to compute the funda-
mental resonance mode of a photonic waveguide from the
literature, the HC-PCF introduced in Ref. [11]. The system
is sketched in Figure 2. The longitudinal axis of the system
is along the z-direction, and this dimension is much larger
than the diameter of the cross-section of the system. Based
on this, we model the HC-PCF with an infinite length in the
z-direction and we assume a harmonic dependence of the
scattered electric fields E(x, y, z) € C® and imposed current
densities J(x, y, z) € C? on the z-coordinate, i.e., E(x, y, z) =
E(x, y)e%? and J(x, y, z) = J(x, y)elX?, where k, € C is the
propagation constant. With this, in the steady-state regime,
light scattering in the system can be described by the time-
harmonic Maxwell’s equation in second-order form,

Vi, X 7'V XE(X, ) = 03eE(X, y) = iog](x, y), ()

where V, =(d,.9,, ik,)T. The material is characterized
by the complex-valued permittivity and permeability

Figure 2: Sketch of the HC-PCF presented in Ref. [11]. The diameter

of the central hollow core is D =30 um. The core is encircled by six
nontouching glass rings with a wall thickness of t = D X 0.01. The inner
diameter of the glass ringsisd = D X 0.68. The HC-PCF is coated with
thick-walled glass. The vacuum wavelength is set to 4, = 1,500 nm.
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tensors e(x,y) and u(x,y), respectively. The angular
frequency w, = 27c/ 4, is a fixed parameter, where A, is
the vacuum wavelength.

The electric field in the HC-PCF is excited with a singular
electric current density on a line along the z-direction,

J(x, y) = j6((x, y) — (Xg, yp))e e,

where (X, Yy, Zo) is the position of the line source, 6 is the
Dirac delta distribution, and j is a constant strength vector.
Since the fundamental resonance mode is localized in the
central hollow core of the HC-PCF, we place the line source at
the center of the system. We further consider an x-polarized
line source, i.e., j = |j| X (1,0,0)7.

In order to solve Eq. (5), we use the solver JCMsuite,
which is based on the finite element method (FEM). The
thick-walled glass cladding of the HC-PCF is modeled to
extend to infinity, i.e., open boundaries realized by perfectly
matched layers are applied. We further exploit the double
mirror symmetry of the system in the numerical implemen-
tations. Numerical convergence with respect to the FEM
parameters is ensured. The corresponding settings can be
found in the data publication [21].

3.1 Reference solutions from the Arnoldi
algorithm

Reference solutions are obtained by applying the Arnoldi
algorithm [6], [7], [22] within JCMsuite to the eigenproblem

Vi, X ,u‘lem X E(x,y) — w3€E, (x,y) =0,  (6)

i.e, the source-free form of Eq. (5). The Arnoldi algorithm
requires a guess value for the eigenvalues k,,,, where w,
is fixed. Then, it iteratively calculates a selected number
of eigenvalues closest to the guess value, together with the
corresponding resonance modes E,. The boundary condi-
tions on the symmetry axes are chosen such that the polar-
ization of the modes matches the polarization of the line
source used for the AAA algorithm. In the following, for a
traditional notation, the eigenvalues k,, are given in the
form of effective refractive indices nfff =k, ,/ky, where
ko =27/ Ay

3.2 Rational approximation and eigenvalues

The optical response resulting from the illumination of the
HC-PCF is investigated by the quantity y'E, € C,where y €
R™ is a random vector [15] with a uniform distribution in
the interval (—1,1) and E, € C™ are the x-components of
the electric field E, which is determined on an equidistantly
spaced cartesian grid in one of the four mirror symmetry
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planes. The circular computational domain with 100 points
in the x- and the y-direction leads to m = 7,787 evaluation
points. The electric field E is obtained by solving the scatter-
ing problem given by Eq. (5) at chosen sampling points nj?ff.

We apply the AAA algorithm to y'E, computed at 40
equidistantly spaced sampling points nj?ff € [0.995,1]. The
absolute values of the resulting rational approximation and
of the underlying function values are shown in Figure 3(a).
In Figure 3(b), the eigenvalues of the system are pre-
sented. We show 512 eigenvalues computed by the Arnoldi
algorithm as reference solutions, where a guess eigenvalue
0f 0.9975 is chosen. The eigenvalues correspond to cladding
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Figure 3: Illumination of the HC-PCF sketched in Figure 2 with an x-polar-
ized line source located at the center of the system. Application of the
AAA algorithm to the quantity y'E, € C, where y € R™ is a random
vector and E, € C" are the x-components of the electric field E, which is
evaluated at m spatial points in the computational domain. (a) Absolute
values of the rational approximation based on 40 equidistantly spaced
sampling points niff € [0.995, 1]. The absolute values of the function
values at the 40 sampling points are also shown. (b) Eigenvalues n$“

and n2® resulting from the rational approximation and reference
eigenvalues computed by the Arnoldi algorithm. (c) Relative errors
err(Re(n°T)) = |(Re(ncf) — Re(nifef))/Re<nﬁf£ef)| over number of
equidistantly spaced sampling points in the interval n®f & [0.995, 1],
where the reference solutions nifef are computed by the Arnoldi
algorithm. (d) Relative errors of the imaginary parts of the eigenvalues.
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modes, higher-order modes, and also to the fundamental
resonance mode. In contrast, the application of the AAA
algorithm with the special line source only yields relevant
eigenvalues. They belong to the rational approximation
shown in Figure 3(a) and they are selected based on the two
significant peaks, marked with (1) and (2). These eigenvalues
are given by nfff = 0.9993596784939 + 0.000000003376i and
e = 0.996754264645 + 0.00000190093i. The eigenvalue nc™
has the smallest imaginary part of all eigenvalues in the
chosen range for the effective refractive index. The other
eigenvalues [19] corresponding to the rational approxima-
tion, which arise due to the other peaks, the background
continuum, or the eigenvalues outside the chosen range of
the effective refractive index, and further details on the set-
tings for the algorithm can be found in the data publication
[21].

Figure 3(c) shows the relative errors of the real parts of
the eigenvalues n¢ and ng" over the number of sampling
points for the AAA algorithm. For both eigenvalues, con-
vergence up to errors smaller than 10~ can be observed.
Figure 3(d) shows the relative errors of the imaginary parts,
where errors smaller than 10~> and smaller than 108 for
nfff and ngff, respectively, are achieved. The limitation of
the accuracy can be attributed to the accuracy of the FEM
scattering solver.

3.3 Fundamental resonance mode

To compute the fundamental resonance mode of the HC-PCF,
we apply Eq. (4) using the weights, sampling points, and
eigenvalues corresponding to the rational approximation
from Figure 3(a). The matrix A(z) from Eq. (3) is the FEM
system matrix, the vector s(z) corresponds to the imposed
line source, and the vector f(z) is the scattered electric field
in a finite-dimensional FEM basis. This means that, for the
vectors f]- in Eq. (4), the FEM coefficient vectors correspond-
ing to the electric fields E are used.

Figure 4(a) and (b) show the electric field intensities
of the resonance modes E; and E, corresponding to n;‘ff
and ngff, respectively. We identify E; as the fundamental
resonance mode, as it has no nodal lines within the field
pattern. Both modes are localized in the central hollow core
of the HC-PCF. The chosen line source for the illumination
of the system is located at the center and therefore exhibits
a significant coupling with the modes. Figure 4(c) shows
the relative errors of the two modes over the number of
sampling points for the AAA algorithm. Convergence up to
errors smaller than 10~> can be observed.

Note that, in this work, we choose real-valued sam-
pling points. The accuracy of the resonance modes and their
eigenvalues could be further improved if sampling points in
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Figure 4: Computation of resonance modes of the HC-PCF sketched in Figure 2 using the AAA algorithm. (a) Electric field intensity of the fundamental
resonance mode E, corresponding to the eigenvalue n?ff. (b) Electric field intensity of the resonance mode E, corresponding to the eigenvalue ng"f.
The modes are scaled differently. (c) Relative error err(E,) = ||E, — E, e|| /|| En.rer|| Over number of equidistantly spaced sampling points

in the interval n° € [0.995, 1] for the AAA algorithm, where the reference solutions E, ¢ are computed by the Arnoldi algorithm. The norm || - || is
defined as the square root of the electric field energy in the computational domain. The resonance modes E, and E, .. are normalized such that

their x-components at the center of the system are equal.

the complex plane are chosen. Further information on this
topic can be found, e.g., in Refs. [18], [19], where adaptive
sampling schemes are applied.

We further point out that other types of sources could
also be used for the framework presented, e.g., a combina-
tion of multiple line sources, the field distribution of the
fundamental resonance mode of a single-mode fiber, or a
Gaussian beam. In this way, other types of modes than
the fundamental resonance mode could be prioritized in
the computation. For example, higher-order modes could
be calculated by placing multiple line sources at positions
based on the symmetry of the higher-order modes. Cladding
modes could be calculated by placing line sources directly in
the part of the fiber cladding of interest.

3.4 Computational performance

The calculation of eigenvalues and resonance modes using
a framework based on AAA rational approximation differs
in several aspects from standard approaches applied in

computational photonics, such as the Arnoldi algorithm [6].
The AAA-based framework presented in this work essen-
tially relies on solving various, independent scattering prob-
lems for obtaining a rational approximation of response
functions, which then allows one to deduce eigenvalues and
resonance modes. Advantages of this framework include the
following aspects: (i) For systems with material dispersion,
a linearization of the resulting nonlinear eigenproblem is
not necessary. When using the Arnoldi algorithm, such a
linearization must be implemented, which increases the
degrees of freedom of the numerical realization [6]. (ii)
Solving scattering problems enables the incorporation of
sensitivities based on algorithmic differentiation [19], [23].
This means that also the sensitivities of the eigenvalues
with respect to the system parameters are available with
negligible computational costs. (iii) Domain decomposition
algorithms can be applied in a straightforward way, which
allows one to handle systems with multiple scattering [24].
(iv) The solution of a scattering problem within the AAA
algorithm can be accelerated by using a preconditioner
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based on the computation of a solution at a neighboring
sampling point. (v) If several computing nodes are available,
the calculations at the sampling points can be parallelized.
(vi) The use of problem-specific sources makes it possible to
compute specific solutions only, as shown in this work. In
contrast, other methods often rely on computing a larger
spectrum and applying mode filtering a-posteriori, which
implies high computational costs. A detailed and fair quanti-
tative performance benchmark of the framework presented
and standard approaches should investigate various exam-
ples, which enable to quantify the impact of the various
aspects. Such a benchmark is beyond the scope of this work.

4 Conclusions

We presented a framework based on AAA rational approx-
imation to compute the fundamental resonance modes of
photonic waveguides. The framework was applied to an
example from the literature, an HC-PCF supporting many
cladding and higher-order modes. The scattering solutions
at the sampling points for the AAA algorithm were super-
posed, reusing the poles and weights belonging to a cor-
responding scalar-valued rational approximation. The cou-
pling of the underlying light source with the fundamental
resonance mode of the HC-PCF enables an efficient and
accurate computation of the mode.

The results were compared with the eigenpairs
obtained using the Arnoldi algorithm. The Arnoldi
algorithm solves the eigenproblem directly, i.e., without a
source term, and it calculates all resonance modes toge-
ther with the associated eigenvalues closest to a guess eigen-
value. The AAA algorithm is based on solving scattering
problems at chosen sampling points, ie., with using a
source term, and, therefore, only calculates the modes that
have a significant coupling with the applied source.

The framework presented is beneficial when the sys-
tem of interest supports modes that are much more relevant
than other modes, such as in the case studied in this work.
The fundamental resonance mode of the HC-PCF investi-
gated has an intensity maximum at the center of the system
and it can be efficiently excited by a singular line source
located at the center. Many of the additional resonance
modes of the HC-PCF are modes that are localized in the
cladding of the fiber or higher-order modes. They have an
insignificant coupling with the line source, i.e., they are not
calculated when using the AAA algorithm. This means that
challenging post-processing with mode filtering, as may be
necessary with the Arnoldi algorithm, can be avoided.

The computation of resonance modes based on the
AAA algorithm is possible for any resonant system [25].

DE GRUYTER

For example, in Ref. [18], a AAA-based approach is applied
to an electromagnetic and an acoustic problem class and,
in Ref. [19], a chiral photonic metasurface is numerically
investigated using the AAA algorithm.
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