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Abstract: Cathodoluminescence microscopy is now a well-

established and powerful tool for probing the photonic

properties of nanoscale materials, but in many cases,

nanophotonicmaterials are easily damaged by the electron-

beam doses necessary to achieve reasonable cathodolumi-

nescence signal-to-noise ratios. Two-dimensional materials

have proven particularly susceptible to beam-inducedmod-

ifications, yielding both obstacles to high spatial-resolution

measurement and opportunities for beam-induced pattern-

ing of quantum photonic systems. Here pan-sharpening

techniques are applied to cathodoluminescencemicroscopy

in order to address these challenges and experimentally

demonstrate the promise of pan-sharpening for minimally-

perturbative high-spatial-resolution spectrum imaging of

beam-sensitive materials.

Keywords: color centers; 2D materials; cathodolumines-

cence

1 Introduction

Color centers and localized excitons in two-dimensional

(2D) materials have emerged as a promising resource for

quantum networking and quantum sensing in recent years
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[1]–[4] because of the potential for atomic scale control

over the defect environment [5], [6], compatibility with inte-

grated photonic circuits [3], [4], [7], [8], and the potential

for manipulation of emitter photophysics with engineered

strain environments [9]–[13] and electrical gating [14]–[16].

Unfortunately, many reports in the literature focus on ‘hero’

emitters that are selected after exhaustive searches ofmany

lower quality emitters. Attempts to locate and pattern indi-

vidual single photon emitters with desirable brightness,

purity, and indistinguishability often result in the observa-

tion of multiple emitters within a single diffraction-limited

spot or in the emergence of coupled electronic transitions

with unwanted photochromic effects [17], [18]. The ability

to manipulate and measure the quantum states associated

with these color centers relies heavily on our understanding

of how nanoscale heterogeneities affect their photophysical

behavior. Therefore, advanced nanoscale probes that can

accurately assess these effects while allowing for in situ

modification are crucial to the development of color centers

for practical quantum technologies.

Cathodoluminescence (CL) microscopies have emerged

as a powerful nanoscale probe of quantum nanophotonic

systems [10], [13], [19]–[23]. The converged electron-beam

probe offers a nanometer-scale excitation, and far-field col-

lection of CL enables high sensitivitymeasurements of emit-

ter energetics and dynamics across awide variety of energy-

and time-scales. However, the electron-beam probe has also

emerged as a resource for beam-induced modification of

2D materials [20], [24]–[26]. Indeed, many monolayer tran-

sition metal dichalcogenides only exhibit measurable CL

signals when they are encapsulated by hBN [21], [22], an

effect that may result from beam-induced damage to beam-

sensitive materials. While clear examples exist in the litera-

ture using the electron beam to either probe or manipulate

color centers in 2D materials, the necessary electron-beam

dose to measure emitter photophysics is in many cases

also sufficient to substantially modify the defect environ-

ment in that material. Thus, identifying new minimally-

perturbative approaches to CL microscopy capable of prob-

ing the color center environment without modifying it

– while allowing for intentional in situ modification at
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higher electron-beam doses – is critical to improved under-

standing and control of 2D quantum photonic systems.

Pan-sharpening (PS) methods may offer a minimally

perturbative approach to CL microscopy by combining sep-

arate high-spatial-resolution and high-spectral-resolution

images in order to generate a composite image with both

high spatial and spectral resolution. First used in satellite

imaging [27], [28], PS methods have now emerged as power-

ful tools for multidimensional imaging in a wide variety of

use cases. In nanoscience, PS has been applied to electron

energy loss spectroscopy [29], scanning probe microscopy

[30], and secondary ion mass spectrometry [31], though

PS-CL has not yet been explored despite the substantial

benefit associated with minimizing beam-induced damage

through undersampling of hyperspectral CL images. Most

PS algorithms rely on either (i) the substitution of spec-

tral components from a hyperspectral dataset with a high

spatial resolution panchromatic image or (ii) a multiresolu-

tion analysis approach based on injection of spatial details

from the panchromatic image into resampled hyperspectral

bands [32]. Here, we focus on PS-CL performed using the

Brovey transform [33], an example of the former class of PS

algorithms that uses multiplicative sharpening to spatially

modulate spectral pixels [32], and we examine the impact of

this approach onCL imaging of color centers in 2Dmaterials.

2 Methods

Hexagonal boron nitride (hBN) is known to be relatively

robust to electron-beamexposure, and it has beenprobedby

conventional CLmicroscopy [13], but there is also a growing

literature describing electron-beam induced patterning of

color centers in hBN [20], [24]–[26]. Thus, hBN offers a valu-

able platform for examining PS-CL techniques that could be

crucial to probes of more environmentally sensitive mate-

rials like monolayer transition metal dichalcogenides and

some classes of hybrid organic perovskite thin films. All

data reported here is based on exfoliated hexagonal boron

nitride (hBN) flakes transferred onto a 300 nm silicon diox-

ide (SiO2) layer on a silicon substrate.

Cathodoluminescence data was acquired using a

Delmic Sparc CL module with an FEI Quattro scanning

electron microscope (SEM) operating with a beam energy

of 5 kV and a beam current of 110 pA at room temperature

and a chamber pressure of 1E-6 Torr. CL spectrum images

were acquired with an Andor Kymera spectrograph and

an Andor Newton CCD with an acquisition time of 300 ms

per spectrum. A pickoff mirror was used to direct the

collected CL signal into a photomultiplier tube (PMT) for

high-spatial resolution panchromatic CL imaging using a

PMT integration time of 10 μs (yielding 300,00x reduced

dose per pixel compared with spectrum imaging).

3 Results

An SEM image of a prototypical hBN flake is illustrated

in Figure 1a. While we were able to acquire moder-

ately coarse spatial resolution CL spectrum images of

hBN flakes with minimal apparent degradation (with

pixel sizes of order 100 nm), improving spatial resolu-

tion while maintaining the beam energy and current

along with a constant dwell time per pixel resulted in

growing evidence of beam-induced modification of the

hBN flake. Increasing the beam energy also resulted in

substantially faster beam-induced modification, as high-

lighted by Fig. S2 in the Supporting Information. This dose-

dependent beam-inducedmodification ismost easily visual-

ized through time-series spectra acquiredwhile the electron

beam rapidly scanned 768 × 512 pixels across a 500 nm spot

with a 100 ns/pixel electron dwell time. Note that acquiring

time-series spectra with the electron beam focused on a

single spot resulted in immeasurably fast changes in the

CL spectra, so averaging across a 500 nm spot allowed us

to reduce the effective dose/pixel during time-series CL

spectrum acquisition as discussed in the Supporting Infor-

mation. A reduced CL spectrum acquisition time of 50 ms

(approximately equal to the time required to scan 768 × 512

pixels) was used in order to monitor the time-dependent

changes in CL spectra as a function of electron-beam dose.

Several features are immediately apparent in the time-

series spectra shown in Figure 1b: A prominent CL band cen-

tered at a wavelength of 647 nm exhibits minimal change

with increasing dose (though this band exhibits increased

beam sensitivity at higher energies, as shown in the Sup-

porting Information). On the other hand, a blue CL band

near 417 nm growsmonotonically with increasing dose, and

the CL from a narrow linewidth color center near 533 nm

is quickly bleached with increasing dose. These results

highlight the importance of alternative SEM-CL acquisi-

tion modalities, especially for smaller pixel sizes where the

increased electron-beam dose can result in rapid modifica-

tion of the hBN color center photophysics. Additionally, it is

difficult to interpret CL spectra acquired at a single point,

as we expect some CL contribution from defect bands in the

SiO2 substrate.

Figure 1c and d illustrate a non-negative matrix fac-

torization (NMF) decomposition of a CL spectrum image

acquired across this flake using conventional raster scan-

ningwith a pixel size of 100 nm. For all NMF decompositions

shown in this manuscript, reconstructions were attempted
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Figure 1: Combined SEM-CL analysis of a prototypical hBN flake. (a) SEM image of an hBN flake with horizontal width of 10.5 μm. (b) Time-series CL
spectra acquired at a single point on the hBN flake highlighting the beam-induced changes in the hBN CL spectrum as a function of increasing dose.

(c) Spectral components and (d) intensity maps generated by non-negative matrix factorization of CL spectrum image acquired in conventional

rastered CL spectrum imaging modality.

with varying numbers of components, and it was deter-

mined that three components were sufficient to provide a

reasonable reconstruction of the raw data based on (1) an

analysis of the explained variance as a function of num-

ber of components and (2) a qualitative physical under-

standing of the defect bands observed in the NMF com-

ponents, as discussed in the Supporting Information. The

NMF decomposition shown in Figure 1 immediately aids in

the interpretation of the single point CL spectra shown in

Figure 1b: Component 3 is solely a result of the hBN flake,

while Component 2 appears to be primarily a result of the

SiO2 substrate luminescence. Component 1, which features

the narrow transition at 548 nm, appears to be primarily

due to the hBN flake, though it includes some convolu-

tion with substrate luminescence. The NMF decomposition

doesn’t perfectly recover this narrowband transition from

the raw data, so additional point spectra are included in

the Supporting Information for reference. The narrow band

color centers seen in Component 1 are reasonably densely

distributed across the hBN flake. Unfortunately, it is hard

to image these color centers with improved spatial resolu-

tion using conventional CL raster scanning because reduc-

ing pixel sizes while maintaining the field of view yields

a combination of beam-induced damage and unacceptably

long measurement times. However, PS-CL techniques offer

a promising pathway to address this challenge.

The Brovey transform was identified as a PS algorithm

well suited to our data, and it was benchmarked by gen-

erating high spatial resolution and high spectral resolution

datasets from a single 100 × 100× 1,024 (horizontal × ver-

tical × wavelength) pixel hyperspectral CL image of a hBN

flake (by separately binning all wavelengths together to

create a 100 × 100 pixel panchromatic image and binning

adjacent spatial pixels to create spectrum images with 1,024

spectral pixels and between 1 × 1 and 50 × 50 spatial pixels).

We then up-sampled the hyperspectral dataset to match its

spatial resolutionwith that of the panchromatic imageusing

the resize function in skimage.transformwith linear splines.

Each spatial pixel’s spectrum in this new dataset is scaled

to match the net intensity of the corresponding normalized

panchromatic pixel’s intensity. The pan-sharpened CL spec-

trum image then had dimensions of 100 × 100× 1,024 and

could be easily compared with the original spectrum image.

Three component NMF reconstructions of the PS-CL

imagewith reduced dimensionalities are shown in Figure 2.

At first glance, very little information is lost in the PS-CL

image as the hyperspectral image is collapsed from a 100 ×
100× 1,024 spectrum image (Figure 2a) to a 6 × 6× 1,024
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Figure 2: Benchmark PS-CL results generated from a single CL hyperspectral image of an hBN flake with dimensions of 100 × 100 × 1024 (horizontal,

vertical, wavelength) pixels with a horizontal field of view of 30 𝜇m. A panchromatic image was generated from the spectrum image by summing

along the wavelength axis while spectrum images with reduced spatial resolution were generated by binning spatial pixels together. The Brovey

pan-sharpening algorithm was used to reconstruct a hyperspectral CL image from these datasets. NMF reconstructions of the pan-sharpened CL

images are shown for data generated from the panchromatic image and (a) the complete 100 × 100 × 1024 spectrum image, (b) a 50 × 50 × 1024

spectrum image, (c) a 25 × 25 × 1024 spectrum image, (d) a 12 × 12 × 1024 spectrum image, (e) a 6 × 6 × 1024 spectrum image, and (f) a 1 × 1 × 1024

spectrum image.

image (Figure 2e), though unsurprisingly, all three compo-

nents of the PS-CL image generated from a 1 × 1× 1,024 spec-

trum image (Figure 2f) look nearly identical to one another.

The quality of the pan-sharpening algorithm can be calcu-

lated here with a structural similarity index (SSI) compar-

ing the pan-sharpened image with the original 100 × 100×
1,024 spectrum image. The SSI of each pan-sharpened image

herewas calculated using the scikit-image library. As shown

in Figure 3, applying the Brovey transform to the original

100 × 100× 1,024 spectrum image results in a SSI of 1.0, and

a SSI> 0.9 for compression ratios as high as 90 %.

This baseline PS-CL data suggests that CL spectrum

images can be acquiredwith substantially reduced electron-

beam exposure by combining short-dwell-time panchro-

matic CL images acquired on a PMT with very low spa-

tial resolution spectrum images. Further, rastering the

electron-beam over each spectrum-image pixel during the

comparably-slow spectrum acquisition time will distribute

the electron-beam dose over a large area and minimize the

risk of beam-induced damage.

With this understanding in hand, PS-CL images were

reconstructed from raw hyperspectral and panchromatic

CL datasets. Figure 4 illustrates three-component NMF

reconstructions of PS-CL images of an hBN flake generated

Figure 3: Calculated structural similarity index as a function of

compression ratio for the PS-CL data shown in Figure 2. The compression

ratio is calculated based on the compression of the hyperspectral data

prior to pan sharpening.

from an 1, 168 × 1, 034 panchromatic CL image (using 10 𝜇s

dwell time per pixel) and a 39 × 35 pixel spectrum image

(Figure 4a) and a 117 × 105 pixel spectrum image (Figure 4b)

(each using a 300 ms spectrum acquisition time per pixel).

Both exhibit very similar spectral components, though the
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Figure 4: Three component NMF reconstructions of hBN PS-CL images generated from (a) an 1, 168 × 1, 034 pixel panchromatic image and a 39 × 35

pixel hyperspectral image and (b) an 1, 168 × 1, 034 panchromatic image and a 117 × 105 pixel hyperspectral image. The horizontal field of view is

10.5 μm.

latter does exhibit higher-spatial-resolution intensity maps.

Nonetheless, these results show the potential impact of pan-

sharpening for CL microscopy with minimal beam-induced

damage.

Alternative approaches to non-perturbative CL

microscopy might include singular value decomposition

(SVD) techniques and compressive sensing (CS) schemes.

SVD denoising is widely used to improve the signal-to-noise

ratio in noisy multi-dimensional datasets, and it has seen

limited use for CL microscopy [34], but it has limited benefit

for CL microscopy because the spectrometer acquisition

time can often not be substantially reduced before running

into fundamental noise floors. On the other hand, CS

schemes rely on an appropriate selection of sampling

matrices and reconstruction algorithms in order to allow

for accurate image reconstruction with many fewer

measurements than are required by the Shannon-Nyquist

sampling theorem [35], [36]. CS schemes have been used

to enable new imaging modalities in astronomy [37],

for new types of quantum imaging and quantum process

tomography [38]–[40], and for scanning probe and scanning

tunnelingmicroscopies [41], [42], but they have not yet been

used for CL microscopy. Additional work is still required

to adapt these schemes for CL microscopy, but there is

reason to expect that such approaches could complement

pan sharpening techniques and allow further reduction

in the necessary electron-beam dose to achieve a given CL

signal-to-noise ratio.

4 Conclusions

The PS-CL results shown here suggest that hyperspectral CL

measurements can be undersampled by 90 % while main-

taining at least 90 % fidelity to the ground truth. Because

hyperspectral and panchromatic datasets can be easily

acquired concurrently (using a beamsplitter) or consecu-

tively (using a pickoff mirror) with no change to the exper-

imental alignment, the approach described here is easily

adapted for a wide variety of CL microscopies of beam-

sensitive materials. This approach is particularly critical

for minimizing beam-induced damage in beam-sensitive

materials like monolayer 2D materials and hybrid organic

perovskite thin films, and for applications that require

high spatial resolution and long spectrum acquisition times.

The successful demonstration of PS-CL also unlocks new

opportunities for high-dose electron-beampatterning of sin-

gle photon emitters with low dose PS-CL used for in situ

characterization.
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