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Abstract: Cathodoluminescence microscopy is now a well-
established and powerful tool for probing the photonic
properties of nanoscale materials, but in many cases,
nanophotonic materials are easily damaged by the electron-
beam doses necessary to achieve reasonable cathodolumi-
nescence signal-to-noise ratios. Two-dimensional materials
have proven particularly susceptible to beam-induced mod-
ifications, yielding both obstacles to high spatial-resolution
measurement and opportunities for beam-induced pattern-
ing of quantum photonic systems. Here pan-sharpening
techniques are applied to cathodoluminescence microscopy
in order to address these challenges and experimentally
demonstrate the promise of pan-sharpening for minimally-
perturbative high-spatial-resolution spectrum imaging of
beam-sensitive materials.

Keywords: color centers; 2D materials; cathodolumines-
cence

1 Introduction

Color centers and localized excitons in two-dimensional
(2D) materials have emerged as a promising resource for
quantum networking and quantum sensing in recent years
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[1]-[4] because of the potential for atomic scale control
over the defect environment [5], [6], compatibility with inte-
grated photonic circuits [3], [4], [7], [8], and the potential
for manipulation of emitter photophysics with engineered
strain environments [9]-[13] and electrical gating [14]-[16].
Unfortunately, many reports in the literature focus on ‘hero’
emitters that are selected after exhaustive searches of many
lower quality emitters. Attempts to locate and pattern indi-
vidual single photon emitters with desirable brightness,
purity, and indistinguishability often result in the observa-
tion of multiple emitters within a single diffraction-limited
spot or in the emergence of coupled electronic transitions
with unwanted photochromic effects [17], [18]. The ability
to manipulate and measure the quantum states associated
with these color centers relies heavily on our understanding
of how nanoscale heterogeneities affect their photophysical
behavior. Therefore, advanced nanoscale probes that can
accurately assess these effects while allowing for in situ
modification are crucial to the development of color centers
for practical quantum technologies.

Cathodoluminescence (CL) microscopies have emerged
as a powerful nanoscale probe of quantum nanophotonic
systems [10], [13], [19]-[23]. The converged electron-beam
probe offers a nanometer-scale excitation, and far-field col-
lection of CL enables high sensitivity measurements of emit-
ter energetics and dynamics across a wide variety of energy-
and time-scales. However, the electron-beam probe has also
emerged as a resource for beam-induced modification of
2D materials [20], [24]-[26]. Indeed, many monolayer tran-
sition metal dichalcogenides only exhibit measurable CL
signals when they are encapsulated by hBN [21], [22], an
effect that may result from beam-induced damage to beam-
sensitive materials. While clear examples exist in the litera-
ture using the electron beam to either probe or manipulate
color centers in 2D materials, the necessary electron-beam
dose to measure emitter photophysics is in many cases
also sufficient to substantially modify the defect environ-
ment in that material. Thus, identifying new minimally-
perturbative approaches to CL microscopy capable of prob-
ing the color center environment without modifying it
— while allowing for intentional in situ modification at
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higher electron-beam doses - is critical to improved under-
standing and control of 2D quantum photonic systems.
Pan-sharpening (PS) methods may offer a minimally
perturbative approach to CL microscopy by combining sep-
arate high-spatial-resolution and high-spectral-resolution
images in order to generate a composite image with both
high spatial and spectral resolution. First used in satellite
imaging [27], [28], PS methods have now emerged as power-
ful tools for multidimensional imaging in a wide variety of
use cases. In nanoscience, PS has been applied to electron
energy loss spectroscopy [29], scanning probe microscopy
[30], and secondary ion mass spectrometry [31], though
PS-CL has not yet been explored despite the substantial
benefit associated with minimizing beam-induced damage
through undersampling of hyperspectral CL images. Most
PS algorithms rely on either (i) the substitution of spec-
tral components from a hyperspectral dataset with a high
spatial resolution panchromatic image or (ii) a multiresolu-
tion analysis approach based on injection of spatial details
from the panchromatic image into resampled hyperspectral
bands [32]. Here, we focus on PS-CL performed using the
Brovey transform [33], an example of the former class of PS
algorithms that uses multiplicative sharpening to spatially
modulate spectral pixels [32], and we examine the impact of
this approach on CL imaging of color centers in 2D materials.

2 Methods

Hexagonal boron nitride (hBN) is known to be relatively
robust to electron-beam exposure, and it has been probed by
conventional CL microscopy [13], but there is also a growing
literature describing electron-beam induced patterning of
color centers in hBN [20], [24]-[26]. Thus, hBN offers a valu-
able platform for examining PS-CL techniques that could be
crucial to probes of more environmentally sensitive mate-
rials like monolayer transition metal dichalcogenides and
some classes of hybrid organic perovskite thin films. All
data reported here is based on exfoliated hexagonal boron
nitride (hBN) flakes transferred onto a 300 nm silicon diox-
ide (Si0,) layer on a silicon substrate.
Cathodoluminescence data was acquired using a
Delmic Sparc CL module with an FEI Quattro scanning
electron microscope (SEM) operating with a beam energy
of 5kV and a beam current of 110 pA at room temperature
and a chamber pressure of 1E-6 Torr. CL spectrum images
were acquired with an Andor Kymera spectrograph and
an Andor Newton CCD with an acquisition time of 300 ms
per spectrum. A pickoff mirror was used to direct the
collected CL signal into a photomultiplier tube (PMT) for
high-spatial resolution panchromatic CL imaging using a
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PMT integration time of 10 ps (yielding 300,00x reduced
dose per pixel compared with spectrum imaging).

3 Results

An SEM image of a prototypical hBN flake is illustrated
in Figure la. While we were able to acquire moder-
ately coarse spatial resolution CL spectrum images of
hBN flakes with minimal apparent degradation (with
pixel sizes of order 100 nm), improving spatial resolu-
tion while maintaining the beam energy and current
along with a constant dwell time per pixel resulted in
growing evidence of beam-induced modification of the
hBN flake. Increasing the beam energy also resulted in
substantially faster beam-induced modification, as high-
lighted by Fig. S2 in the Supporting Information. This dose-
dependent beam-induced modification is most easily visual-
ized through time-series spectra acquired while the electron
beam rapidly scanned 768 X 512 pixels across a 500 nm spot
with a 100 ns/pixel electron dwell time. Note that acquiring
time-series spectra with the electron beam focused on a
single spot resulted in immeasurably fast changes in the
CL spectra, so averaging across a 500 nm spot allowed us
to reduce the effective dose/pixel during time-series CL
spectrum acquisition as discussed in the Supporting Infor-
mation. A reduced CL spectrum acquisition time of 50 ms
(approximately equal to the time required to scan 768 X 512
pixels) was used in order to monitor the time-dependent
changes in CL spectra as a function of electron-beam dose.

Several features are immediately apparent in the time-
series spectra shown in Figure 1b: A prominent CL band cen-
tered at a wavelength of 647 nm exhibits minimal change
with increasing dose (though this band exhibits increased
beam sensitivity at higher energies, as shown in the Sup-
porting Information). On the other hand, a blue CL band
near 417 nm grows monotonically with increasing dose, and
the CL from a narrow linewidth color center near 533 nm
is quickly bleached with increasing dose. These results
highlight the importance of alternative SEM-CL acquisi-
tion modalities, especially for smaller pixel sizes where the
increased electron-beam dose can result in rapid modifica-
tion of the hBN color center photophysics. Additionally, it is
difficult to interpret CL spectra acquired at a single point,
as we expect some CL contribution from defect bands in the
Si0, substrate.

Figure 1c and d illustrate a non-negative matrix fac-
torization (NMF) decomposition of a CL spectrum image
acquired across this flake using conventional raster scan-
ning with a pixel size 0of 100 nm. For all NMF decompositions
shown in this manuscript, reconstructions were attempted
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Figure 1: Combined SEM-CL analysis of a prototypical hBN flake. (a) SEM image of an hBN flake with horizontal width of 10.5 pm. (b) Time-series CL
spectra acquired at a single point on the hBN flake highlighting the beam-induced changes in the hBN CL spectrum as a function of increasing dose.
(c) Spectral components and (d) intensity maps generated by non-negative matrix factorization of CL spectrum image acquired in conventional

rastered CL spectrum imaging modality.

with varying numbers of components, and it was deter-
mined that three components were sufficient to provide a
reasonable reconstruction of the raw data based on (1) an
analysis of the explained variance as a function of num-
ber of components and (2) a qualitative physical under-
standing of the defect bands observed in the NMF com-
ponents, as discussed in the Supporting Information. The
NMF decomposition shown in Figure 1 immediately aids in
the interpretation of the single point CL spectra shown in
Figure 1b: Component 3 is solely a result of the hBN flake,
while Component 2 appears to be primarily a result of the
SiO, substrate luminescence. Component 1, which features
the narrow transition at 548 nm, appears to be primarily
due to the hBN flake, though it includes some convolu-
tion with substrate luminescence. The NMF decomposition
doesn’t perfectly recover this narrowband transition from
the raw data, so additional point spectra are included in
the Supporting Information for reference. The narrow band
color centers seen in Component 1 are reasonably densely
distributed across the hBN flake. Unfortunately, it is hard
to image these color centers with improved spatial resolu-
tion using conventional CL raster scanning because reduc-
ing pixel sizes while maintaining the field of view yields
a combination of beam-induced damage and unacceptably

long measurement times. However, PS-CL techniques offer
a promising pathway to address this challenge.

The Brovey transform was identified as a PS algorithm
well suited to our data, and it was benchmarked by gen-
erating high spatial resolution and high spectral resolution
datasets from a single 100 X 100x 1,024 (horizontal X ver-
tical X wavelength) pixel hyperspectral CL image of a hBN
flake (by separately binning all wavelengths together to
create a 100 X 100 pixel panchromatic image and binning
adjacent spatial pixels to create spectrum images with 1,024
spectral pixels and between 1 X 1and 50 X 50 spatial pixels).
We then up-sampled the hyperspectral dataset to match its
spatial resolution with that of the panchromatic image using
the resize function in skimage.transform with linear splines.
Each spatial pixel’s spectrum in this new dataset is scaled
to match the net intensity of the corresponding normalized
panchromatic pixel’s intensity. The pan-sharpened CL spec-
trum image then had dimensions of 100 X 100X 1,024 and
could be easily compared with the original spectrum image.

Three component NMF reconstructions of the PS-CL
image with reduced dimensionalities are shown in Figure 2.
At first glance, very little information is lost in the PS-CL
image as the hyperspectral image is collapsed from a 100 X
100x 1,024 spectrum image (Figure 2a) to a 6 X 6X 1,024
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Figure 2: Benchmark PS-CL results generated from a single CL hyperspectral image of an hBN flake with dimensions of 100 X 100 X 1024 (horizontal,
vertical, wavelength) pixels with a horizontal field of view of 30 um. A panchromatic image was generated from the spectrum image by summing
along the wavelength axis while spectrum images with reduced spatial resolution were generated by binning spatial pixels together. The Brovey
pan-sharpening algorithm was used to reconstruct a hyperspectral CL image from these datasets. NMF reconstructions of the pan-sharpened CL
images are shown for data generated from the panchromatic image and (a) the complete 100 X 100 X 1024 spectrum image, (b) a 50 X 50 X 1024
spectrum image, (c) a 25 X 25 X 1024 spectrum image, (d) a 12 X 12 X 1024 spectrum image, (e) a 6 X 6 X 1024 spectrum image, and (f) a1 X 1 X 1024

spectrum image.

image (Figure 2e), though unsurprisingly, all three compo-
nents of the PS-CL image generated from a 1 X 1x 1,024 spec-
trum image (Figure 2f) look nearly identical to one another.
The quality of the pan-sharpening algorithm can be calcu-
lated here with a structural similarity index (SSI) compar-
ing the pan-sharpened image with the original 100 X 100X
1,024 spectrum image. The SSI of each pan-sharpened image
here was calculated using the scikit-image library. As shown
in Figure 3, applying the Brovey transform to the original
100 x 100X 1,024 spectrum image results in a SSI of 1.0, and
a SSI> 0.9 for compression ratios as high as 90 %.

This baseline PS-CL data suggests that CL spectrum
images can be acquired with substantially reduced electron-
beam exposure by combining short-dwell-time panchro-
matic CL images acquired on a PMT with very low spa-
tial resolution spectrum images. Further, rastering the
electron-beam over each spectrum-image pixel during the
comparably-slow spectrum acquisition time will distribute
the electron-beam dose over a large area and minimize the
risk of beam-induced damage.

With this understanding in hand, PS-CL images were
reconstructed from raw hyperspectral and panchromatic
CL datasets. Figure4 illustrates three-component NMF
reconstructions of PS-CL images of an hBN flake generated
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Figure 3: Calculated structural similarity index as a function of
compression ratio for the PS-CL data shown in Figure 2. The compression
ratio is calculated based on the compression of the hyperspectral data
prior to pan sharpening.

from an 1,168 X 1, 034 panchromatic CL image (using 10 us
dwell time per pixel) and a 39 X 35 pixel spectrum image
(Figure 4a) and a 117 X 105 pixel spectrum image (Figure 4b)
(each using a 300 ms spectrum acquisition time per pixel).
Both exhibit very similar spectral components, though the
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Figure 4: Three component NMF reconstructions of hBN PS-CL images generated from (a) an 1,168 X 1, 034 pixel panchromatic image and a 39 X 35
pixel hyperspectral image and (b) an 1,168 X 1, 034 panchromatic image and a 117 X 105 pixel hyperspectral image. The horizontal field of view is

10.5 pm.

latter does exhibit higher-spatial-resolution intensity maps.
Nonetheless, these results show the potential impact of pan-
sharpening for CL microscopy with minimal beam-induced
damage.

Alternative approaches to non-perturbative CL
microscopy might include singular value decomposition
(SVD) techniques and compressive sensing (CS) schemes.
SVD denoising is widely used to improve the signal-to-noise
ratio in noisy multi-dimensional datasets, and it has seen
limited use for CL microscopy [34], but it has limited benefit
for CL microscopy because the spectrometer acquisition
time can often not be substantially reduced before running
into fundamental noise floors. On the other hand, CS
schemes rely on an appropriate selection of sampling
matrices and reconstruction algorithms in order to allow
for accurate image reconstruction with many fewer
measurements than are required by the Shannon-Nyquist
sampling theorem [35], [36]. CS schemes have been used
to enable new imaging modalities in astronomy [37],
for new types of quantum imaging and quantum process
tomography [38]-[40], and for scanning probe and scanning
tunneling microscopies [41], [42], but they have not yet been
used for CL microscopy. Additional work is still required
to adapt these schemes for CL microscopy, but there is
reason to expect that such approaches could complement
pan sharpening techniques and allow further reduction
in the necessary electron-beam dose to achieve a given CL
signal-to-noise ratio.

4 Conclusions

The PS-CL results shown here suggest that hyperspectral CL
measurements can be undersampled by 90 % while main-
taining at least 90 % fidelity to the ground truth. Because

hyperspectral and panchromatic datasets can bhe easily
acquired concurrently (using a beamsplitter) or consecu-
tively (using a pickoff mirror) with no change to the exper-
imental alignment, the approach described here is easily
adapted for a wide variety of CL microscopies of beam-
sensitive materials. This approach is particularly critical
for minimizing beam-induced damage in beam-sensitive
materials like monolayer 2D materials and hybrid organic
perovskite thin films, and for applications that require
high spatial resolution and long spectrum acquisition times.
The successful demonstration of PS-CL also unlocks new
opportunities for high-dose electron-beam patterning of sin-
gle photon emitters with low dose PS-CL used for in situ
characterization.

Supporting Information: Supporting Information is avail-
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