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Abstract: In this paper, we model the interaction of a quan-

tum emitter with a finite-size dispersive dielectric object

in unbounded space within the framework of macroscopic

quantum electrodynamics, using the modified Langevin

noise formalism. The quantized electromagnetic field con-

sists of two contributions: the medium-assisted field, which

accounts for the electromagnetic field generated by the

noise polarization currents of the dielectric, and the

scattering-assisted field, which takes into account the elec-

tromagnetic field incoming from infinity and scattered by

the dielectric. We show that the emitter couples to two dis-

tinct bosonic reservoirs: a medium-assisted reservoir and a

scattering-assisted reservoir, each characterized by its own

spectral density. We then use emitter-centered modes to

reduce the degrees of freedom of both reservoirs. Eventu-

ally, we identify the conditions under which the electro-

magnetic environment composed of these two reservoirs

can be effectively replaced by a single bosonic reservoir

so that the reduced time evolution of the quantum emitter

remains unchanged. In particular, when the initial states of

the medium- and scattering-assisted reservoirs are thermal

quantum states at the same temperature, we find that a

single bosonic bath with a spectral density equal to the sum

of the medium- and scattering-assisted spectral densities is

equivalent to the original electromagnetic environment.
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1 Introduction

The problem of interaction between quantum emitters and

arbitrary electromagnetic environments, which are open,

dispersive, and absorbing, has drawn significant attention

in recent years because of the prospect of altering the phys-

ical properties of emitters (e.g. [1]–[4]). In this scenario, the

spectrum of the electromagnetic field is characterized by

broad and overlapping resonance peaks embedded in the

continuum.

As losses and dispersion must be considered, quanti-

zation of the electromagnetic field constitutes a genuine

challenge. Macroscopic quantum electrodynamics has pro-

vided a phenomenological recipe for quantizing the elec-

tromagnetic field in arbitrary open structures, including

dispersive and lossy materials (e.g. [5], [6]). It is based

on the Langevin noise formalism where, according to the

fluctuation-dissipation theorem, the electromagnetic field

is produced by the dielectric noise polarization current

through the dyadic Green function, the so-called medium-

assisted field [7], [8]. Macroscopic quantum electrodynam-

ics is highly versatile and widely used in various research

areas such as quantum emitter decay (e.g. [9]–[15]), cav-

ity QED (e.g. [16]), quantum nanophotonics (e.g. [17], [15]),

dispersion forces (e.g. [18]) and fast electron scattering

(e.g. [19]).

Di Stefano and coauthors [20] and Drezet [21] argued

that for a finite-size dielectric object the original Langevin

noise model is incomplete: the influence of the fluctu-

ating electromagnetic field incoming from infinity and

subsequently scattered by the object, called scattering-

assisted field in [22] and [23], has to be added to the

original Langevin noise formalism. This observation has

triggered renewed interest in the subject (e.g. [24]–[28]).

The modified Langevin noise formalism adds the scattering-

assisted field to the medium-assisted field: medium fluc-

tuations and electromagnetic field fluctuations are on

the same footing. Recently, Chew and his coworkers

[22] proposed a numerical framework for the modified

Langevin noise formalism and numerically validated it
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for a dielectric slab. Then, Ciattoni [23] justified the mod-

ified Langevin noise formalism for finite-size dispersive

dielectric objects with arbitrary shapes starting from a

microscopic model in the Heisenberg picture.

The analysis of the impact of both the medium-assisted

field and the scattering-assisted field on the dynamics

of a quantum emitter is crucial for understanding the

mechanism of light–matter interaction in complex electro-

magnetic environments that include finite-size dispersive

dielectric objects. We model the interaction of a quantum

emitter with a dispersive dielectric object using the mod-

ified Langevin noise formalism. The contributions of the

paper are twofold. (i) We find that the quantum emitter is

coupled to two bosonic reservoirs: a medium-assisted reser-

voir and a scattering-assisted reservoir, which can initially

be in arbitrary quantum states. We use emitter-centered

modes to reduce the number of degrees of freedom of both

reservoirs (e.g., [18], [15]). Each reservoir is characterized

by a proper spectral density. (ii) We find that the reduced

dynamics of the quantum emitter can be described by an

equivalent environment with only one bosonic reservoir,

assuming the entire system initially to be in a product state

and the initial states of the medium- and scattering-assisted

reservoirs to be Gaussian. This equivalence is guaranteed

when the expectation values and the two-time correlation

functions of the interaction operators of the two environ-

ments are equal at all times (e.g., [29]). In particular, when

both reservoirs are initially in thermal quantum states at

the same temperature, the spectral density of the equivalent

environment is given by the sum of the spectral densities of

themedium-assisted reservoir and of the scattering-assisted

reservoir.

The paper is organized as follows. Section 2 describes

the essence and main features of the modified Langevin

noise formalism. Section 3 applies the emitter-centered

mode approach to reduce the degrees of freedom of the

medium-assisted reservoir and scattering-assisted reser-

voir. Section 4 analyzes a quantum emitter interacting

with the two bosonic reservoirs. Section 5 presents one-

dimensional numerical simulations of a two-level quan-

tum emitter interacting with a lossy dielectric slab when

medium and scattering-assisted reservoirs are initially in

the vacuum state. A summary and conclusions are given in

Section 6.

2 Model

A quantum emitter interacts with a dispersive isotropic

dielectric object of arbitrary shape in an unbounded space.

We denote by V the region occupied by the dielectric, by

𝜀𝜔(r) its relative permittivity in the frequency domain,

and by ra the position vector of the quantum emitter. The

combination of the electromagnetic field and the dielec-

tric constitutes the electromagnetic environment of the

emitter.

The Hamiltonian of the entire system, quantum emitter

+ electromagnetic environment, reads

Ĥ = Ĥa + Ĥem + ĤI , (1)

where Ĥa is the bare emitter Hamiltonian, Ĥem is the bare

Hamiltonian of the electromagnetic environment, and ĤI

is the interaction Hamiltonian. In the multipolar coupling

scheme and within the dipole approximation ĤI is given by

ĤI = −d̂ ⋅ Ê(ra ), (2)

where Ê(ra ) is the electric field operator at the position of

the emitter and d̂ is the electric dipole moment operator of

the emitter. We assume that d̂ = d̂u where u is a stationary

unit vector.

In the following, we summarize the modified Langevin

noise formalism as formulated in [23]. The electric field

operator Ê(r) has two contributions: the medium-assisted

contribution Ê(M )(r) and the scattering-assisted contribu-

tion Ê(S )(r),

Ê = Ê
(M ) + Ê

(S ). (3)

The medium-assisted contribution is generated by the noise

polarization currents of the dispersive dielectric [7]. The

noise polarization current density field is expressed as

ĵnoise(r) =
∞

∫
0

d𝜔 Ĵ𝜔(r)+ h.c., (4)

where the monochromatic component Ĵ𝜔(r) is given by

Ĵ𝜔(r) =
√
ℏ𝜀0𝜔

2

𝜋
Im
[
𝜀𝜔(r)

]
f̂𝜔(r), (5)

𝜀0 is the dielectric permittivity in vacuum and f̂𝜔(r) is the

monochromatic bosonic field operator describing the noise

of the dielectric, whose support is the region V . Then, the

field operator Ê(M )(r) is expressed as

Ê
(M )(r) =

∞

∫
0

d𝜔 Ê
(M )
𝜔

(r)+ h.c., (6)

where the monochromatic component Ê(M )
𝜔

is given by

Ê
(M )
𝜔

(r) = ∫
V

d3r′ m𝜔(r, r′) ⋅ f̂𝜔(r′), (7)
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and

m𝜔(r, r′) = i
𝜔2

c2

√
ℏ

𝜋𝜀0
Im
[
𝜀𝜔
(
r
′)] 𝜔(r, r′); (8)

𝜔(r, r′) is the dyadic Green’s function in presence of the

dielectric satisfying the equation(
∇r ×∇r × −k2

𝜔
𝜀𝜔
)𝜔(r, r′) = 𝛿(r− r

′)I, (9)

and the boundary condition 𝜔(r, r′)→ 0 for r, r′ →∞,

k𝜔 = 𝜔∕c, c is the light velocity in vacuum, and I is the

identity dyad.

Let be F𝜔n𝜈(r) the solution of equation(
∇r ×∇r × −k2

𝜔
𝜀𝜔
)
F𝜔n𝜈 = 0, (10)

when a plane wave is incoming from infinity

F
(in)
𝜔n𝜈

(r) = eik𝜔r⋅nen𝜈, (11)

where n is the unit vector along the wave vector k = k𝜔n

and en1, en2 are two mutually orthogonal polarization unit

vectors that are orthogonal to n. We introduce the electric

field E𝜔n𝜈(r)

E𝜔n𝜈(r) =
√
ℏ𝜇0𝜔

3

16𝜋3c
F𝜔n𝜈(r), (12)

where 𝜇0 is the magnetic permeability in vacuum. The fun-

damental integral identity [23]

∫
V

d3r′′ m 𝜔(r, r
′′ ) ⋅ ∗T

m 𝜔

(
r
′, r′′

)
= ℏ𝜇0𝜔

2

𝜋
Im
[𝜔(r, r′)]− ∮ don

∑
𝜈

E𝜔n𝜈(r)E
∗
𝜔n𝜈

(
r
′)
(13)

holds, where on = (𝜃n, 𝜙n) are the polar angles of the unit

vector n, don = sin 𝜃nd𝜃nd𝜙n is the solid angle differential,

the integration is performed over thewhole solid angle with

𝜃 ∈ [0, 𝜋] and 𝜙 ∈ [0, 2𝜋]. This relation is very important,

as we shall see later.

The scattering-assisted contribution Ê(S ) is the fluctuat-

ing electromagnetic field incoming from infinity and scat-

tered by the dielectric object. It can be represented through

the scattering modes E𝜔n𝜈(r). Then, Ê
(S ) is expressed as

Ê
(S )(r) =

∞

∫
0

d𝜔 Ê
(S )
𝜔
(r)+ h.c., (14)

where the monochromatic component Ê(S )
𝜔
(r) is given by

Ê
(S )
𝜔
(r) = ∮ don

∑
𝜈

E𝜔n𝜈(r)ĝ𝜔n𝜈, (15)

and ĝ𝜔n𝜈 is the monochromatic bosonic operator

describing the fluctuation of the radiation incoming from

infinity.

The bosonic field operators f̂𝜔(r) and ĝ𝜔n𝜈 are inde-

pendent. Anypossible commutation relations between them

vanishes except the fundamental ones[
f̂𝜔(r), f̂

†
𝜔′

(
r
′)] = 𝛿(𝜔−𝜔′)𝛿(r− r

′), (16)[
ĝ𝜔n𝜈, ĝ

†
𝜔′n′𝜈′

]
= 𝛿

(
𝜔−𝜔′)𝛿(on − on′

)
𝛿𝜈𝜈′ , (17)

where 𝛿
(
on − on′

)
= 𝛿

(
𝜃n − 𝜃′n

)
𝛿
(
𝜑n − 𝜑′

n

)
∕ sin 𝜃n. These

commutation relations guarantee the canonical commuta-

tion relations for the electromagnetic field and for the con-

tinuum of harmonic oscillators describing themedium field

in the microscopic model [23]. In particular, the monochro-

matic component of the electric field operator Ê𝜔(r) =
Ê(M )
𝜔

(r)+ Ê(S )
𝜔
(r) satisfies the commutation relation[

Ê𝜔(r), Ê
†
𝜔′

(
r
′)] = ℏ𝜇0𝜔

2

𝜋
Im
[𝜔(r, r′)]𝛿(𝜔−𝜔′). (18)

The bare electromagnetic environment Hamiltonian is

given by [23]

Ĥem =
∞

∫
0

d𝜔ℏ𝜔

⎡⎢⎢⎣∫V d3 r f̂†
𝜔
(r) ⋅ f̂𝜔(r)

+ ∮ don
∑
𝜈

ĝ†
𝜔n𝜈

ĝ𝜔n𝜈

]
. (19)

The operators f̂†𝜔, f̂𝜔 and ĝ†𝜔n𝜈 , ĝ𝜔n𝜈 can be viewed as cre-

ation and annihilation operators of two different kinds of

excitations, the polaritonic excitations and the photonic

excitations, respectively.

The expression of the electric field (3) differs from that

considered in the Langevin noise formalism (e.g., [6], [15])

for the inclusion of the scattering-assistedfield contribution.

The fundamental integral identity (13) differs from that con-

sidered in the Langevin noise formalism for the inclusion of

the second term on the right-hand side: it is a surface term

that contains the asymptotic amplitude of the dyadic Green

function expressed through the vector field E𝜔n𝜈(r) [23].

The inclusion of the scattering-assisted field and the correct

evaluation of the integral ∫
V
d3r′′ m 𝜔(r, r

′′ ) ⋅ ∗T
m 𝜔

(
r′, r′′

)
(e.g., [22]), have addressed the critiques of the Langevin

noise formalism raised by Refs. [24], [25], [30]. The expres-

sion of the bare electromagnetic environment Hamiltonian

also differs from that considered in the Langevin noise for-

malism because there are two bosonic reservoirs. In the

limit of non-dispersive dielectric, the modified Langevin

noise formalism reduces to the quantum opticsmodel intro-

duced by Glauber and Lewenstein [31].
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3 Bright and dark modes

We now introduce linear transformations of the bosonic

field operators f̂𝜔 and ĝ𝜔n𝜈 such that in the new basis, only

a minimal number of bosonic oscillators couples with the

emitter (e.g., [18], [15]).

We start with the representation of f̂𝜔(r). We consider

the monochromatic operator Â𝜔 defined as

Â𝜔 = ∫
V

d3r 𝜶𝜔(r) ⋅ f̂𝜔(r), (20)

where

𝜶𝜔(r) =
u ⋅ m 𝜔(ra, r)

gM (𝜔)
, (21)

and gM (𝜔) is an arbitrary real normalization parameter.We

choose gM (𝜔) in such a way that the commutator between

Â𝜔 and Â
†
𝜔 is [

Â𝜔, Â
†
𝜔′

]
= 𝛿

(
𝜔−𝜔′), (22)

and obtain

gM (𝜔) =
√√√√∫

V

d3r u ⋅
[m 𝜔(ra, r) ⋅ ∗Tm 𝜔

(ra, r)
]
⋅ u. (23)

Then, the contribution of the medium-assisted field to ĤI is

expressed as

Ĥ(M )
I

= −d̂
⎡⎢⎢⎣
∞

∫
0

d𝜔gM (𝜔)Â𝜔 + h.c.

⎤⎥⎥⎦. (24)

On the other hand, we can always express the field operator

f̂𝜔(r) as

f̂𝜔(r) = 𝜶
∗
𝜔
(r)Â𝜔 +

∑
m

[
𝜶
m
𝜔
(r)
]∗
Âm
𝜔
, (25)

where the orthonormal set of vector fields
{
𝜶
m
𝜔
(r)
}
span

the subspace orthogonal to 𝜶𝜔(r), that is, ∫Vdr3
[
𝜶
m
𝜔
(r)
]∗

⋅
𝜶𝜔(r) = 0. Note that each 𝜶

m
𝜔
(r) does not couple to

the emitter; Â𝜔 is the emitter-centered bright mode

of the medium-assisted field, while
{
Âm
𝜔

}
are an infi-

nite number of dark modes. Then, the contribution

of the medium-assisted electromagnetic field to Ĥem is

given by

Ĥ(M )
em

=
∞

∫
0

d𝜔ℏ𝜔Â†
𝜔
Â𝜔 +

∞

∫
0

d𝜔ℏ𝜔
∑
m

(
Âm
𝜔

)†
Âm
𝜔
. (26)

We now consider the representation of ĝ𝜔n𝜈 . We intro-

duce the monochromatic operator B̂𝜔 defined by

B̂𝜔 = ∮ don
∑
𝜈

𝛽𝜔n𝜈 ĝ𝜔n𝜈, (27)

where

𝛽𝜔n𝜈 =
u ⋅ E𝜔n𝜈(ra )

gS(𝜔)
. (28)

Here, gS(𝜔) is an arbitrary normalization real parameter

chosen such that the commutator relation[
B̂𝜔, B̂

†
𝜔′

]
= 𝛿

(
𝜔−𝜔′) (29)

holds. Thus, we obtain for gS(𝜔)

gS(𝜔) =

√√√√∮ don u ⋅

[∑
𝜈

E
∗
𝜔n𝜈

(ra )E𝜔n𝜈(ra )

]
⋅ u. (30)

Then, the contribution of the scattered assisted field to ĤI is

given by

Ĥ(S )
I

= −d̂
⎡⎢⎢⎣
∞

∫
0

d𝜔gS(𝜔)B̂𝜔 + h.c.

⎤⎥⎥⎦. (31)

On the other hand, the field operator ĝ𝜔n𝜈 can always be

expressed as

ĝ𝜔n𝜈 = 𝛽∗𝜔n𝜈 B̂𝜔 +
∑
m

[
𝛽m
𝜔n𝜈

]∗
B̂m
𝜔
, (32)

where
{
𝛽m
𝜔n𝜈

}
is an orthonormal set of vector fields

spanning the subspace orthogonal to 𝛽𝜔n𝜈 , that is,

∫ don
∑
𝜈

[
𝛽m
𝜔n𝜈

]∗
𝛽𝜔n𝜈 = 0. Note that every 𝛽m

𝜔n𝜈
does

not couple to the emitter; B̂𝜔 is the emitter-centered

bright mode of the scattering-assisted field, and
{
B̂m
𝜔

}
are an infinite number of dark modes. Consequently,

the contribution of the scattering-assisted field to Ĥem is

expressed as

Ĥ(S )
em

=
∞

∫
0

d𝜔ℏ𝜔B̂†
𝜔
B̂𝜔 +

∞

∫
0

d𝜔ℏ𝜔
∑
m

(
B̂m
𝜔

)†
B̂m
𝜔
. (33)

Using the above results, the Hamiltonian of the entire

system reads

Ĥ = Ĥa + ĤE + ĤI + Ĥ(dark )
em

, (34)

where

ĤE =
∞

∫
0

d𝜔ℏ𝜔
(
Â†
𝜔
Â𝜔 + B̂†

𝜔
B̂𝜔

)
, (35)

ĤI = Ĥ(M )
I

+ Ĥ(S )
I
, (36)

and

Ĥ(dark )
em

=
∞

∫
0

d𝜔ℏ𝜔
∑
m

[(
Âm
𝜔

)†
Âm
𝜔
+
(
B̂m
𝜔

)†
B̂m
𝜔

]
. (37)
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The real functions gM (𝜔) and gS(𝜔) are not indepen-

dent, in fact, we have as a consequence of (13)

g2
M
(𝜔)+ g2

S
(𝜔) = ℏ𝜇0𝜔

2

𝜋
u ⋅ Im

[𝜔(ra, ra)] ⋅ u. (38)

4 Reduced Hamiltonian and

equivalent two time correlation

function

Since the dark modes are decoupled from the rest of the

system, they do not affect the dynamics of the emitter and

can be dropped, giving the reduced Hamiltonian

Ĥred = Ĥa + ĤE + ĤI . (39)

If the darkmodes are initially excited, including themmight

be necessary to fully describe the state of the system. Their

evolution is decoupled from the emitter and is governed

by the Hamiltonian Ĥ(dark )
em . As a consequence, dark modes

follow a unitary free evolution.

For our purpose, it is convenient express ĤI as

ĤI = −d̂F̂, (40)

where F̂ is the effective electromagnetic environment inter-

action operator given by

F̂ = F̂M + F̂S (41)

with

F̂M =
∞

∫
0

d𝜔gM (𝜔)Â𝜔 + h.c., (42)

and

F̂S =
∞

∫
0

d𝜔gS(𝜔)B̂𝜔 + h.c.; (43)

F̂M is the operator through which the medium-assisted

reservoir interact with the emitter and F̂S is the operator

through which the scattering-assisted reservoir interacts

with the emitter. We note that the interaction between the

emitter and the electromagnetic environment is character-

ized by two spectral densities. Let us indicatewith d the tran-

sition dipole moment of the quantum emitter. The medium-

assisted spectral density M (𝜔) = [gM (𝜔) d∕ℏ]2 is related
to the coupling strength gM (𝜔) of the emitter-centered

mode Â𝜔. The scattering-assisted spectral density S(𝜔) =
[gS(𝜔) d∕ℏ]2 is related to the coupling strength gS(𝜔) of the
emitter-centered mode B̂𝜔.

The quantum emitter can be described as an open

quantum system that interacts with two independent

bosonic reservoirs characterized by two different spectral

densities. Let us introduce the expectation value F(t) and the

two-time correlation functionC(t + 𝜏; t) of the operator F̂ as
given by the evolution of the electromagnetic environment

with no coupling to the quantum emitter (i.e., electromag-

netic environment in free evolution),

F(t) = TrE

[
Û†
E
(t)F̂ÛE(t)𝜌E(0)

]
, (44)

C(t + 𝜏; t) = TrE

[
Û†
E
(t + 𝜏 )F̂ÛE(t + 𝜏 )Û†

E
(t)F̂ÛE(t)𝜌E(0)

]
,

(45)

where ÛE(t) = exp(−iĤEt∕ℏ). For initial product states of
the entire system, 𝜌(0) = 𝜌a(0)⊗ 𝜌E(0), where 𝜌a(0) and

𝜌E(0) are the initial density operators of the emitter and

the environment, respectively, and Gaussian initial states

of the environment, the evolution of the reduced density

operator of the emitter 𝜌a(t) = TrE
[
𝜌(t)

]
depends only on

F(t) and C(t + 𝜏; t) (e.g., [29]). This fundamental property
allows the design of an equivalent environment with only a

single bosonic reservoir to compute the time evolution of

the reduced density operator of the emitter. Let us indicate

with Feq(t) and Ceq(t + 𝜏; t) the expectation value and the

two-time correlation function of the interaction operator of

the equivalent environment considered in free evolution,

with FM (t) and FS(t) the expectation value of F̂M and F̂S
and with CM (t + 𝜏; t) and CS(t + 𝜏; t) the corresponding

two-time correlation functions when the electromagnetic

environment is in free evolution. Then, we have:

Feq(t) = FM (t)+ FS(t) (46)

and

Ceq(t + 𝜏; t) = CM (t + 𝜏; t)+ CS(t + 𝜏; t)

+
[
FM (t + 𝜏 )FS(t)+ FS(t + 𝜏 )FM (t)

]
. (47)

If the expectation values of the two interacting operators are

equal to zero, we have

Ceq = CM + CS. (48)

Moreover, if both bosonic reservoirs are initially in thermal

states, we obtain

C𝛼(t) =
(
ℏ

d

)2
∞

∫
0

d𝜔𝛼(𝜔)Θ(𝜔t; 𝛽𝛼ℏ𝜔), (49)

where

Θ(𝜔t; 𝛽𝛼ℏ𝜔) = coth

(
𝛽𝛼ℏ𝜔

2

)
cos(𝜔t)− i sin(𝜔t), (50)
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and 𝛼 = M, S; 𝛼 is the spectral density characterizing the
coupling of the 𝛼-type bosonic bath to the emitter, 𝛽𝛼 =
1∕kBT𝛼 and T𝛼 is the temperature of the 𝛼-type bosonic

bath. When the temperatures of the two bosonic baths are

equal (TM = TS = T0), we obtain

Ceq(t) =
(
ℏ

d

)2
∞

∫
0

d𝜔eq(𝜔)Θ(𝜔t; 𝛽0ℏ𝜔), (51)

where 𝛽0 = 1∕kBT0 and

eq(𝜔) = M (𝜔)+ S(𝜔) (52)

is the spectral density of the equivalent single bath. Using

(38), we obtain

eq(𝜔) =
d2𝜇0𝜔

2

𝜋ℏ
u ⋅ Im

[𝜔(ra, ra)] ⋅ u. (53)

In the regime of weak coupling, i.e., when the electromag-

netic environment can be approximated as a Markovian

bath, the spontaneous emission rate at an emitter frequency

𝜔a is given by 2𝜋eq(𝜔a ).

It is crucial to note that, in the literature on the inter-

action between quantum emitters and finite-size disper-

sive dielectric objects based on the Langevin noise formal-

ism, which omits the scattering-assisted field, the reduced

dynamics of the quantum emitter is studied using the spec-

tral density eq(𝜔) given by (53). How is it possible that two

different models give the same result for the expression of

the spectral density? This is due to the fact that, although

the scattering-assisted bath is ignored in the Langevin noise

formalism, the surface term is olso omitted in the calcu-

lation of the integral ∫
V
d3r′′ m 𝜔(r, r

′′ ) ⋅ ∗T
m 𝜔

(
r′r′′

)
(i.e.

the second term in the r.h.s. of Eq. (13)), and this leads

to the wrong relation ∫
V
d3r′′ m 𝜔(r, r

′′ ) ⋅ ∗T
m 𝜔

(
r′, r′′

)
=

ℏ𝜇0𝜔
2

𝜋
Im
[𝜔(r, r′)]. This result clarifies a much-debated

issue in the literature. When the two reservoirs are in non-

equilibrium thermal states, such as when the temperatures

of the two baths are different, the Langevin noise formalism

is inapplicable.

5 Simulation results

We now present some results of the simulation of the

evolution of a two-level quantum emitter located at the

center of a homogeneous dielectric slab, obtained by

applying the modified Langevin noise formalism. To verify

the equivalence condition (52), we assume that the medium

and the scattering reservoirs are initially in their respective

vacuum states, while the emitter is initially in a pure state.

The dielectric slab has thickness 𝓁 and electric suscept-

ibility 𝜒 (𝜔) = (𝜔 p∕𝜔0 )
2∕
[
1− (𝜔∕𝜔0 )

2 − i(𝜔∕𝜔0 )(𝛾∕𝜔0 )
]
.

As in ref. [22], we choose 𝜔p∕𝜔0 = 0.2, 𝛾∕𝜔0 = 0.01 and

(𝜔0∕c)𝓁 = 31.25. 𝜎̂i, with i = x, y, z, denote the Pauli matric

es, and |±⟩ denote the eigenstates of 𝜎̂z, that is,

𝜎̂z|±⟩ = ±|±⟩. The bare Hamiltonian of the two-level

quantum emitter reads Ĥa = ℏ𝜔a(𝜎̂z∕2) where 𝜔a is the

bare transition frequency. The electric dipole moment

operator is given by d̂ = d𝜎̂x .

The medium and scattering reservoirs are initially

prepared in their vacuum states. The emitter is initially

prepared in the pure state 𝜌a(0) = |x⟩⟨x| where |x⟩ =
(1∕
√
2)(|+⟩− |−⟩) is an eigenstate of 𝜎̂x . Since the initial

state of the entire system does not coincide with an eigen-

state of Ĥred, given by (39), the entire system evolves for t >

0 into a correlated state of the emitter and both reservoirs

[32], [33]. When the two reservoirs are in their respective

vacuum states, the reduced dynamics of the emitter can

also be evaluated using an equivalent single reservoir with

spectral density eq(𝜔). Nevertheless, it is fair to stress that

the originalmodel of the electromagnetic environmentwith

two reservoirs allows the direct evaluation of the statis-

tics of its physical variables. To show these features, we

simulated the unitary dynamics of the state |𝜓 (t)⟩ of the
whole system employing the matrix product states tech-

nique [34]–[37] from which the density operator 𝜌(t) =|𝜓 (t)⟩⟨𝜓 (t)| is immediately obtained.
We used a one-dimensional model for the quantum

emitter and the dielectric slab to calculate the medium-

and scattered-assisted electric fields [22]. In Figure 1a,

we show the frequency behavior of the spectral

densities S(𝜔),M (𝜔) and eq(𝜔) expressed as

𝛼(𝜔) = 𝜂 𝜔a f
(𝛼 )(𝜔∕𝜔a ) with 𝛼 = S,M, eq, where

𝜂 = 𝜁 0d2∕(Σℏ), 𝜁0 =
√
𝜇0∕𝜀0 and 𝛴 is an effective

area. We choose the bare emitter transition frequency

𝜔a equal to the resonance frequency of the dielectric

𝜔a = 𝜔0. Although M (𝜔) shows a doubly-peaked structure

in a narrow frequency interval centered at 𝜔a, S(𝜔)

extends throughout the whole frequency spectrum. In

the one-dimensional model, S(𝜔) is approximately zero

around 𝜔a because the scattering-assisted field is almost

completely reflected by the slab at the resonance frequency

of the dielectric. Far from the resonance frequency, S(𝜔)

increases linearly with frequency because the plane waves

that come from infinity completely penetrate the dielectric

slab.

We perform simulations of the evolution of 𝜌(t) con-

sidering the instances of an emitter coupled to: Case i) two

different reservoirs described by S(𝜔) and M (𝜔); Case

ii) a single equivalent reservoir with eq(𝜔). In both cases,
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Figure 1: One-dimensional dielectric slab. (a) Normalized spectral density of the scattering (S), medium (M) and equivalent (eq) reservoirs plotted

against𝜔∕𝜔a. (b) Expectation values of 𝜎̂x and 𝜎̂z plotted versus time. Case i) Solid lines: the emitter couples to the medium and scattering reservoirs,

prepared at t = 0 in their vacuum states. Case ii) Dashed lines: the emitter couples to a single equivalent reservoir with spectral density

eq = S + M , which at t = 0 is in its vacuum state. (c–d) Expectation values of the occupation numbers of the medium reservoir modes n̂M
𝜔
(c)

and of the scattering reservoir modes n̂S
𝜔
(d), plotted versus mode frequency and time. The parameters are the same as in (b).

we assume 𝜂 = 2𝜋 × 0.05. We used the matrix product

states technique, applying a cut-off frequency𝜔c = 4𝜔0 and

using N = 500 discrete bosonic modes for each reservoir,

with a maximum local dimension of nmax = 3. In Figure 1b,

we plot the expectation values ⟨𝜎̂x(t)⟩ = Tr[𝜎̂x𝜌(t)] and⟨𝜎̂z(t)⟩ = Tr[𝜎̂z𝜌(t)] versus time. The evolution of ⟨𝜎̂ y(t)⟩,
not shown here, differs from that of ⟨𝜎̂x(t)⟩ by a phase

shift of roughly 𝜋∕2. As expected, for the chosen initial

states of the reservoirs, the dynamics of the observables

coincide in the two cases, indicating that the influence of

the dielectric slab on the reduced dynamics of the emitter

can be effectively simulated with a single equivalent reser-

voir. The dynamics of the emitter show that the population

of the |−⟩ eigenstate increases at the expense of the pop-
ulation of the |+⟩ eigenstate. However, the reduced state

𝜌a(t) does not converge to the ground state of the emitter

at long times. Indeed, this behavior can be attributed to

the quantum correlations established between the emitter

and the reservoirs. At the same time, the coherence of the

emitter state decreases with time, and the purity of the

reduced state at the final times depends on the coupling

strength.

In Figure 1c and d, we plot the time evolution of the

expectation values of the number operators for themodes of

themedium- and scattering-assisted reservoirs at frequency

𝜔, ⟨nM
𝜔
(t)⟩ = Tr

[
A†
𝜔A𝜔𝜌(t)

]
and ⟨nS

𝜔
(t)⟩ = Tr

[
B†𝜔B𝜔𝜌(t)

]
.

Once the dynamics start from the product state, the reser-

voir modes start to get increasingly populated. The scatter-

ing reservoir modes show significant population increases

at low frequencies; after a transient time of the order

of 10∕𝜔a, they reach a steady state, with a maximum

below 𝜔a, which is followed by a dark window around

𝜔a due to the resonance of the dielectric. In contrast, the

medium-assisted reservoir modes show a non-trivial time

evolution of ⟨nM
𝜔
(t)⟩: during the transient dynamics the

modes with 𝜔 ≥ 𝜔a increase their populations before con-

verging towards their stationary values.

6 Conclusions and outlook

We have proposed a model for a quantum emitter that

interacts with a finite-size dispersive dielectric object in

unbounded space based on the modified Langevin noise

formalism, without restrictions on the emitter’s level struc-

ture. The electromagnetic environment is composed of two

bosonic reservoirs: the medium-assisted reservoir and the

scattering-assisted reservoir. The medium-assisted reser-

voir describes the electromagnetic field generated by the

noise polarization currents of the dielectric; the scattering-

assisted reservoir describes the radiation incoming from

infinity and scattered by the dielectric. We used emitter-

centered modes to reduce the number of electromagnetic

modes of both reservoirs coupled to the emitter. Each reser-

voir is characterized by a proper continuum spectral den-

sity. The reduced Hamiltonian allows us to treat the evolu-

tion of the reduced dynamics of the emitter for arbitrary

electromagnetic environments and arbitrary initial quan-

tum states of the two bosonic reservoirs, for instance, initial

stateswith nonzero expectation value or thermal stateswith

different temperatures.

For an initial product state and an initial Gaussian state

of the electromagnetic environment, the two-reservoir elec-

tromagnetic environment can be replaced by an effective

single bosonic reservoir. The interaction operator of the

effective single reservoir is prescribed to have the same

expectation value and the same two-time correlation func-

tion as the interaction operator of the original environment.
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When the two reservoirs are in thermal stateswith the same

temperature, the effective single reservoir can be character-

ized by a spectral density equal to the sum of the medium-

assisted spectral density and the scattering-assisted spectral

density. It is related to the dyadic Green function through

the relation (𝜔) = d2𝜇0𝜔
2

𝜋ℏ
u ⋅ Im

[𝜔(ra, ra)] ⋅ u. In the liter-
ature based on the Langevin noise formalism, this expres-

sion is widely used; however, the conditions under which

it remains valid are not always clearly stated. When the

reservoirs are in non-equilibrium thermal states, e.g., when

the temperatures of the two reservoirs are different, it is not

possible to introduce an equivalent spectral density, and a

description in terms of an equivalent single reservoir has to

rely on Eq. (48). These conclusions suggest that new physics

can be found from the investigation of the dynamics of a

quantum emitter in the presence of two reservoirs in non-

equilibrium thermal states, for which the equivalent single-

reservoir spectral density can no longer be defined, unless

we introduce bosonic oscillators with negative frequencies

[38].

We envision that, similarly to what we have shown

in this paper, the investigation of models that incorpo-

rate both medium-assisted and scattering-assisted reser-

voirs will have significant implications for various research

fields, including cavity QED, quantum nanophotonics, dis-

persion forces, and fast electron scattering.
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