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Abstract: Controlling and manipulating radiative heat

transfer remains a pivotal challenge in both scientific

inquiry and technological advancement, traditionally

tackled through the precise geometric design of meta-

structures. However, geometrical optimization cannot

break the inherent shackles of local modes within indi-

vidual meta-atoms, which hinders sustained progress in

radiative heat transfer. Here, we propose a comprehensive

strategy based on interatomic displacement to achieve

superior heat transfer performance while obviating the

need for increasingly complex structural designs. This

meta-atomic displacement strategy enables a shift from

quasi-isolated localized resonances to extended nonlocal

resonant modes induced by strong interactions among

neighboring meta-atoms, resulting in a radiative heat

conductance that surpasses other previously reported

geometrical structures. Furthermore, this meta-atomic

displacement strategy can be seamlessly applied to various

metastructures, offering significant implications for
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1 Introduction

Radiative heat transfer (RHT) is ubiquitous in nature, span-

ning fromgigantic galaxies tomicroscopic atomic structures

[1]–[3]. Effective manipulation of RHT is vital for mitigat-

ing diverse challenges such as global climate change [4],

[5] and the overheating of electronics [6]. In this context,

the question regarding the fundamental limits of RHT is

attracting a lot of attentions. Since then, researchers inves-

tigated RHT in a variety of systems with objects of differ-

ent shapes and materials, in pursuit of optimal radiative

strategies [7], [8]. Among them, thermophotonic metastruc-

turals are considered the most promising strategy [9]. Con-

ventionally, the thermophotonic metastructures focus on

the structural design of individual meta-atoms, trying to

continuously optimize the local response of single meta-

atom to pursue higher radiation performance [10]–[12], as

schematically shown in Figure 1. For instance, Fernández-

Hurtado et al. achieved much greater room-temperature

radiative heat conductance than any unstructured material

to date by constructing Si-based metastructures featuring

two-dimensional periodic arrays of holes [13]. Motivated by

the extraordinary effects, increasingly intricate micro- and

nanostructures have sprung up, expanding the family of

thermophotonic metastructures [14]–[16].

Nevertheless, the complexity of these meta-atoms is

both a blessing and a curse. As the most straightforward

approach, enhancing radiative heat transfer by persis-

tently refining more intricate metacellular architectures

is undoubtedly feasible [17]. Unfortunately, constrained

by the degrees of freedom of the local modes, the inde-

pendent response of each meta-atom cannot achieve a

sustainable improvement with the increase in structural

complexity [18]–[20]. The potential for further enhancing
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Figure 1: Structural and energetic properties of interatom-displacement-driven thermophotonic metasurface. (a) Schematics of RHT between two

metastructures separated by a vacuum gap d, which have temperatures T and T +ΔT , respectively. (b) Conceptual diagram to design thermophotonic

metastructures, illustrating the differences between the traditional and proposed approaches. The traditional approaches focus on the independent

electromagnetic behavior of meta-atoms. In contrast, the proposed approaches rely on periodic displacement between meta-atoms to introduce

additional interaction effects, stimulating stronger collective electromagnetic modes. (c) The heat transfer coefficient H for the regular grating,

the more complex meta-atoms (cavity surface-plasmon polaritons [CSPPs] [13]), and proposed metastructures with strengthened interatom

displacement, at different gaps.

radiative heat transfer performance would diminish as

the complexity of the meta-atom further increases. With

the advancement in electronics and energy technologies,

there is an increasing need for heat transfer performance

[21], [22]. However, the current study of thermophotonic

metastructures is mostly limited to the investigation of the

local response of a single meta-atom, which cannot sup-

port further development of radiative heat transfer. There-

fore, overcoming the current bottleneck in developing ther-

mophotonicmetastructures andfinding a newgeneral strat-

egy to improve radiative heat transfer remains a formidable

challenge.

In response to this challenge, we resort to displace-

ment between meta-atoms to achieve an extraordinary

thermal response, marking the first demonstration of the

effects of meta-atomic displacement in RHT, as schemat-

ically depicted in Figure 1b. Utilizing rigorous coupled

wave analysis, it is demonstrated that introducing inter-

element displacement into traditional metastructures could

markedly amplify radiative energy transfer, while surpass-

ing conventional approaches that rely solely on optimizing

meta-atom configurations. This also shows that the inter-

element displacement effects are not just carriers of ther-

mal information (as previously reported [23], [24]), but can

help better manipulate thermal energy transfer. We then

develop a nonlocal effective medium approach to predict

non-trivial fingerprint of this thermo-metastructures, and

demonstrate rigorously that the underlying physical mech-

anism responsible for this remarkable behavior is the exis-

tence of nonlocal electromagnetic response mode enabled

bymeta-atomic displacement.Moreover, we further demon-

strate this inter-element displacement effect allows us to

achieve a much higher radiative thermal conductivity than

other metastructure to date, almost a factor of two higher

than the metastructures with the previously reported

maximum.

2 Extraordinary energy feature

in interatom displacement

To illustrate our general strategy, first we concentrate on

an instance of two mirrored metastructures formed by 2D

alternating arrays on a semi-infinite planar substrate (see

Figure 1b). Two mirrored metastructures are separated by

a vacuum gap d. A conventional subwavelength grating

comprises alternating strips of the core with a width w and

the cladding groove with a width G, arrayed with a sub-

wavelength period P = G + w along the direction perpen-

dicular to the strips (x-axis). Referring to Figure 1b, in the

proposed metastructures, the nanostrips are periodically

partitioned into rectangular nanoblockswith a pitchL along

the y-axis. The rectangular nanoblocks are then periodically
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dislocated by a distanceΔ∕2 in the x-direction. This disloca-
tion introduces meta-atomic displacement of configuration

assignment into the regular grating, which in turn enhances

the interactions between the meta-atoms. The thickness of

nonlocal metasurface is fixed at 200 nm. For the simplicity

of analysis, the dielectric function of the substrate is set to 1.

The filling ratio can be defined as f = w/P. Since the width

of each strip and the dimension of the period along the x

direction are the same, the structural displacement does not

affect the filling ratio of the strips in themetastructures. The

nanostrips are constructed from silicon (Si) with a doping

concentration of 1020cm−3.

Theoretically, we combine fluctuational electrodynam-

ics (FED) [25], [26] and rigorous coupled wave analysis

(RCWA) [27]–[29] to reveal an radiative thermal effect of

this metastructures. Our main goals focus on the analy-

sis of the heat transfer coefficient (HTC), i.e. the radia-

tive thermal conductance per unit area, at room temper-

ature (300 K). In the framework of FED, the HTC between

two arbitrary periodic metastructures can be expressed

as follows [30]

H =
∞

∫
0

h(𝜔)d𝜔

=
∞

∫
0

𝜕Θ(𝜔, T )
𝜕T

d𝜔

𝜋∕P

∫
−𝜋∕P

𝜋∕P

∫
−𝜋∕P

𝜉dkxdky

(2𝜋 )3
,

(1)

where, h(𝜔) is the spectral heat transfer coefficient.

Θ(𝜔, T ) = ℏ𝜔∕
(
eℏ𝜔∕kbT − 1

)
is the average energy of a pho-

ton at frequency 𝜔 and temperature T , and kb is the Boltz-

mann constant [31], [32]. kx , ky and kz denote the x, y and

z components of the wavevector, with k =
√
k2
x
+ k2

y
repre-

senting its in-planewavevectormagnitude. The 𝜉 represents

the tunnelling probability of a thermal photon from the hot

terminal to the cold terminal. Moreover, the thermophotons

tunnelling probability can be given by RCWA (see Supple-

mentary material (SM) [33] for explicit and rather standard

expressions).

Let us start the discussion of the results by illustrat-

ing the main finding of our work. Figure 1c describes the

room-temperature HTC versus the gap size for three metas-

tructures with P = 50 nm and f = 0.4. This result is com-

pared with the HTC for the regular grating and more com-

plexmeta-atoms [cavity surface-plasmon polaritons (CSPPs)

structure] [13] with the same P and f . It is worth noting that

when the Si plate is patterned as a regular grating, its HTC in

the deep near-field regions (d < 50 nm) is already very sig-

nificant, several times larger than the corresponding result

for Si plates, as has been confirmed in many studies [10],

[16]. In order to achieve a further breakthrough in radia-

tive heat transfer, the structure of CSPPs meta-atom has

been proposed [13]. As shown in Figure 1c, the HTC in both

deep near-field regions is significantly improved when the

meta-atoms structure is converted from the conventional

grating to this CSPPs metacells.

Intriguingly, a more pronounced increase in radiative

heat transfer is observed upon introducing a meta-atomic

displacement, as seen in Figure 1c. This can be attributed to

the system geometry, i.e., this interatom displacement intro-

duces additional interactions into the system and optimizes

the collective response behavior, thereby improving the

radiative heat transfer performance. Taking d = 20 nm as

an example, the HTC enhancement due to the meta-atomic

displacement effect is 400% of the increase amplitude from

conventional idea of designing the metacell as CSPPs struc-

ture. However, it should be noted that there is a limit to

this enhancement, and the enhancement resulting from this

meta-atomic displacement disappears when the spacing is

too large (see Section III of the SM [33] for details).

As shown in Figure 2a, the radiative heat transfer has

a pronounced sensitivity to meta-atomic displacement. An

increase in the radiative heat flux of the metastructures

is observed when a small meta-atomic displacement (Δ/w
= 0.2) is introduced. Upon reaching a degree of meta-

atomic displacement of 0.9 Δ/w, the radiative heat trans-
fer attains its maximum, exceeding that of a regular grat-

ing by 40 % and that of a CSPPs meta-atom by 28 %. Nev-

ertheless, further reinforcement of the meta-atomic dis-

placement cannot provide a sustained enhancement of

the RHT. As the degree of misalignment increases above

Figure 2: Heat transfer enhancement induced by the interatom

displacement effect. (a) The heat transfer coefficient H versus

the meta-atomic displacement degreeΔ. (b) The spectral heat transfer
coefficient h(𝜔) as a function of the frequency𝜔. The different lines

correspond to different meta-atomic displacement degreeΔ.
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0.9 Δ/w, or the two Si blocks are completely separated

(𝛿 = w), it can be observed that radiative heat transfer

experiences a significant decline. This nonlinear enhance-

ment indicates the complex wave response mechanisms

in our thermo-metastructures, similar to optical [34], [35],

acoustic [36], and other metastructures with strong inter-

atom interactions.

To clarify the excellent properties of this interatom

displacement metastructure, we present the spectral heat

transfer coefficient in Figure 2b. It is noticed that the meta-

atomic displacement does not affect the polarisation dis-

tribution of the system, which is still dominated by TM

waves at this point, and a detailed analysis can be found

in SM [33]. This spectral heat transfer coefficient indi-

cates the energy levels carried by thermal photons of dif-

ferent frequencies. It can be seen that meta-atomic dis-

placement broaden the spectral bandwidth while signif-

icantly intensifying the spectral peaks. As demonstrated

in Figure 2b, increasing Δ/w from 0 to 0.9 results in a

28 % heightening in the spectral heat transfer coefficient

(from 2.5 to 3.2 pWm−2 rad−1 s K−1). The meta-atomic dis-

placements cannot result in a significant shift of the spec-

tral peak. As Δ/w increases from 0 to 1, the frequency of

spectral peak remains within the range of 0.1–0.13 eV/ℏ.

The results reveal crucial significance that it demon-

strates this interatom-dislocated metastructure can play

crucial role in thermophotovoltaics [37] and electrolumi-

nescent refrigeration [6]. This feature enhances the power

of the mentioned apparatus while maintaining optimal

efficiency.

3 Local-nonlocal transition

of thermophotons mode

The thermophotons tunnelling probability indicates the

tunneling probability of thermal photons between the

emitter and receiver. k0 = 𝜔∕c being the wavenumber in
vacuum.We also depict the thermophotons tunnelling prop-

erties of the regular grating for comparison in Figure 3a.

It can be observed that the thermophotons tunnelling of

the system exhibits a clear hyperbolic character, which is

also consistent with previous studies [38]–[40]. In addi-

tion to the exact RCWA theory, we also employ the local

effective medium theory (EMT) to facilitate the analy-

sis. This approach treats the nanostructures as equiva-

lent homogeneous biaxial plates, offering a computation-

ally simple and rapid solution [14]. The effective dielec-

tric function [𝜀xx,emt, 𝜀yy,emt, 𝜀zz,emt] of regular grating can

be expressed in SM [33]. The local EMT theory can accu-

rately predict the thermophotons tunnelling properties,

thereby indicating the localized nature of the mode of this

metasurface.

It is noteworthy that a notable alteration of the ther-

mophotons properties of the metasurface can be obtained

by adding meta-atomic displacement (from hyperbolic to

dumbbell-like) (see Figure 3c). It demonstrates that a larger

Δ suppresses the wavevector region of stronger ther-

mophoton tunnelling (𝜉 > 0.8). However, a more signifi-

cant meta-atomic displacement expands the bright band

of weak thermophoton tunnelling (𝜉 < 0.5) into a wider

Figure 3: The thermophotonic tunnelling probability of regular grating (without meta-atomic displacement) for (a) exact solution (RCWA) and (b) EMT

solution. The thermophotonic tunnelling probability of proposed thermo-metastructures (with meta-atomic displacement) for (c) exact solution

(RCWA) and (d) EMT solution. The nonlocal effective model is shown in Eq. (2) (see also Ref. SM for the parameters). Electric field profiles (|E
z
|) of

meta-atom with displacements of (e)Δ/w = 0 and (f)Δ/w = 0.9. The frequency is fixed at 0.11 eV/ℏ. The evolution of electric field distributions|FFT(E
z
)|

of metastructure in response to different meta-atomic displacements in momentum space: (g)Δ/w = 0 and (h)Δ/w = 0.9. The field is excited by

a dipole polarized along z placed 20 nm above the metastructure.
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wavevector region, which effectively counteracts the reces-

sion of strong thermophoton tunnelling while intensifies

the spectral heat flux of the metastructure. Moreover, con-

ventional local EMT theory fails to predict the nonlocal

behavior of this metastructure. To address this limita-

tion, we propose a nonlocal EMT model to precisely char-

acterize the thermophotons behavior in metastructures.

Given the absence of straightforward analytical expres-

sions for nonlocal corrections associated with meta-atomic

displacement, we incorporate these nonlocal corrections

into the EMT model using a Taylor series expansion as

a reference. This approach significantly reduces the pre-

diction error of the electromagnetic response, particularly

in the context of introducing meta-atomic displacement to

metamaterials [41].

Re(𝜀non
ii

(kii ))

Re(𝜀ii )
= a0

(
1+ a1|kii∕k0|2 + a2|kii∕k0|4

)

1+ b1|kii∕k0|2 + b2|kii∕k0|4
, (2)

where, the subscript i represents the direction x and y. The

mentioned nonlocal corrections can be applied to the imag-

inary and real parts of the equivalent permittivity along dif-

ferent directions (see SM [33] for parameter details). It can

be observed that incorporating nonlocal corrections signifi-

cantly improves the agreement between the EMT-predicted

thermophoton tunnelling coefficients and the exact solu-

tion, as seen in Figure 3d. The strong nonlocal behavior

of metastructures can be attributed to the phenomenon of

continuous reconstruction of the electric field distribution,

thereby facilitating a transition from quasi-isolated local-

ized resonances to extended nonlocal modes (see Figure 3e

and f). This extended nonlocal resonant modes between the

meta-atoms induced by strong interunit interactions further

contribute to a significant change in the behaviour of sur-

face polariton (see Figure 3g and h).

4 Interatom displacement in

thermophotonic metastructures

The presented strategy for enhancing radiative heat trans-

fer by using periodic displacement between meta-atoms

is not confined to a certain metasurface with the men-

tioned units. Instead, it is a general approach that can

be employed for various thermophotonic metastructures,

such as rectangular nanowires [10], circular nanorods [14],

square nanorods [40], elliptical nanorods, square cavity

[13], and many others, as shown in Figure 4 (the struc-

tural parameters can be seen as SM [33]). Silicon serves as

the matrix material for these structures. These meta-atoms

Figure 4: Dependence of the HTC on the introduction of meta-atomic

displacement effect between meta-atoms for various designs (Si-based),

which are labelled (I) to (VI). All square units have a 50 nm period.

Furthermore, filling ratios remain consistent before and after

the interactions effects. These designs and materials are regarded as

promising candidates with the potential to exhibit high heat transfer

performance [10], [13], [14], [40], [42]–[47].

werepreviously regarded as artificial structureswith excep-

tional radiative heat transfer performance. The square cav-

ity structure, in particular, was previously considered to be

a metastructures with room-temperature radiative thermal

conductivity that can be much greater than any unstruc-

tured material [13]. Figure 4 indicates that when the dis-

tribution of meta-atoms is rearranged (i.e., a meta-atomic

displacement is applied to the conventional distribution

between the meta-atoms) to increase the interactions cor-

relation between different elements, it leads to an overall

increase in radiative heat transfer. Note that the reorgani-

sation process preserves the original filling ratio f and the

f is the optimum for the different structures. The HTC of

cavity structure in Figure 4 is higher than that in Figure 1

due to the difference in f between the two. Surprisingly,

the heat transfer coefficient at room temperature can reach

up to 1.7 times that of previously reported structures at the

highest level after interatom interactions enhancement of

the square cavity structure. The strategy is equally effective

for radiative enhancement at different temperatures, as can

be seen in the SM [33].

Remarkably, our findings reveal that the introduction

ofmeta-atomic displacement effects enable silicontradition-

ally regarded as a material with modest radiative proper-

tiesto surpass high-performance materials such as Ga2O3 in

radiative heat transfer. Notably, this photonics strategy is

not limited to silicon but can also be extended to materials

like Ga2O3, MoO3, and others, offering a versatile approach

to significantly enhance their radiative heat transfer
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capabilities. Moreover, the primary focus of this work is on

the formulation and validation of the concept of enhanced

radiative heat transfer with displacement. Consequently,

the global optimisation of the arrangement of structural

unit is not involved in the aforementioned calculations.

However, it is anticipated that the optimisation of the dis-

placement of the structural units by certain global optimi-

sation methodology will lead to further enhancement of

the heat transfer performance [17], [48], [49]. Although it

is possible to enhance the radiative heat transfer in the

thermalmetasurfacewith thismethod, there is still a consid-

erable gap between the current HTC and the ideal HTC limit

[50]–[52]. Let’s take the optimal bulk plasmonic material in

Ref. [52] as an example, which at a vacuum gap of 20 nm is

still close to three times that of the highest HTC in Figure 4.

5 Conclusions

We have proposed a conceptual framework to achieve

unprecedented radiative heat transfer by exploiting inter-

atomic displacement effects. This approach facilitates inter-

actions among meta-atoms by introducing meta-atomic dis-

placement that reconfigure structural periodicity, thereby

enabling a transition from quasi-isolated localized reso-

nances to extended nonlocalmodes. Remarkably, the results

reveal that this displacement-driven strategy can signifi-

cantly amplify radiative heat transfer, yielding radiative

heat conductances that surpass those of other proposed

structures. These observed thermal responses suggest that

radiative heat transfer can be effectively manipulated

through introducing meta-atomic displacement effects into

the distribution of meta-atoms, eliminating the need for

increasingly complex metastructure designs. We contend

that this approach offers a definitive pathway for advanc-

ing research in radiative heat transfer, paving the way for

innovative applications in thermal management [53], ther-

mophotovoltaics [37], photonic cooling [54], [55], thermo-

computation [56], and near-field imaging [57].
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