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Abstract: Over the past two decades, two-dimensional (2D)
van der Waals (vdW) semiconductors have garnered sig-
nificant attention in the field of light sources due to
their unique optoelectronic properties, such as high exci-
tonic binding energy, tunable bandgaps, and strong optical
anisotropy. These properties make 2D vdW semiconductors
highly promising for next-generation light sources, offering
advantages like enhanced efficiency, wavelength tunabil-
ity, and polarization control. In this review, we summarize
the development of various 2D vdW material-based light
sources and their modulation mechanisms. We first pro-
vide an overview of excitonic properties and light-emission
principles that aim to develop light sources with low-power,
high-efficiency. Next, we discuss advances in 2D semicon-
ductor lasers, including intralayer and interlayer exciton
lasers, cavity-free systems, and exciton-polariton sources.
We then look into single-photon emission and their inte-
gration into on-chip systems, followed by studies on nonlin-
ear optical properties like high-order harmonic generation
and P-band emission. Additionally, we cover advancements
in electrically pumped light sources. The review concludes
with an outlook on future developments of 2D vdW semi-
conductor light sources.
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1 Introduction

Currently, the light source field is advancing toward
high-efficiency and low-power consumption, tunable light
sources, miniaturization and integration, application of new
materials, flexible and wearable devices, nanophotonics
and plasmonics, and quantum light sources — all of which
are crucial for modern communication, display, and energy
applications. Two-dimensional (2D) materials offer unique
advantages in developing light sources due to their direct
bandgap properties [1], high excitonic binding energy [2],
tunable bandgaps [3], strong optical anisotropy [4], high
mechanical flexibility and transparency [5], ability to form
van der Waals (vdW) heterostructures [6], and compatibil-
ity with existing manufacturing processes [7]. These char-
acteristics make 2D vdW materials highly promising for
next-generation high-performance, low-power, and multi-
functional light sources. This field, pioneered by the dis-
covery of graphene [8], has since expanded rapidly to
other promising 2D vdW materials like transition-metal
dichalcogenides (TMDs), black phosphorus (BP), and hexag-
onal boron nitride (hBN), each offering distinct advantages
for optoelectronic applications [9]. Monolayer TMDs, for
example, including MoS, and WS,, exhibit direct bandgaps
[1], [3], [10] — unlike their bulk counterparts, which are
indirect — resulting in enhanced photoluminescence (PL)
and thus making them ideal for light emitting diodes (LEDS)
[11] and nanolasers [12]. The atomically thin structure and
unique optical properties of 2D vdW materials position
them as prime candidates for low-power, high-efficiency
electronic and optoelectronic devices, particularly where
miniaturization is crucial [13]-[16]. Furthermore, a particu-
larly exciting application of 2D semiconductors is in single-
photon sources, which are integral to quantum information
science. Single-photon sources technology utilizing 2D vdW
materials, such as TMDs and hBN, allows for on-demand
single-photon generation with high purity and efficiency
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[17]-[20]. For instance, hBN defects are capable of pro-
ducing stable, room-temperature single-photon emissions
(SPEs), making them promising for quantum optoelectron-
ics [17] and quantum sensor [21]. With the growing need
for compact, scalable, and high-performance quantum pho-
tonic systems, single-photon sources based on 2D vdW mate-
rials offers an exceptional pathway for integrating quantum
capabilities with traditional photonic devices. Additionally,
2D semiconductors exhibit nonlinear optical phenomena
such as high-order harmonic generation (HHG) and P-band
emission, which hold significant promise for the develop-
ment of tunable, integrable light sources, on-chip photonic
circuits, ultrafast lasers, and advanced signal processing
technologies [22]-[26]. For example, the y-phase structure
of InSe, characterized by its out-of-plane dipole orientation,
enhances the efficiency of exciton scattering, enabling P-
band emission at low excitation densities [27]. This non-
linear optical behavior in 2D vdW materials opens new
avenues for photonic technologies that are both adaptable
and compact, addressing critical needs in modern electron-
ics and photonics.

In this review, we systematically summarize various
types of light sources based on 2D layered vdW materi-
als and their modulation mechanisms. First, we will pro-
vide a brief overview of the exciton properties and light-
emission principles of vdW materials. Second, we will dis-
cuss the development of 2D semiconductor lasers, including
recent advancements in intralayer and interlayer exciton
lasers, lasers that operate without external cavities, and
exciton-polariton (EP) emission sources. Third, we intro-
duce research on SPE sources based on 2D vdW materials,
with an emphasis on their integration into on-chip systems.
Fourth, we will describe studies on the nonlinear optical
properties of vdW materials, covering HHG and modula-
tion, as well as P-band emission. Fifth, we will discuss the
research and advancements in electrically pumped light
sources based on vdW materials. Finally, we will offer an
outlook on the future development of vdW materials light
sources.

2 Emission properties of 2D vdW
semiconductors

The development of novel light sources based on 2D vdW
semiconductors begins with the revelation of their funda-
mental emission properties, which are strongly linked to
their electronic and excitonic states. To achieve high bright-
ness emission, materials with direct bandgap transitions are
of primary focus. The most widely studied system is the
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monolayer of 2H-phase TMDs, which are stable under ambi-
ent conditions and exhibit direct bandgap characteristics at
the K point in the Brillouin zone, with transition energies
in the visible to near-infrared spectral range [10]. As the
number oflayers increases, interlayer coupling strengthens,
shifting the valence band maximum from the K point to
the I' point, thereby changing the material to an indirect
bandgap [3]. Because bright emission originates only from
direct transitions in TMD monolayers and there is a lack
of tunability in thickness, other bulk materials exhibiting
direct bandgaps, such as Pbl,, InSe, NiPS;, and CrSBr, have
also been explored as emitters [28]-[31]. Nonetheless, these
ultrathin materials can typically be regarded as 2D systems,
exhibiting characteristics distinctly different from their
bulk 3D counterparts. One of the most important features
is that as the material thickness decreases, the Coulomb
interaction between electrons and holes is enhanced due
to the weakened dielectric screening and strong geomet-
ric confinement, leading to a series of tightly bound exci-
tonic states (Figure 1a) [2]. In 2H-phase TMD monolayers,
the binding energy of 2D excitons can reach several hun-
dred meV, approximately 30 % of the bandgap energy, sig-
nificantly higher than that of traditional III-V and II-VI
semiconductors, and an order of magnitude greater than
that of their bulk counterparts (Figure 1b) [32]-[43]. Addi-
tionally, some bulk materials with flat electronic bands due
to lattice anisotropy (e.g., CrSBr) can also enable strongly
localized excitons with a giant bulk exciton binding energy
comparable to those of monolayer materials [43].

Another important feature of TMD monolayers is the
spin-valley locking phenomenon. The band extrema of TMD
monolayers occur at the inequivalent K and K’ points in the
hexagonal Brillouin zone, where these two valleys exhibit a
mirror symmetry due to time-reversal symmetry (Figure 1c)
[1]. Due to the strong spin—orbit coupling in transition metal
atoms, the spin states in the band structure are split between
the K and K’ points, with each valley locked to opposite
spin directions. As a result, TMD monolayers have two types
of energy-degenerate exciton states, which are coupled to
right and left circularly polarized light according to the
valley optical selection rule [44]-[46]. This additional valley
degree of freedom bridges the gap between photonics and
spintronics, providing a rich physical basis for achieving
novel optical, electronic, and quantum properties [47], [48].

The high spatial overlap of electron-hole wavefunc-
tions in 2D vdW semiconductors generates a strong exci-
tonic transition dipole moment, which means their radia-
tive lifetimes are typically as short as 0.1-10 ps [49]. This
short lifetime is not favorable for exciton accumulation
and for the long-distance transfer of valley pseudospin
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Figure 1: Exciton characteristics in 2D van der Waals semiconductors. (a) Schematic of electrons and holes bound into excitons in 3D systems

and 2D systems. (b) Exciton binding energy versus bandgap for different 2D vdW semiconductors. The data are extracted from refs. [32]-[43], [56].
(c) Schematic of bright excitons at the K and K’ corners of the Brillouin zone of a TMD monolayer, displaying spin-valley locking. (d) Time scale for
charge transfer, valley polarization, and radiative recombination in 2D vdW semiconductors.

information. Constructing 2D vdW heterostructures can
overcome these limitations. Due to weak interlayer cou-
pling and the absence of surface dangling bonds, differ-
ent 2D materials can be stacked in any order without dis-
rupting their crystal structures and can tolerate large lat-
tice mismatches, reducing interface defects and ensuring
high-quality heterostructures [6]. Atomic-level sharp type-II
heterostructures support ultrafast interlayer charge trans-
fer (sub-ps) and allow for spatial separation of electrons
and holes across the two layers, thereby suppressing exci-
ton—exciton interactions in both recombination and depo-
larization processes [50]. As a result, exciton recombination
lifetimes can be extended to the ns to ms scale, and valley
polarization lifetimes can be extended to the ns to ps scale
(Figure 1d) [51]-[55].

For 2D vdW materials and their heterostructures, since
bright exciton states dominate the emission process, we
further introduce various types of intrinsic many-body

complexes of bright excitons that emerge in these systems
(Figure 2a). In fact, dark exciton states are also commonly
present, and these states cannot be directly excited by light
due to the requirement of spin flipping and/or phonon-
assisted momentum transfer [57]-[60]. The relative position
of the dark exciton states to the optically accessible bright
exciton states plays a crucial role in determining the light
emission efficiency of these materials and thus technologi-
cal potential. For a more detailed discussion on dark exciton
states, we refer to other reviews [61], [62].

2.1 Neutral exciton

The basic neutral exciton consists of a negatively charged
electron and a positively charged hole bound together by
Coulomb forces. The electron and hole can originate from
a single material, forming intralayer excitons, or can each
be provided by separate layers, forming interlayer excitons
[41], [51], [63]. Intralayer excitons have a higher binding
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Figure 2: Different types of intralayer and interlayer exciton complexes. (a) Schematic of different types of intralayer and interlayer exciton complexes.
(b) Schematic of a moiré superlattice formed by two hexagonal lattice with a small twist angle (left penal) and energy landscape of moiré exciton

in the moiré potential (right panel).

energy (>500 meV) and shorter lifetimes (in the picosecond
range) because the electron and hole are located within the
same layer and are relatively close. In contrast, due to the
spatial separation of the electron and hole, interlayer exci-
tons have a slightly smaller binding energy (~100-300 meV)
and longer lifetime extending to the nanosecond scale.
Moreover, for vertically stacked heterostructures, interlayer
excitons exhibit an out-of-plane transition dipole moment,
which is beneficial for creating and manipulating dipole
interactions, aiding research on strongly correlated sys-
tems, developing tunable optical devices, and realizing
exotic physical phenomena such as exciton flux and super-
fluidity [64]-[66]. A significant spatial overlap between the
wavefunctions of intralayer and interlayer excitons will
further lead to the mixing of exciton states to form hybrid
excitons with optical, electrical, and dynamic properties
intermediate between the two. The hybrid nature allows for
the customization of the exciton oscillator strength, lifetime,
and external field modulation. To facilitate the formation
of hybrid excitons, the energy levels in each layer should
be close and have the same spin, which has been widely

observed in both homobilayer and heterobilayer systems
[67]1-[70].

2.2 Trion

When a neutral exciton captures an additional negatively
charged electron or positively charged hole, a new charged
composite is formed, i.e., a negative or positive trion. The
introduction of the additional carrier weakens the many-
body interactions and causes the expansion of exciton wave-
function; therefore, the binding energy of trion is usually an
order of magnitude lower than that of neutral exciton. The
formation of intralayer and interlayer trions depends on
specific environmental conditions, such as the doping level,
light intensity, temperature, and applied electrical fields,
which affect the free carrier density and the exciton capture
ability of free carriers. Specifically, interlayer trions include
two types: Type I (two identical charges in the same layer) is
energetically more favorable and has been reported in most
experiments [71]—[73], while Type II (two identical charges
in different layers) has also been experimentally verified
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and exhibits additional polarized emission behavior due to
anisotropic charge interactions [74].

2.3 Biexciton

Under extremely high exciton density, efficient inelastic
scattering between excitons leads to the formation of a neu-
tral complex consisting of two excitons, known as the biexci-
ton. Intralayer biexcitons have no significant electric dipole
moment, while interlayer biexcitons with charge separation
occurring across the two layers possess a strong vertical
electric dipole moment. Depending on the ratio of exciton
spacing to the Bohr radius, biexcitons can be classified into
bound and unbound types, where Coulomb attraction dom-
inates in the former (with negative binding energy) and
repulsive interactions between individual dipole excitons
drive the latter (with positive binding energy [75]-[79]).
Bound biexcitons are common in intralayer configurations,
while unbound biexcitons are more common in interlayer
configurations.

2.4 Moiré exciton

In vdW bilayers, when the monolayers are stacked at a
small angle or with lattice mismatch, a long-period spatially
periodic structure known as a moiré superlattice is formed
(Figure 2b [80], [81]). The moiré superlattice introduces
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a periodic in-plane potential landscape at the nanoscale,
which canbe used to modulate the electronic band structure
of the material periodically. Additionally, the periodic mod-
ulation can also arise from strain, substrate, or optical field.
All excitons mentioned above can be modulated under the
periodic potential of the moiré superlattice and can move
in the optical lattice, forming moiré excitons when the exci-
ton Bohr radius is smaller than the moiré period [69], [77],
[82]-[86]. Moiré excitons exhibit unique optical and elec-
tronic properties, such as wavefunction localization at high-
symmetry positions within the moiré superlattice, showing
quasi-zero-dimensional natures with enhanced stability, flat
band dispersion, and significant many-body correlations
[871, [88].

In the following sections of this review, we will dis-
cuss various emerging 2D vdW semiconductor light sources.
Before delving into specific progresses, we will briefly
introduce the underlying physical mechanisms associated
with these light sources. The fundamental light emission
in 2D vdW semiconductors is spontaneous emission (SE),
where excited-state carriers, such as electrons and holes,
can spontaneously recombine and release photons to return
to the ground state (Figure 3a). Besides, the SPE is a
special SE process, where only one photon is emitted within
a specific time frame, evidenced by the intensity-correlation
function at zero time delay g®(0) < 0.5 (Figure 3b [20]). The
SPE typically arises from localized exciton states induced by

(c)

Conduction band

b U Stimulated
W emission

T

Ground state

Figure 3: Schematic of spontaneous emission (a), SPE (b), stimulated emission (c), EP condensation (d), P-band emission (e), and second/third

harmonic generation (f).
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strain, electric fields, defects, or moiré periodic potentials.
Single-photon sources are one of the core building blocks for
photonic integrated circuits used in quantum applications,
such as quantum communication and quantum computing.
Excited-state carriers can be obtained through optical, elec-
trical, or chemical excitations, and from a practical perspec-
tive, this review will focus on LEDs and electrically pumped
single-photon sources that utilize electrically driven SE.

Another important light-emitting unit is the laser,
which relies on stimulated emission. When an excited-state
carrier is stimulated by a photon with energy matching its
transition energy, the carrier will transition to the ground
state and release a new photon identical to the incident pho-
ton, accompanied by light amplification (Figure 3c). Real-
izing a laser requires a resonant cavity to provide optical
feedback, in which excitons couple with cavity photons,
typically under the weak coupling regime. When the cou-
pling rate between the excitons and cavity photons exceeds
their dissipation rates, a new hybrid quasiparticle, called
EP, is created in the strong coupling regime, leading to the
splitting of the energy bands into upper and lower polariton
branches with anticrossing behavior in energy-momentum
dispersion (Figure 3d [89]). The bosonic nature of EPs allows
for Bose—Einstein condensation (BEC) at high temperatures,
owing to their lighter mass inherited from the photon com-
ponent, with a large number of EPs occupying the ground
state, resulting in photon amplification. The characteristics
of EP condensation is very similar to those of conventional
lasers, but without the need for population inversion, mak-
ing them suitable for developing low-threshold laser-like
light sources.

To bridge the gap between high-intensity/high-
coherence lasers and low-intensity/low-coherence LEDs,
high-intensity but low-coherence light sources are also
required, which have distinct advantages in applications
such as optical coherence tomography, interferometric
sensing, and frequency-resolved lidar. One solution is to
utilize superlinear P-band emission, which occurs through
elastic exciton—exciton scattering in the presence of EPs
[90]. Two excitons in the n = 1 exciton state can scatter,
with one downward to a lower photon-like polariton state,
triggering P-band emission, while the other upward to a
higher excited state (n = 2 to oo, Figure 3e). The final photon
state for P-band emission with negligible interparticle
interactions exhibits a narrow linewidth. The scattering
process between exciton pairs leads to a quadratic power
dependence for P-band emission, eliminating the need for
population inversion, which allows for strong light output
with low energy consumption.

Finally, we discuss nonlinear light sources based on 2D
vdW materials, with a particular focus on the generation of
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higher-order optical harmonics and frequency conversion
through the nonlinear polarization response of 2D vdW
materials to an applied optical field (Figure 3f [91]). Com-
pared to traditional bulk nonlinear crystals, 2D vdW materi-
als, benefitting from their ultrathin thickness, relaxed phase
matching condition, and larger nonlinear coefficient, open
new opportunities for realizing miniaturized on-chip non-
linear photonic and optoelectronic devices.

3 2D semiconductor lasers

2D semiconductor lasers are of particular interest because
of their potential applications in nanophotonic, optical com-
munication, and integrated photonic circuits. The develop-
ment of 2D semiconductor lasers is driven by the unique
combination of material properties that these atomic-
layer-thin materials offer, including direct bandgaps [1],
[3], [10], strong excitonic effects with large exciton bind-
ing energy [2], [41], [92], spin-valley locking [44], [45],
[93]-[100], and notable charge carrier mobility [13], [101],
[102], which are critical for efficient light emission and laser
action.

As discussed above, monolayer TMDs exhibit a direct
bandgap transition due to the absence of interlayer inter-
actions that typically induce indirect bandgaps in bulk
materials. This transition leads to a high radiative recom-
bination quantum efficiency, which is critical for achiev-
ing the necessary population inversion in a laser system.
TMDs are also distinguished by their strong excitonic effects,
arising from their reduced dielectric screening and quan-
tum confinement in two dimensions, which result in an
exceptionally high exciton binding energy. This high bind-
ing energy allows excitons to remain stable even at room
temperature, while also supporting a high Mott transition
density (~10" cm~2) [10], preventing thermal dissociation
into free carriers, a major advantage over conventional
semiconductor lasers. Additionally, the small Bohr radius of
excitons in TMDs enhances light-matter coupling, leading
to strong oscillator strengths and high optical absorption
coefficient, ensuring an efficient stimulated emission pro-
cess. However, due to their atomically thin nature, TMD
monolayers do not provide sufficient optical confinement,
necessitating integration with high quality factor (Q-factor)
optical cavities to sustain lasing. Various cavity designs,
such as photonic crystal cavities (PCCs), which exploit Bragg
diffraction to confine light in periodic dielectric structures,
whispering-gallery-mode (WGM) resonators, which rely on
total internal reflection at curved interfaces to achieve ultra-
high Q-factor, and distributed Bragg reflectors (DBRs), which
use multi-layered optical interference to enhance light
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feedback, all contribute to reducing the threshold carrier
density required for lasing.

Unlike intralayer excitons, which form within a single
monolayer and exhibit shorter lifetimes and strong recom-
bination, interlayer excitons emerge in type-II band-aligned
heterostructures (e.g., MoS,/WSe,, WSe,/MoSe,) [103], [104],
where electrons and holes reside in separate layers. This
spatial separation occurs due to ultrafast charge trans-
fer (~50 fs) following optical excitation, where electrons
migrate to the conduction band of one layer while holes
remain in the valence band of the other. This configura-
tion results in several key advantages, in detail, (1) longer
exciton lifetimes (~ps), which significantly exceed those of
intralayer excitons (~ps) [54], allowing for excitonic con-
densation and lasing buildup; (2) a permanent out-of-plane
electric dipole moment, enabling precise control over exci-
tonic energy levels via an external electric field; and (3)
reduced recombination rates, improving optical gain effi-
ciency. To achieve interlayer exciton lasing, high-Q optical
cavities are employed to provide sufficient optical feedback
and enhance the stimulated emission process.

In recent years, significant advancements in 2D semi-
conductor lasers have been achieved, driven by the unique
properties of 2D vdW materials. Key developments include
miniaturization and on-chip integration for optical commu-
nication and computing systems, room-temperature oper-
ation enhancing practical feasibility, and precise tuning
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of energy bands and optical properties through vdw
heterostructures. Enhancements in light-matter interac-
tions have reduced laser thresholds and increased effi-
ciency, while the exploration of new 2D vdW materials
has expanded potential applications. Integration with sili-
con photonics and application-driven research have further
propelled the development of high-efficiency, tunable, and
easily integrable lasers, profoundly impacting fields such as
communication, computing, and sensing. Extensive and in-
depth studies have been conducted on the lasing properties
of various TMD materials integrated within different cavity
structures, as well as the lasing characteristics of certain
vdW materials without external cavities [12], [103]-[112], as
depicted in Figure 4. In this part, we introduce different
2D laser systems with and without external cavities and
highlight the special features of EP in these materials.

3.1 Intralayer-exciton laser based on
monolayer TMD with different cavities

In 2015, Wu et al. demonstrated a continuous-wave (CW)
nanolaser by integrating monolayer WSe, onto a prefabri-
cated GaP PCC (Figure 5a, top panel) [12]. The hybrid WSe,-
PCC nanolaser showed lasing at 739.7 nm with a linewidth
of 0.3 nm (Figure 5a, bottom panel), and a low lasing thresh-
old power of 27 nW at 130 K, similar to quantum-dot PCC
lasers [113]. The high initial Q-factor ( = 8,000) enabled a
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(2.0kW cm?)
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Figure 4: A timeline of key advancements in nanophotonics and low-power lasers based on 2D materials from 2015 to 2024. Laser systems with
(intralayer exciton complexes [12], [105]-[110], interlayer exciton complexes [103], [104] and moiré exciton complexes [111]) and without external cavity

[29], [112].
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Figure 5: Four distinct cavity architectures for TMD-based intralayer exciton lasers. (a) Top panel: the architecture of a hybrid monolayer WSe, PCC
nanolaser, including a color plot depicting the electric field profile of the fundamental cavity mode (before the WSe, transfer). Bottom panel:

the polarization-resolved PL spectrum of the nanolaser at 80 K. The black and red lines correspond to detected linear polarizations in the x and y
directions, respectively. Reproduced from ref. [12]. Copyright 2017, Springer Nature. (b) Top panel: the structural schematic of a vertical-cavity
surface-emitting laser based on a monolayer of WS,. Middle panel: the optical image of monolayer WS, (left) and the spatially resolved PL intensity
mapping of the microcavity sample (right). The scale bars represent 2 pm. Bottom panel: the PL spectra collected at the center of the sample with
an excitation power of 100 nW. Reproduced from ref. [108]. Copyright 2017, Springer Nature. (c) Top panel: the atomic structure of monolayer MoTe,
and the silicon photonic crystal nanobeam cavity structure with a monolayer of MoTe, positioned on top. Bottom panel: the PL spectra at increasing
pump power levels, showing the transition from spontaneous to stimulated emission. Reproduced from ref. [107]. Copyright 2017, Springer Nature.
(d) Top panel: the schematic (left) and scanning electron microscope image (right) of a monolayer WS, microdisk laser, comprising a sandwich
structure of Si;N,/WS,/HSQ. Bottom panel: the PL spectrum fitted with bi-Lorentzian curves, separating the monolayer WS, PL background

(from the microdisk center) from the sharp cavity emission. This distinction highlights the lasing characteristics of the cavity, where the narrow
emission peak signifies stimulated emission within the microdisk laser. Reproduced from ref. [106]. Copyright 2015, Springer Nature.

strong Purcell effect [114]-[116], enhancing SE and reducing
the lasing threshold. After monolayer transfer, the Q-factor
reduced to 2,500, but efficient coupling persisted with an
SE coupling factor (f) of 0.19, demonstrating effective emis-
sion comparable to quantum-dot PCC lasers [113], [117].

The development of room-temperature, low-threshold
vertical-cavity surface-emitting lasers (VCSELS) incorporat-
ing 2D semiconductor materials represents a significant
step toward practical optoelectronic applications. In 2017,
Yu et al. reported a room-temperature CW VCSEL using
monolayer WS, as the gain medium (Figure 5b, top panel)
[108]. The VCSEL employed SiO,/TiO, DBRs to form a high-
reflectivity cavity. The monolayer WS,, positioned at the
cavity’s antinode, maximized light—matter interaction and
SE enhancement via the Purcell effect. The laser achieved a
low threshold power of 5 nW at 636.3 nm (Figure 5b, bottom
panel), with a Q-factor of 640.

Silicon’s bandgap (~1.12eV, 1,100 nm) causes high
absorption for emissions above this wavelength [118], [119],
making most TMDs unsuitable for integration with sili-
con cavities. MoTe,, with a bandgap greater than 1.7 eV
and a PL peak at 1.1eV, is ideal [39], [120], [121]. In 2017,
Li et al. demonstrated CW lasing using monolayer MoTe,

integrated with a silicon nanobeam cavity (Figure 5c, top
panel) [107]. The cavity achieved a Q-factor of 5,603, with
lasing at 1,132 nm (linewidth: 0.202 nm, bottom panel of
Figure 5¢) and a low threshold power density of 6.6 W/cm?,
which is notably lower than other excitonic lasers in ultravi-
olet wavelengths operating at room temperature [122]. This
design allows efficient lasing at wavelengths where silicon
is transparent, making it promising for silicon photonics.

Microdisk resonators are crucial for 2D lasers, support-
ing WGMs that confine light efficiently [123]. Ye et al. inte-
grated monolayer WS, with a microdisk resonator in 2015,
creating a high-quality WGM cavity with a Q-factor of 2,604
(Figure 5d, top panel) [106]. The lasing mode at 612.2 nm
(Figure 5d, bottom panel), along with additional modes,
demonstrated efficient optical confinement with a lasing
threshold between 5 and 8 MW/cm?. Linewidth narrowing
from 0.28 nm to 0.24 nm indicated the lasing onset, and this
work demonstrated the potential for valley-selective lasing,
offering new functionalities in 2D vdW material-based pho-
tonics [94].

Tuning the optical properties of 2D semiconduc-
tors is crucial for developing high-performance photonic
devices. WGM cavities, with their high Q-factor, significantly
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Figure 6: Application of SiO, microspheres on 2D TMD materials emission. (a) Top-view scanning electron microscope images of monolayer MoS,
grown on SiO, microspheres at different magnifications. (b) PL spectrum of MoS, on a single SiO, microsphere, with background emission subtracted
to clearly display the WGM resonance peaks. (c) A FDTD simulation, showing the electric field distribution pattern of a transverse magnetic (TM) mode
at a resonance wavelength of 706.5 nm in the microcavity. Panel (a-c): reproduced from ref. [128]. Copyright 2017, Wiley-VCH. (d) Upper panel: the
optical image of the MoS,/microsphere array structure. Lower panel: the scanning electron microscope image of a single SiO, microsphere within the
array. (e) The PL spectra comparing MoS,/microsphere (red line) with monolayer MoS, on a SiO, -Si substrate (olive line) at room temperature.

The higher PL intensity of the MoS,/microsphere configuration indicates enhanced emission due to the lensing effect of the microsphere, which
focuses excitation light onto the MoS, layer more efficiently. (f) The FWHM values for the TM61" and TM562 modes of the WGM laser as a function

of excitation power. The narrowing of the FWHM at higher excitation powers demonstrates the threshold behavior typical of lasing, confirming

the WGM laser operation in the MoS,/microsphere system. Panel (d-f): reproduced from ref. [109]. Copyright 2018, American Chemical Society.

enhance light—matter interactions, making them ideal for
optical amplification and sensing [124]-[127]. Mi et al. used
chemical vapor deposition (CVD) to deposit monolayer
MoS, onto SiO, microspheres, forming MoS,/SiO, micro-
cavities (Figure 6a) [128]. At room temperature, multiple
WGM peaks were observed between 650 and 750 nm under
CW excitation (Figure 6b), and these peaks were validated
through finite-difference time-domain (FDTD) simulations
(Figure 6c). These microcavities exhibited refractive index
sensing with a sensitivity of 150 nm per refractive index
unit, highlighting their potential for optoelectronic sensors.
Adjusting the microsphere diameter allowed further tuning
of WGM modes to optimize sensing performance.

Traditional 2D vdW material lasers are typically fab-
ricated via mechanical exfoliation, which poses challenges
for reproducibility and large-scale production. To overcome
this, Zhao et al. grew large-area MoS, films using CVD and
coupled them with SiO, microspheres to form WGM cav-
ities (Figure 6d) [109]. The microspheres reduced screen-
ing effects, enhancing carrier localization and improving
effective optical gain [129], [130]. This setup increased exci-
ton SE efficiency (Figure 6e) and enabled strong CW las-
ing output over a wide temperature range (77-400 K). The
devices exhibited low lasing thresholds (32-580 W/cm?),
which is much lower than that of many traditional laser
structures [105]-[107], and the full width at half maximum
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of the lasing mode significantly narrowed beyond the
threshold (Figure 6f), indicating strong optical gain and
stable lasing. These findings demonstrate the potential of
microsphere-coupled MoS, microcavities for developing
low-power, wide-temperature-range optical devices.

3.2 Interlayer-exciton laser based on TMD
heterobilayer

Previous research has focused on nonlinear lasing behav-
ior and linewidth narrowing in monolayer TMDs [12],
[105]-[109]. However, the spatial coherence of the emis-
sion has remained unexplored, and the photon flux was
observed to be below the stimulated emission threshold,
making it complex to rule out localized excitons as the ori-
gin of the lasing [131]. Meanwhile, monolayer excitons are
limited by their intrinsic band structure, resulting in lack-
ing electrical tunability. In contrast, interlayer excitons are
electrically tunable, and external electric fields can adjust
the dipole strength and exciton—photon interaction, making
bilayer devices advantageous for dynamic modulation and
integrated photonics applications.

To realize interlayer exciton lasing, Paik et al. used a
rotationally aligned WSe,—MoSe, heterobilayer integrated
with a SiN grating resonator (Figure 7a, left panel) [104].
This heterobilayer served as the gain medium, where inter-
layer excitons formed by electrons and holes in different
monolayers enabled lasing. The alignment created a direct
bandgap between the K valleys of the two monolayers,
enhancing oscillator strength and efficient carrier transfer
[132]. The resonator was designed to match exciton reso-
nance, supporting cavity modes overlapping with the het-
erobilayer and providing spatial coherence [133]. Power-
dependent PL measurements showed a linear increase in
emission intensity above the threshold, confirming the
onset of stimulated emission (Figure 4a, middle panel).
Coherence measurements using a Michelson interferome-
ter confirmed spatial coherence across the emission region
(Figure 7a, right panel). Compared to monolayer exciton
lasers, this system benefits from electrically tunable dipole
interactions, robust valley polarization, and efficient popu-
lation inversion [132], [134]-[136].

Unlike many interlayer exciton lasers requiring cryo-
genic temperatures [104], [111], Liu et al. demonstrated
room-temperature lasing by integrating a MoS,/WSe, het-
erobilayer with a PCC in 2019 (Figure 7b, left panel) [103].
The interlayer excitons emitted in the infrared range
(1,122.5 nm), making them compatible with the larger
bandgap of silicon (Figure 7b, middle panel). The las-
ing threshold was approximately 33 mW (Figure 7b, right
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panel), and the longer lifetime of interlayer excitons allowed
for lasing with lower Q-factors, suitable for practical inte-
grated photonic devices [137], [138].

Moiré excitons also play a significant role in inter-
layer systems. These excitons are formed when two slightly
misaligned 2D vdW materials create a moiré superlat-
tice, providing periodic confinement potential [84], [86],
[139]-[141]. Qian et al. demonstrated lasing from moiré exci-
tons in a WSe,—MoSe, heterobilayer encapsulated in hBN
and coupled with a high-Q PCC (Figure 7c, left panel) [111].
Strong coupling between the cavity mode and excitons was
observed, evidenced by a linear Zeeman shift under an
applied magnetic field and linewidth narrowing above the
lasing threshold (Figure 7c, middle panel and right panel),
indicating increased coherence. These results highlight the
tunability of interlayer exciton-cavity coupling, opening
possibilities for quantum light sources and nanophotonic
devices [142].

3.3 2D vdW materials lasers without
external cavities

The previously discussed 2D semiconductor lasers present
benefits such as small size, low lasing thresholds, and tun-
able emission. However, they have the drawbacks of lim-
ited controllability, high optical losses on silicon substrates,
and the complexity of fabricating external optical cavities.
To reduce the production cost of on-chip integrated laser
devices, simpler and more efficient large-scale manufactur-
ing processes are crucial. In contrast, InSe demonstrates
excellent compatibility with silicon and the ability to act as
both the gain medium and the optical resonator [143]-[147],
achieving lasing without the need for external optical cavi-
ties. This unique capability makes InSe a highly promising,
cost-effective solution for integrated on-chip lasers.

In 2021, Li etal. mechanically exfoliated InSe
microflakes of varying thicknesses and used optical
pumping to achieve room-temperature near-infrared
lasing [29]. InSe, a vdW crystal with covalently bonded
Se—-In-In-Se layers was exfoliated to form smooth surfaces
(Figure 8a, left panel). Power-dependent PL spectra of InSe
microflakes (Figure 8a, right panel) showed a transition
from SEto lasing, with two peaks at 995nm (X-peak,
attributed to exciton recombination) and 1,027 nm (P-band,
attributed to exciton-exciton scattering) [144]. At higher
excitation power (0.62mjJ/cm?), multiple narrow lasing
peaks appeared above the P-band with a free spectral
range of ~3.38 nm and FWHM of 1.02 nm. Laser-printed
microdisks (30 pm diameter) had reduced thresholds
(~0.53 mJ/cm?) compared to pristine microflakes, with
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Figure 7: Three distinct cavity structures for TMD-based interlayer exciton lasers. (a) Left panel: the schematic of a heterobilayer WSe, -MoSe, laser
device integrated with a SiN grating cavity. Middle panel: a plot of the photon occupancy and linewidth of the TE-polarized emission as a function of
pump power. The photon occupancy (red dots) shows a superlinear increase at the threshold (vertical red line), while the linewidth (blue dots)
narrows, indicating the onset of lasing. Right panel: the interference pattern observed in the Michelson interferometer setup at a power above the
lasing threshold (20 pW). Reproduced from ref. [104]. Copyright 2019, Springer Nature. (b) Left panel: schematic of a nanocavity laser device using

a MoS,/WSe, heterostructure as the gain medium. Middle panel: the emission spectrum of the cavity lasing mode at 5 K with a CW pump power of
190 mW. The lasing action is observed at approximately 1,122.5 nm with a linewidth of ~2.7 nm. Right panel: the L-L curve for the laser. The cavity
mode intensity (red dots) exhibits a clear kink, typical of lasing onset, while the background emission (black dots) remains linear. Reproduced from ref.
[103]. Copyright 2019, AAAS. (c) Left panel: schematic of the MoSe,/WSe, heterobilayer integrated with a nanocavity and encapsulated by hexagonal
boron nitride (hBN). The right side displays the electric field distribution in the nanocavity. Middle panel: PL spectrum for the MoSe,/WSe,
heterobilayer coupled with a nanocavity, recorded under low excitation power at 88 nW and in the presence of a magnetic field. Right panel:
power-dependent behavior of the PL intensity and linewidth of cavity mode M2, indicating the transition to lasing. Reproduced from ref. [111].
Copyright 2024, AAAS.

emission coupled out from the microdisk’s edge, indicating efficient radiative recombination without requiring

in-plane WGM resonance [148]. These results highlight
InSe’s potential for near-infrared on-chip lasers for
imaging, sensing, and optical interconnects [89], [138], [149],
[150]. To expand InSe’s emission characteristics, Zhao et al.
applied hydrostatic pressure, achieving broad spectral
tuning (Figure 8b) and demonstrating the flexibility of InSe
for tunable near-infrared microlasers [151].

In studies of 2D TMD lasers, monolayer materials
are often used due to their direct bandgap, which allows

phonons [1], [3], [10]. However, large-scale fabrication
of monolayers is challenging. Achieving lasing in
nonmonolayer TMDs with indirect bandgaps would
simplify mass production of 2D semiconductor lasers. In
2022, Sung et al. demonstrated that an ultra-thin WS, disk
(~50 nm) supports WGMs and provides sufficient optical
gain for lasing without an external cavity (Figure 8c, top
panel) [112]. The WS, disk, fabricated via mechanical
exfoliation and reactive ion etching, served as both gain
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Figure 8: Laser emission and modulation of vdW materials without external optical cavities. (a) Left panel: schematic of mechanically exfoliated y-InSe
microflake placed on a SiO,/Si substrate. Right panel: the power-dependent PL spectra of a single InSe microflake at 298 K under femtosecond pulse
laser excitation (400 nm, 1 kHz, 80 fs). Reproduced from ref. [29]. Copyright 2021, American Chemical Society. (b) Left panel: schematic of a diamond
anvil cell used for high-pressure experiments. Right panel: the laser PL spectra of a single y-InSe platelet under hydrostatic pressure ranging from 0 to
2.2 GPa. During the application of pressure, the laser emission’s central wavelength shifts from 1,022 nm to 911 nm. Reproduced from ref. [151].
Copyright 2022, American Chemical Society. (c) Top panel: 3D schematic image of an optically pumped WS, disk nanolaser. Middle panel: the PL
spectrum for a patterned WS, disk, revealing multiple WGM peaks on top of a broad emission background from the indirect bandgap transition.

The inset displays an emission image of the WS, disk at the lasing wavelength, above the lasing threshold, which shows the light emission from

the disk edge where the WGMs are formed. Bottom panel: the L-L curves of WS, microdisks with different diameters. The green data indicate the SE
from the indirect bandgap without coupling to WGMs, while the WGM-associated lasing action shows a nonlinear increase in intensity, indicating
lasing behavior. Reproduced from ref. [112]. Copyright 2022, Springer Nature.

medium and resonant cavity. Its emission spectrum
showed sharp WGM peaks over a broad indirect-bandgap
background (Figure 8c, middle panel). With increased

3.4 Aspecial type: emission from EP

The above discussion focused on exciton lasers in 2D semi-

pumping power, the WGM peaks transitioned from SE to
amplified spontaneous emission (ASE) and eventually to
lasing, forming an “S-shape” in the L-L curve (Figure 8c,
bottom panel). The lasing relied on phonon-assisted
emission through a three-level system. This work challenges
the belief that indirect-bandgap materials are unsuitable
for lasing and underscores their potential for optical and
optoelectronic applications.

conductor materials, which rely on stimulated emission
of photons to generate coherent light, requiring a high
density of photons to achieve population inversion. Next,
we introduce a special and efficient form of light—matter
interaction — EPs. EPs are hybrid quasi-particles formed
through the strong coupling between photons and exci-
tons, combining the light-like properties of photons with
the matter-like properties of excitons [152]. EPs are unique
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in that they combine the low effective mass of photons
with the strong interaction properties of excitons. Due to
the photonic component, polaritons can propagate with an
extremely low effective mass [153], resulting in high mobil-
ity, making them ideal for fast-response optical devices.
Meanwhile, the excitonic component imparts strong non-
linearity [154], which makes EPs particularly advantageous
for achieving significant nonlinear optical effects at low
power. This strong light-matter coupling results in Rabi
splitting, leading to the formation of two polariton branches
— the upper polariton branch (UPB) and the lower polari-
ton branch (LPB) - characterized by distinct energy levels
and hybrid properties. In the dispersion relation, an anti-
crossing phenomenon between exciton and photon energies
can be observed from angle-resolved spectroscopy, which
demonstrates the occurrence of strong coupling between
the two, leading to the formation of EPs [155].
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3.5 Emission from EP with external cavities

Zhang et al. developed a novel strong coupling system com-
bining one-dimensional (1D) photonic crystals (PCs) with
monolayer TMDs like WSe, and WS, (Figure 9a, top panel)
[133]. The SiN PCs coupled with the monolayer TMDs pro-
vided a compact platform for strong coupling at room
temperature, with observed mode anticrossing (Figure 9a,
bottom panel) and tunable Fano resonances. Adjusting PC
parameters allowed flexible control over polariton modes,
suggesting applications in polariton lasers, amplifiers, and
switches [156]-[160].

As bosons, EPs have the ability to undergo BEC under
appropriate conditions. The process of BEC can be sum-
marized as generation of EPs, cooling and thermalization,
stimulated scattering leading to accumulation in the ground
state, and finally formation of a macroscopic coherent state.
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Figure 9: Emission from EP with external cavities. (a) Top panel: schematic of the structure integrating a monolayer TMD, such as WSe, or WS,, with
a 1D photonic crystal (PC). Bottom panel: angle-resolved PL map and corresponding simulated absorption spectra of the WS,-PC integrated device at
room temperature. Reproduced from ref. [133]. Copyright 2018, Springer Nature. (b) Top panel: schematic of the structure integrating a monolayer
WS, into an all-dielectric A/2 planar microcavity. Bottom panel: the angle-resolved PL map of the WS, microcavity above the lasing threshold. The inset
provides a zoomed-in view of the ground state, showing that the intense ground state emission is associated with the formation of a localized
polariton condensate in a spatial trap. Reproduced from ref. [163]. Copyright 2021, American Chemical Society. (c) Top panel: schematic of the sample
structure where a monolayer MoSe, is embedded in a hybrid III/V dielectric microcavity. The structure consists of DBR, hBN, and polymethyl
methacrylate spacer layers. Bottom panel: the dispersion relation map of EP condensation at pump power above the threshold (P = 6.49 P,,).
Reproduced from ref. [169]. Copyright 2023, Springer Nature. (d) Top panel: schematic diagram of the WS, superlattice embedded in a full dielectric
planar microcavity. Bottom panel: the relationship between the Rabi splitting and the square root of the number of layers, comparing the experi-
mental results using hBN (red) and SiO, (blue) as insulators. It is observed that the Rabi splitting increases with the square root of the number of
layers, demonstrating the enhancement of coupling strength in the multilayer WS, superlattice. The inset shows the angle-resolved reflectivity map
for a microcavity containing a WS, superlattice with two layers. Reproduced from ref. [170]. Copyright 2023, Springer Nature.
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In this condensed state, the coherence of polaritons results
in the emission of coherent light, which manifests as ultra-
low threshold lasing [153]-[155], [161]. However, traditional
polariton systems, such as those based on III-V materials
(e.g., GaAs [162]), typically require cryogenic temperatures
to achieve condensation. Zhao et al. demonstrated room-
temperature polariton condensation in a monolayer WS,
microcavity using a 4/2 structure embedded between DBRs
(Figure 9b, top panel) [163]. The above-threshold angle-
resolved PL map displays a sharp and intense peak near the
ground state, which does not fully follow the LPB dispersion
indicated by the black dashed line but instead appears delo-
calized in momentum space, suggesting the formation of
a localized polariton condensate (Figure 9b, bottom panel).
Meanwhile, spatial traps increased local polariton density,
promoting condensation. This work suggests potential in
valleytronics, quantum information, and low-power coher-
ent light sources [156], [164]-[168]. Solanas et al. reported
bosonic condensation of EPs in a microcavity loaded with a
monolayer of MoSe, at cryogenic temperatures (Figure 9c)
[169]. Under an external magnetic field, valley polariza-
tion was observed, with an energy splitting between K and
K’ polaritons. This demonstrates potential for valleytronic
optoelectronic devices.

TMD materials can be stacked to form artificial vdW
superlattices because the weak vdW forces between lay-
ers allow precise control over the stacking sequence and
alignment, providing unique opportunities to manipulate
light-matter interactions. Gaining insight into these interac-
tions enables precise control over quasiparticles that merge
the properties of light and matter. Zhao et al. demonstrated
control of coupling strength by embedding multiple WS,
monolayers in a planar microcavity (Figure 9d, top panel)
[170]. Increasing the number of layers enhanced vacuum
Rabi splitting from 36 meV to 72 meV (Figure 9d, bottom
panel), improving EP stability. Additionally, phase space
filling effects and long-lived dark excitons were observed,
paving the way for low-power optical circuits and appli-
cations in photonics, quantum information, and integrated
systems [171].

3.6 Emission from EP without external
cavities

As stated above, EPs have traditionally been realized using
external optical cavities such as Fabry—Pérot resonators,
DBRs, or plasmonic nanostructures. These cavity-based sys-
tems enhance exciton—photon interactions by providing
strong optical confinement, resulting in large Rabi split-
ting and enabling applications in polariton lasing, quantum
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optics, and nonlinear photonics. However, such architec-
tures come with practical limitations, including fabrication
complexity, integration challenges, and scalability issues,
particularly for ultra-thin, atomically layered materials like
TMDs. Recently, a new class of EPs has emerged, which does
not require external cavities. Instead, these self-hybridized
EPs rely on intrinsic optical resonances within the TMD
itself or engineered photonic structures such as gratings
[172] and PCs [173]. By leveraging the high refractive index,
strong excitonic response, and in-plane light confinement
of TMD multilayers, researchers have demonstrated cavity-
free EPs in bare WS, layers [174] and WS,-based nanos-
tructures [172], [173]. These advancements pave the way for
compact, highly tunable polaritonic devices that can operate
at room temperature without the constraints of external
cavity fabrication. The following discussion explores three
studies that demonstrate EP emission in cavity-free systems.

In 2022, Shin et al. provided direct experimental confir-
mation of self-hybridized EPs in bare WS, multilayers, prov-
ing that strong exciton—photon coupling can occur without
external optical cavities [174]. Using evanescent field cou-
pling (Figure 10a), the authors investigated the dispersion,
tunability, and valley polarization of these guided EPs. Their
findings reveal clear anticrossing behavior near the exciton
resonance (Figure 10b), with Rabi splitting energy varying
based on layer thickness, confirming thickness-dependent
strong coupling effects. Additionally, they demonstrated
that the guided EPs retain valley polarization up to 0.2 at
room temperature, making them promising candidates for
valleytronic applications. Furthermore, they showed that
the EP dispersion can be continuously tuned via excitation
power, highlighting the high degree of control and adapt-
ability of these self-hybridized polaritons. These results
provide strong evidence that bare WS, layers can support
nonradiative EPs, opening new possibilities for integrated
nanophotonic and valleytronic devices.

Cho et al. addressed the challenge of far-field detection
of guided EPs by integrating a 1D PC (grating structure) into
WS, multilayers (Figure 10c) [172]. While guided EPs nor-
mally exist as nonradiative modes confined within the WS,
layer, the periodic grating structure enables momentum
matching, allowing them to be coupled into the far field for
optical measurement. Through angle-resolved reflectance
and PL spectroscopy (Figure 10d), the authors confirm the
formation of guided-mode resonances in WS, gratings as
thin as 10 nm. They also demonstrate that strong exci-
tonic resonances in WS, naturally lead to guided EP forma-
tion, and the grating facilitates efficient coupling of these
modes into free space. This work bridges the gap between
nonradiative polariton physics and practical photonic
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Figure 10: Emission from EP without external cavities. (a) Schematic of evanescent field coupling. Left panel: white-light reflection measurements
probe photon modes in suspended WS,. Right panel: PL measurement under 594 nm laser excitation. (b) Angle-resolved reflection and PL spectra.
Left (right) panel: angle-resolved reflection (PL) spectra for suspended WS, layers (left), simulation (middle), and nonsuspended WS, layers (right).

A clear anticrossing behavior is visible, confirming strong exciton-photon coupling, leading to the formation of EP branches. Panel (a-b): reproduced
from ref. [174]. Copyright 2022, Wiley-VCH. (c) Schematic of the 1D WS, grating structure. (d) Left (right) panel: experimentally measured (theoretical)
TE-polarized angle-resolved reflection spectrum in x-direction. A strong anticrossing behavior appears near 1.97 eV (exciton resonance).

Panel (c-d): reproduced from ref. [172]. Copyright 2023, De Gruyter. (e) The structural design of an ultrathin WS, PC. A patterned square array of air
holes is fabricated in the layered WS, on a glass substrate. (f) The experimental angle-resolved transmission spectrum of the WS, PC. Two clear
polariton branches are observed, confirming strong exciton-photon coupling. Panel (e-f): reproduced from ref. [173]. Copyright 2020, Wiley-VCH.

applications, paving the way for scalable, on-chip exciton-
polaritonic devices using WS,-based nanostructures.

Zhang et al. demonstrated a WS, PC as a self-resonant
polariton system, eliminating the need for external cavities
(Figure 10e) [173]. The 12 nm-thick WS, PC supports intrin-
sic optical resonances, leading to anticrossing at 1.97 eV
and a Rabi splitting of ~100 meV (Figure 10f). This design
achieves deep subwavelength light confinement, offering a
new approach for ultra-thin polaritonic and quantum pho-
tonic devices.

These three works collectively demonstrate the feasi-
bility and advantages of cavity-free EPs, establishing new
methods to generate, manipulate, and observe polaritonic
states, offering new possibilities for scalable nanophotonic
devices, integrated valleytronic systems, and ultra-compact
quantum photonic technologies.

In addition to the research on polaritons in the afore-
mentioned TMD materials, CrSBr, as a novel 2D layered
magnetic semiconductor, has attracted widespread atten-
tion recently due to its unique structural, electronic, mag-
netic, and optical properties. The crystal structure of CrSBr
comprises chromium sulfide double layers flanked on both

sides by anionic bromide layers, all separated by vdW
gaps (top image of Figure 11a) [175]. This configuration
allows for straightforward mechanical exfoliation down
to monolayer or few-layer thicknesses. Each chromium
ion resides in a distorted octahedral coordination envi-
ronment formed by four sulfur atoms and two bromine
atoms, which contributes to the material’s electronic and
magnetic anisotropy. CrSBr exhibits A-type antiferromag-
netic order below its Neél temperature of 132K. In this
magnetic state, spins align ferromagnetically within each
vdW layer and antiferromagnetically between adjacent lay-
ers (bottom image of Figure 11a) [176], [177]. This material
shows strong triaxial magnetocrystalline anisotropy, with
the b-axis serving as the easy magnetic axis, the a-axis
as the intermediate magnetic axis, and the c-axis being
the hard magnetic axis. When a magnetic field is applied
along the b-axis, a sharp transition to magnetic saturation
occurs, which is consistent with a spin-flip transition due
to large magnetocrystalline anisotropy energy [176]-[178].
In addition to magnetic anisotropy, CrSBr exhibits signif-
icant optical anisotropy, including PL that exhibits strong
polarization dependence. The PL intensity is strongest when
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Figure 11: The properties and special EP characteristics of a novel 2D magnetic vdW material, chromium sulfide bromide (CrSBr). (a) The crystal and
magnetic structures of CrSBr. The top image is a top view of a single CrSBr layer, depicting the 2D layered structure of the material, while the bottom
image is a side view of a bilayer CrSBr, where red arrows represent the interlayer antiferromagnetic (AFM) order. (b) The differential reflectance
spectra (blue) and PL spectra (red) of bilayer CrSBr with light polarized along the b-axis (solid lines) and a-axis (dashed lines). (c) Top view of the
real-space wavefunction of the lowest-energy exciton in CrSBr bilayer. (d) The side view of the exciton wavefunction in the AFM bilayer (top) and
ferromagnetic (FM) bilayer (bottom) state. Panel (a-d): reproduced from ref. [179]. Copyright 2021, Springer Nature. (e, f) The normalized 2D colored
PL spectra of the 103 nm-thick (e) and 284 nm-thick (f) CrSBr crystals at 10 K under a magnetic field (B) ranging from 0 to 1.2 T. (g) The 2D reflectance
spectra of the 354 nm-thick CrSBr crystal under 0 T (bottom panel) and 1T (top panel) magnetic fields. (h) Angle-resolved reflectance and

angle-resolved PL map at 298 K of the 1,260 nm-thick CrSBr crystal. Panel (e-

the incident light is polarized along the b-axis and weak-
est when polarized along the a-axis (Figure 11b). This indi-
cates that the excitonic wavefunction is more delocalized
along the b-axis than the a-axis (Figure 11c), in agreement
with the anisotropic band structure [179]. In the AFM state,
interlayer hybridization is suppressed due to antialigned
spins, whereas in the FM state, electronic wavefunctions can
couple between layers (Figure 11d), resulting in band split-
ting and a reduction in the bandgap. These computational
results align well with the experimentally observed exciton
redshift, highlighting the crucial role of magnetic order-
ing in interlayer electronic coupling [179]. The 2D nature
and high stability of CrSBr make it an ideal platform for
studying low-dimensional quantum physics and correlated
electronic phenomena, including research into magnetic
correlations at low temperatures [180], EPs [31], [181], [182],
and other complex physical phenomena.

CrSBr flakes with sufficient thickness form microcavi-
ties, enabling strong exciton—photon interactions along the
b-axis, leading to self-hybridized EPs [181], [182]. Li et al.

h): reproduced from ref. [31]. Copyright 2024, Wiley-VCH.

demonstrated stable EP behavior in CrSBr crystals, inves-
tigating the effects of thickness, magnetic field, and tem-
perature [31]. Figures 10f and 11e show PL spectra of CrSBr
crystals (108 nm and 203 nm) at 10 K under magnetic fields.
At 0.5 T, a redshift occurs, indicating a transition from AFM
to FM. Figure 11g shows a redshift in EP energy at 1 T, which
decreases with increasing temperature. Figure 11h shows
the angle-resolved reflectance and angle-resolved PL imag-
ing for a much thicker CrSBr crystal (1,260 nm) at room
temperature (298 K), indicating a Rabi splitting energy of
267 meV, confirming ultrastrong coupling. CrSBr’s magnetic
tunability and strong coupling at room temperature make
it ideal for photonic devices like tunable filters, photode-
tectors, and light sources, with promising near-infrared
applications.

4 SPE from 2D vdW materials

In recent years, quantum photonics has brought trans-
formative advancements across multiple fields, including
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secure communication [183], computation [184], [185], and
sensing [186]. Single-photon sources play a vital role in this
field by enabling precise control over light—matter interac-
tions at the nanoscale. For 2D SPE, three key aspects (emis-
sion origin, defect engineering, and rational design) play
crucial roles in optimizing the efficiency and stability of
quantum light sources.

Emission origin—In the simplest case, an SPE can be
modeled as a two-level system, defined by its transition
energy and dipole matrix element, as mentioned above.
SPE in 2D materials originates from quantum-confined
excitons that become trapped in localized defect states or
strain-induced potential wells. The fundamental require-
ment for SPE is that only one exciton can occupy the
localized state at a time, preventing multiphoton emission.
Defect-state emission occurs when atomic-scale vacancies
or substitutional atoms introduce deep mid-gap states, trap-
ping excitons at these defect sites where they undergo
radiative recombination, emitting single photons. A notable
example is nitrogen vacancies in hBN, which enable room-
temperature SPE due to their deeply localized states [17].
Strain-induced exciton localization, on the other hand, mod-
ifies the local bandgap, forming potential wells that cap-
ture excitons. These localized excitons recombine to pro-
duce narrow and stable SPE peaks. A prominent example
is strain-induced quantum dots (QDs) in WSe,, which
serve as efficient single-photon sources. Lastly, in twisted
bilayers, such as MoSe,/WSe, heterobilayers [140], peri-
odic Moiré superlattices create spatially confined exciton
potential minima. These potential traps localize excitons,
facilitating deterministic SPE, making them highly attrac-
tive for quantum photonics applications.

Defect engineering—Defect engineering in 2D single-
photon emitters involves the intentional creation, modifica-
tion, and control of atomic-scale defects to tailor optical and
electronic properties, enabling SPE. In this process, defects
introduce localized electronic states within the material’s
bandgap, trapping excitons and ensuring that photons are
emitted one at a time, a crucial feature for quantum appli-
cations. Various methods have been developed to create and
control these defects in TMDs and hBN. Ion beam irradi-
ation, using focused helium or neon ion beams, displaces
atoms from the lattice to form vacancies, which act as
exciton traps in materials like MoS, [187] and WSe, [188].
Similarly, high-energy electron beam irradiation modifies
atomic arrangements, generating stable defect sites such
as nitrogen and boron vacancies in hBN, known for their
robust room-temperature quantum emission [189], [190].
Chemical functionalization and annealing provide another
avenue for defect control, where selective exposure to
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oxidizing or reducing agents modifies defect states, and
thermal annealing either activates or passivates these states
to enhance emission stability [191]. Additionally, strain engi-
neering, achieved through nanopillars or wrinkled sub-
strates, alters the local band structure, forming quantum-
dot-like potential wells that localize excitons and enhance
SPE. In twisted bilayers of TMDs, Moiré superlattices nat-
urally create periodic exciton potential traps, leading to
deterministic SPE [140]. These advanced defect engineering
techniques enable precise control over quantum emitters,
paving the way for scalable and high-purity single-photon
sources essential for quantum communication, computa-
tion, and sensing applications.

Rational design—To engineer high-performance SPEs,
several strategies have been employed. Strain and electric
field tuning have been demonstrated to dynamically modu-
late emission wavelengths, while gate-tunable heterostruc-
tures, such as graphene/hBN [192], enable controlled charge-
state switching for enhanced emission control. Coupling
these emitters to optical cavities significantly boosts their
brightness and extraction efficiency [193]-[195]. Addition-
ally, charge-state control through electrical gating allows for
on-demand switching of emission, improving stability and
robustness [196]. For large-scale applications, deterministic
positioning of SPEs is crucial, and plasmonic array offers a
promising approach to creating ordered SPE arrays for inte-
grated quantum photonic networks [197].

Effective single-photon sources must exhibit high
brightness, purity, and indistinguishability to support quan-
tum technologies like secure quantum communication and
quantum computing. Brightness quantifies the probability
of emitting a single photon upon excitation, purity refers
to the source’s ability to emit only one photon per event,
and indistinguishability ensures that each photon remains
consistent across different degrees of freedom [198]. Each of
these factors is essential to applications requiring interfer-
ence, like quantum computing, where photon consistency is
crucial for multiphoton interactions [199], [200]. Therefore,
the selection of materials for single-photon sources requires
multifaceted consideration. While traditional platforms like
QDs [201]-[206] and nitrogen-vacancy [207]-[210] centers
in diamonds have set benchmarks, novel 2D vdW materials
such as TMDs and hBN are rapidly gaining attention.

TMDs are particularly notable for their strong
electron-hole binding energy, which supports SPE through
excitons trapped by localized defects or strain. Since
the demonstration of SPE from TMDs in 2015 [18], [19],
[211]-[213], numerous methods have emerged to enhance
their emission efficiency. For instance, coupling TMDs
to plasmonic nanostructures like GaP nano-antennas
has achieved brightness levels near 0.86 and quantum
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efficiency of approximately 80 % [214]. These modifications
allow TMDs to produce bright, high-purity SPEs with
relatively fast emission rates, making them suitable
for low-temperature quantum information processing
applications.

Due to the wide bandgap and remarkable resistance
to decoherence, hBN enables stable SPE even at room tem-
perature. The single-photon emitters in hBN, often linked to
boron or nitrogen vacancies, are robust even under ambient
conditions, making them an attractive candidate for quan-
tum photonics [215]-[224].

One of the major challenges in single-photon source
research is achieving tunability to ensure that the light
source meets the demands of quantum applications while
enhancing system stability and adaptability. In recent years,
researchers have made significant advances in the tun-
ability of single-photon sources, including strain tuning,
electric field tuning, magnetic field tuning, and cavity
coupling.
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As shown in Figure 12a, Branny et al. used nanoscale
strain engineering to create local strain perturbations in
monolayer and bilayer WSe, [225]. They placed lithograph-
ically patterned nanopillars under atomically thin WSe,
flakes, which induced significant localized elastic strain at
the nanopillar sites. This strain modified the band-gap of the
semiconductor, funneling excitons to these smaller band-
gap regions, leading to the formation of highly pure single
photon-emitting quantum emitters. The use of nanopillars
enabled the precise positioning of these quantum emitters.
By adjusting the nanopillar dimensions, they improved both
the yield of emitter formation and their positioning accu-
racy. This strain-based control method is well-suited for
creating scalable and structured arrays of single-photon
emitters.

In 2019, Iff et al. demonstrated a hybrid structure com-
bining a 2D semiconductor and a piezoelectric device to
control the emission energy of single-photon emitters in
WSe, monolayers (Figure 12b) [226]. Specifically, they used
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Figure 12: Different modulation methods of SPE from 2D vdW materials. (a) The concept of achieving strain-induced quantum emitters in atomically
thin WSe, using an array of nanopillars. The local biaxial strains modify the bandgap of WSe, and spatially modulate the potential landscape of the 2D
excitons, leading to the efficient funneling of photoexcited excitons toward the lower energy states at the strain-tuned sites, eventually forming
efficient single-photon quantum emitters. Reproduced from ref. [225]. Copyright 2017, Springer Nature. (b) Schematic of a hybrid 2D-semiconductor-
piezoelectric actuator device with an integrated WSe, monolayer. Reproduced from ref. [226]. Copyright 2019, American Chemical Society. (c) The
device schematic of multilayer hBN sandwiched between top and bottom few-layer graphene electrodes. This device is designed to tune the emission
energy of single-photon emitters through the Stark effect by applying an out-of-plane electric field. Reproduced from ref. [232]. Copyright 2018,
American Chemical Society. (d) The shift of the zero-phonon line PL spectrum’s central wavelength of a single-photon emitter in hBN under different
applied voltages. The inset shows the setup for applying voltage between electrodes A and B. Reproduced from ref. [233]. Copyright 2019, American
Chemical Society. (e) The PL intensity plot of five single quantum emitters as a function of the applied magnetic field, ranging from 0 Tto 5.5 T.
Reproduced from ref. [19]. Copyright 2015, Springer Nature. (f) The design and characteristics of the Purcell-enhanced single-photon source based on
a circular Bragg grating cavity. Reproduced from ref. [236]. Copyright 2021, American Chemical Society.



DE GRUYTER

piezoelectric actuators to apply strain fields, allowing for
the energy of localized excitons to be tuned by up to 18 meV.
The strain was applied via an electric field across the sam-
ple, which consisted of a mechanically exfoliated WSe,
monolayer transferred onto a piezoelectric plate. Using PL
spectroscopy, the researchers observed bhoth redshifts and
blueshifts in emission energy under strain modulation. This
study provides a new approach for creating energy-tunable
single photon sources.

The emission energies of different emitters are often
inhomogeneous, which poses a significant challenge for
quantum information processing [227]-[229]. Therefore, a
method to tune the emission energy of individual emit-
ters is required. The Stark effect refers to the phenomenon
in which the energy levels of electrons within atoms or
molecules shift or split under the influence of an exter-
nal electric field [230], which is an effective approach that
enables the tuning of SPE energies through the application
of an external electric field [231]. Noh et al. combined exfo-
liated hBN flakes with graphene to create heterostructures
with top and bottom graphene electrodes (Figure 12c) [232].
Applying a voltage generated a vertical electric field to con-
trol defect centers in hBN, resulting in Stark-induced tuning
of the emission with a maximum shift of 5.4 nm per GV/m.
This work showed electric field control of hBN single-photon
emitters. Xia et al. later designed a four-electrode nanode-
vice for more flexible electric field control, achieving a large
Stark shift of 43 meV/(V/nm), the highest reported at room
temperature [233]. Figure 12d shows the zero-phonon line
PL intensity as a function of the applied voltage, with a Stark
shift up to 31 meV, demonstrating reversible tuning of the
single-photon emitter energy by the electric field.

Meanwhile, the emission characteristics of single-
photon sources can also be controlled by magnetic fields. He
et al. introduced defect-localized excitons in WSe, monolay-
ers as single quantum emitters with narrow optical emis-
sion linewidths (~130 peV), much narrower than delocal-
ized valley excitons [19], [234]. These emitters exhibit two
nondegenerate, linearly polarized transitions at zero mag-
netic field [235]. Applying a magnetic field causes the polar-
ization to transition from linear to circular as it competes
with electron-hole exchange interactions, leading to the
Zeeman effect (Figure 12e). The magnetic field splits the
energy levels of each emitter and controls the polarization
state of emitted photons, enhancing the flexibility of single-
photon sources for quantum information applications like
quantum key distribution.

To further improve the emission efficiency of single-
photon sources, the application of optical cavities is an
essential topic. As shown in Figure 12f, Iff et al. proposed
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a deterministic single-photon source based on the integra-
tion of WSe, QDs with a circular Bragg grating cavity [236].
The cavity enhances SE through the Purcell effect, thereby
improving the efficiency and scalability of the single-photon
source. The use of the circular Bragg grating cavity enables
deterministic placement of QDs and strain-induced forma-
tion, significantly enhancing emission. This provides a new
approach for developing a single-photon emitter that is sim-
ple to manufacture, cost-effective, and performs well.

Despite the remarkable performance of 2D semicon-
ductor single-photon sources in terms of efficient SPE and
tunability, challenges remain in integrating these devices
into practical quantum information processing systems.
Currently, individual or small numbers of 2D single-photon
sources have been validated in laboratory settings [19],
[225], [226], [232], [233], [236], but these isolated devices strug-
gle to meet the demands for high integration and stability in
real-world applications. To solve this problem, the measures
of combining 2D semiconductor single-photon sources with
mature chip manufacturing technologies are beginning to
be explored. Through on-chip integration, device miniatur-
ization and mass production can be realized, enhancing
system reliability and scalability. This advancement paves
the way for the practical application of quantum informa-
tion technologies and represents a key direction for future
research.

Blauth et al. integrated WSe, monolayer quantum emit-
ters with metal plasmonic waveguides for nanoscale single-
photon generation and routing (Figure 13a) [237]. The emit-
ter was positioned close to the waveguide edge (Figure 13b),
enabling on-chip single-photon sources suitable for quan-
tum information and optical communication. Strain engi-
neering and hBN encapsulation could enhance coupling
efficiency and emitter quality [238]-[241]. And in 2019,
Peyskens et al. used a dry-transfer method to integrate WSe,
flakes onto SiN waveguides, achieving efficient light confine-
ment for on-chip transmission (Figure 13c) [242]. Confocal
PL scans (Figure 13d) and PL collected via fiber (Figure 13e)
confirmed enhanced emission on the waveguide, highlight-
ing its scalability for quantum photonic chips without com-
plex postprocessing.

As previously mentioned, when discussing room-
temperature single-photon sources, it is imperative to con-
sider hBN, as it is capable of producing narrowband SPE
across a wide temperature range, including room tempera-
ture [17], [243]-[247], thereby making it an ideal material for
quantum emitters. hBN emitters integrated with AIN waveg-
uides demonstrated room-temperature SPE and coupling
(Figure 13f and g) [248]. Photons successfully coupled into
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Figure 13: On-chip integration of 2D SPE emitters. (a) False-color perspective view of an atomic force microscope image of the combined plasmonic
waveguide and monolayer WSe, system. (b) The relative position of the QD and waveguide as obtained from high-resolution PL and laser reflectivity
scans. Panel (a-b): reproduced from ref. [237]. Copyright 2018, American Chemical Society. (c) Upper panel: schematic of the device integrating a WSe,
flake onto a SiN waveguide. Lower panel: a cross-sectional view of the sample (left) and a cross-sectional mode profile (at 750 nm) of the waveguide
(right). (d) PL scan from the top of the sample. (e) Waveguide-coupled PL scan collected through the fiber. Panel (c-e): reproduced from ref. [242].
Copyright 2019, Springer Nature. (f) Schematic of the hybrid system, where an hBN flake is integrated onto an AIN waveguide. (g) Top panel: schematic
of the nonlocal collection scheme. Emission from the grating coupler of the waveguide (spot B) could be collected. Bottom panel: PL spectrum
collected from spot B (the grating coupler). The inset in the figure shows the second-order autocorrelation function g(z), panel (f-g): reproduced
from ref. [248]. Copyright 2019, Wiley-VCH. (h) Schematic of the coupled WSe, monolayer on the Si;N, waveguide. (i) The result of the second-order
autocorrelation measurement conducted through waveguide output 1 (g*?(0) = 0.150 + 0.093). Panel (h-i): reproduced from ref. [249]. Copyright

2021, American Chemical Society.

the waveguide and were transmitted through the grating
coupler, confirming SPE.

In 2021, Herranz et al. utilized SiN waveguide edges
to create strain-induced single-photon emitters in WSe,,
achieving effective waveguide coupling (Figure 13h) [249].
Emission analysis showed g@(0) = 0.150, confirming SPE
through waveguide coupling (Figure 13i). These results con-
firm the single-photon nature of the emission, indicating
that, despite background noise, the quality of SPE is main-
tained through waveguide coupling.

5 Other types of 2D photonic source

In the preceding sections, we have comprehensively
reviewed lasers and single-photon sources based on 2D vdW
materials, highlighting their exceptional performance in
optics and quantum optics, such as high gain, tunability, and
stability at room temperature. These attributes establish
2D vdW materials as strong candidates for next-generation
optoelectronic devices. However, the optical properties of
2D vdW materials extend beyond the domain of linear

optics; they also exhibit significant potential in nonlinear
optics. Notably, phenomena such as HHG and P-band emis-
sion have demonstrated unique advantages in 2D vdW
materials.

The HHG response in 2D vdW materials makes it suit-
able for integrated nonlinear nanophotonic devices, such
as optical modulators [250] and optical switches [251]. HHG
can produce significant nonlinear optical responses under
low-intensity laser conditions [252], which helps in the real-
ization of more efficient and compact optical devices. In
recent years, HHG in 2D vdW materials has attracted sig-
nificant research interest [253]-[255]. However, enhancing
HHG intensity and achieving more effective control over
the process remain key challenges that warrant further
exploration.

Saynéatjoki et al. investigated the nonlinear optical
responses of monolayer MoS,, focusing on third-harmonic
generation (THG) and fourth-harmonic generation [256].
The second-harmonic generation (SHG) map (Figure 14a,
top panel) shows SHG in monolayer MoS, but not in bilayer
MoS,, as SHG requires noncentrosymmetry, which is absent
in bilayers [25], [257]. One of the notable discoveries in this
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Figure 14: Tuning of high-order harmonic generation and exciton-exciton scattering induced P-band emission. (a) Top panel: the SHG map of MoS,
flakes. Bottom panel: the PL spectrum of the nonlinear signal from the monolayer MoS,. Reproduced from ref. [256]. Copyright 2017, Springer Nature.
(b) Top panel: schematic of the WS, monolayer placed on a silicon substrate with holes. Bottom panel: the SHG spectra collected from the WS, mono-
layer on cavity (red) and off cavity (blue) under excitation with an 800 nm fs pulsed laser. Insets: the microscope image of SHG emission from the WS,
monolayer in the on-cavity and off-cavity regions. Reproduced from ref. [266]. Copyright 2022, American Chemical Society. (c) Top panel: the optical

microscopy images of a right-handed supertwisted WS, spiral with a twist angle of approximately 17°. Bottom panel: the SHG spectra of super-
twisted WS, spirals with a twist angle of around 13°, demonstrating the SHG response for different layer numbers. The SHG intensity gradually
increases from 1to 5 layers and then drops rapidly from 6 to 7 layers, indicating different nonlinear optical properties in the twisted structure
depending on the layer number. Reproduced from ref. [267]. Copyright 2024, American Chemical Society. (d) Left panel: the PL spectra of an exfoliated
InSe crystal under different temperatures, ranging from 298 K to 100 K. Right panel (upper): the side view of the y-phase InSe crystal structure,
highlighting the out-of-plane dipole moment and the inhomogeneous charge distribution of excitons. Right panel (lower): the relationship between
the P-band emission intensity and the excitation density. Reproduced from ref. [27]. Copyright 2023, American Chemical Society.

study is the observation that THG is significantly stronger
than SHG (Figure 14a, bottom panel), contrary to conven-
tional expectations where the efficiency of higher-order
harmonic processes is typically weaker [258], [259]. The key
reason behind this unexpected result lies in the trigonal
warping of the electronic band structure of MoS,. The lack of
spatial inversion symmetry plays a critical role — though it
alone is insufficient for generating SHG, the combination of
noncentrosymmetric band structure and trigonal warping
facilitates efficient harmonic generation [93], [260]—[265].

In terms of integration with microcavities, Shi et al.
enhanced SHG in WS, by placing a monolayer over a pat-
terned silicon substrate to create a Fabry—Pérot micro-
cavity, amplifying SHG by up to 1,580 times (Figure 14b)
[266]. Coupling WS, with cavity modes at the excitation
wavelength (820 nm) resulted in electric field amplification
and improved directionality (with a divergence angle of
~5°), crucial for applications in integrated photonics and
optoelectronics.

Recently, Tong et al. demonstrated the synthesis of
supertwisted WS, spirals and their effect on nonlinear opti-
cal properties [267]. Using a water-assisted CVD method, the
spirals were grown on non-Euclidean surfaces to achieve
different twist angles (Figure 14c, top panel). The study
observed an oscillatory dependence of SHG intensity on

the layer number of the supertwisted spirals, which is
attributed to phase matching of nonlinear dipoles within
different layers (Figure 14c, bottom panel). Additionally,
varying the twist angle resulted in different periodic struc-
tures that enabled inversion symmetry breaking, leading
to an enhancement in the SHG signal by a factor of 2-136
compared with a single-layer structure.

As an important aspect of nonlinear optics in 2D vdW
materials, p-band emission has received much research
attention in recent years, especially concerning its related
properties at room temperature. P-band emission is a
superlinear and low-coherence light emission phenomenon
driven by exciton-exciton scattering [268], [269], providing
a low-coherence, high-intensity light source at low power,
holding promise for applications in speckle-free imaging
[270], [271], frequency-resolved lidar [272], and interfero-
metric sensing [273], [274].

Liang et al. investigated exciton dynamics and P-band
emissions in exfoliated InSe, revealing P-band emission
under CW excitation at low excitation density (~10'° cm~2),
unlike typical superlinear emissions requiring high den-
sities and pulsed modes [275]-[279]. This is enabled by
strong exciton—exciton scattering, due to enhanced spa-
tial confinement and unique material properties of InSe.
The y-phase InSe structure with an out-of-plane dipole
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orientation supports efficient exciton scattering (right panel
of Figure 14d, upper) [29], [143], [144], [147]. P-band inten-
sity followed a quadratic dependence on exciton density
(right panel of Figure 14d, lower), confirming pair scatter-
ing as the emission source. Cooling caused a blue shift in
P-band and X-peak energies, indicating increased exciton
stability and reduced phonon scattering. Meanwhile, energy
difference between P-band and X-peak energies increases
from 29.1 meV to 49.8 meV (Figure 14d, left panel), which is
attributed to increased kinetic energy loss during scatter-
ing as the temperature rises. Higher temperatures result in
increased kinetic energy for the excitons, which means that
more energy is converted to other forms, such as heat or
phonon energy, during exciton—exciton scattering, leading
to an increased energy difference, which supports the exci-
ton-exciton scattering model [269], [280]. This work demon-
strates strong excitonic interactions in InSe, paving the way
for efficient low-coherence light sources and near-infrared
optoelectronic devices.

6 Electrically driven 2D photonic
sources

The implementation of electrical pumping operation is a sig-
nificant milestone toward the practical application of emer-
gent 2D vdW light sources [281]. During the device structure
design, the key step is to enable effective injections of charge
carriers into 2D vdW semiconductors to promote light emis-
sion, as has always been one of the core issues concerned
in the traditional semiconductor field [282]-[284]. So far,
the widely used carrier injection techniques mainly include
electrostatic doping, tunneling junction, band alignment
engineering, and alternating current driven injection [285].
In the early stages of research, several groups developed
various types of LEDs based on 2D vdW semiconductors,
and the external quantum efficiency (EQE) of such exciton
emission dominated devices at room temperature reached
up to 5 % [197], [286]—-[291].

A significant issue is that the external quantum effi-
ciency (EQE) of early 2D LEDs (up to ~5 %) is significantly
lower than the PL quantum yield (approximately 20 %)
of the intrinsic 2D materials. The potential causes may
include the exacerbation of nonradiative recombination
channels, such as scattering caused by defects at the device
interfaces, exciton—exciton annihilation at high carrier
concentrations, nonradiative recombination involving exci-
ton complexes at high doping levels, ineffective or unbal-
anced carrier injection, carrier leakage, and low optical
outcoupling efficiency [290], [292]-[295]. While addressing
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these issues simultaneously to further enhance the EQE
remains challenging, some research groups have made
attempts. For example, in 2020, Kwon et al. demonstrated
a WSe,-based light-emitting transistor, which included a
monolayer WSe, channel and graphene contacts, coupled
with two separate top metal gates [296]. By adjusting the con-
tact barrier height, the type and density of injected charge
carriers could be independently controlled to achieve bal-
anced injection, resulting in bright emission near 750 nm
with a high peak EQE of ~6 % at room temperature. Sim-
ilarly, in 2024, Shin et al. also utilized a double-gate struc-
ture (containing graphene and silicon gates) to develop a
WSe,-based light-emitting transistor with balanced electron
and hole injection [297]. Furthermore, with the help of a
local graphene gate, electrons and holes could flow into the
1D region to form neutral excitons. The in-plane electric
field within the 1D region effectively confines the neutral
excitons and expels charged excitons through charge inter-
action, thus enhancing the efficiency of radiative recombi-
nation dominated by neutral excitons. The demonstrated
device exhibits an improved maximum EQE of ~8.2%
at room temperature. To achieve high-performance mid-
infrared LEDs, Gupta et al. placed the light-emitting BP/MoS,
heterostructure on Al,0,/Au to form a vertical resonant
cavity, which simultaneously enhances the SE rate via Pur-
cell effect and light outcoupling efficiency by appropriately
designing the cavity length [298]. In addition, a transparent
indium tin oxide conductive layer at the top can reduce
the parasitic resistance while having almost no impact on
light output. The measured operating wavelength is 3.65 pm
with an EQE of 4.43 %, and the overall performance exceeds
that of commercial mid-infrared LEDs, comparable to the
interband cascade lasers.

Compared to weakly coupled devices, EP LEDs in the
strong coupling regime offer higher regulatory flexibility.
Gu et al. reported the first room-temperature EP LED based
on 2D vdW materials, where multiple WS, monolayers serve
as the active layers to enhance exciton density, hBN serves
as the tunneling spacer layer, and graphene serves as the
transparent conductive layer (Figure 15a [299]). The above
structure is embedded in the bottom DBR (consisting of 12
pairs of SiO,/SiN, with a metal electrode deposited on the
surface) and the top silver/PMMA film to detect the EP emis-
sion. Angle-resolved electroluminescence spectra indicate
the emission follows the dispersion feature of EPs, with
the emission angle confined within +15° (Figure 15b). The
device displays an EQE of 0.1 %, comparable to the perfor-
mance of organic molecule- and carbon nanotube-based EP
LEDs reported at the time.
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Figure 15: Electrically pumped EP LEDs. (a) Schematic of an electrically pumped EP LED with different layers of the vdW heterostructure embedded
inside a bottom DBR and top silver mirrors. (b) Angle-resolved PL (left panel) and electroluminescence (right panel) of the device in (a). Reproduced
from ref. [299]. Copyright 2019, Springer Nature. (c) Schematic of an electrically pumped EP LED with electrical control of polarization and emission
angle. (d-f) Angle-resolved electroluminescence spectra at the lateral voltage of —6 V (d), =3 V (e), and 1.5 V (f) of the device in (c). Reproduced from

ref. [301]. Copyright 2022, Springer Nature.

Since EPs possess both excitonic and photonic charac-
teristics, real-time tuning of the emission properties can be
achieved by electrically controlling the carrier properties
[300]. Marin et al. further demonstrated an EP LED with
room-temperature electrical control of emission polariza-
tion (polarization ratio ranging from 20 % to —20 %) and
emission angle (from negative to positive [301]). The work-
ing principle involves applying a voltage to the electrode
deposited above the WSe, monolayer, which alters the band
alignment and the overall external electric field, thereby
modulating the in-plane carrier velocity and spatial dis-
tribution (Figure 15c). Through strong exciton—photon cou-
pling, the change in the in-plane exciton momentum is
inherited by the EP and converted into different photon
emission angles (Figure 15d—f). Simultaneously, the change
in the exciton momentum also alters the exciton energy at
the K and K’ points, leading to a change in the valley EP
population and strong valley polarization.

Furthermore, achieving electrically pumped single-
photon sources is critical for the development of practi-
cal on-chip quantum emitters [302]. An early example was
reported by Berraquero et al. where the device is based
on a single tunneling junction including Au/WSe,/hBN/
graphene/Au on a SiO,/Si substrate (Figure 16a [303]). Elec-
troluminescence spectra at 10 Kreveal several narrow emis-
sion peaks with linewidths ranging from 0.8 to 3nm in
the 750-850 nm range. The intensity-correlation function

exhibits the antibunched nature with a g®(0) of 0.29 +
0.08, expected for a single-photon source. Using WS, with
a larger bandgap, the SPE wavelength can be extended
from the near-infrared to the visible range (~640 nm). At
the same time, other research groups also observed similar
electrically pumped single defect emission using tunneling
junctions [304], [305].

For untreated materials, defects are usually randomly
distributed, so another key issue is to customize the
position of the single-photon emitter. Advanced strategies
include using atomic force microscopy or scanning
tunneling microscopy tips to generate on-demand
atomic-level defects to localize excitons [306], [307].
Recently, Guo et al. introduced an array of Au nanopillars
embedded in the WSe, based device to simultaneously
inject carriers and generate ordered strain (Figure 16b),
ultimately producing a site-controlled electrically injected
SPE with a g?(0) of 0.32 + 0.01 [308].

It is worth noting that electrically driven SPE has only
been realized in TMD materials, which primarily results
from excitons bound to defects with small binding ener-
gies and only operates at cryogenic temperatures. Besides,
the observed SPE is generally accompanied by strong emis-
sion backgrounds associated with other excitonic processes,
leading to a relatively low single-photon purity. The hBN
has acted as a potential candidate for room-temperature
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Figure 16: Electrically pumped single-photon sources. (a) Left panel: optical image of an electrically pumped single-photon source including
Au/WSe,/hBN/graphene/Au on the SiO,/Si substrate. Middle panel: energy band diagram with applied bias. Right panel: intensity-correlation function
of the electroluminescence signal. Reproduced from ref. [303]. Copyright 2016, Springer Nature. (b) Left panel: schematic of an electrically pumped
single-photon source, including graphene/hBN/WSe,/hBN/Au pillars/graphene. Middle panel: energy band diagram with applied bias. Right panel:
electroluminescence mapping over the active region. Reproduced from ref. [308]. Copyright 2023, American Chemical Society.

high-purity SPE, but achieving effective electrical injection
remains an unresolved challenge [229], [309].

7 Conclusion and outlook

In this review, we provide an in-depth introduction of light-
emission properties and advancements in 2D vdW materi-
als, specifically focusing on various light sources, such as
lasers, single-photon sources, and nonlinear optical applica-
tions. The review highlights several aspects of 2D vdW mate-
rials, including their unique excitonic properties, the prin-
ciples of light emission, and the development of semicon-
ductor lasers based on these materials. It covers advance-
ments in intralayer and interlayer exciton lasers, cavity-free
laser systems, and EP emissions, emphasizing the integra-
tion potential of SPE sources in on-chip systems and explor-
ing the nonlinear optical properties, like HHG and P-band
emission. Lastly, we introduce electrically pumped light
sources.

Moving forward, in the field of lasers, optimizing the
laser structure of 2D vdW materials offers the potential to

significantly lower the lasing threshold, enabling the devel-
opment of low-power, continuous-wave laser sources. These
sources are particularly suited for portable devices and
energy-critical applications, such as biosensors and on-chip
communication. The EP interactions inherent in 2D vdW
materials are ideally suited for on-chip photonic integra-
tion, which can greatly enhance the efficiency and minia-
turization of photonic systems, with wide-ranging applica-
tions in optical communication and quantum information
processing. In the realm of single-photon sources, 2D vdW
materials hold great promise for high-purity single-photon
generation, supporting advances in quantum communica-
tion and quantum computing. As material stacking tech-
nologies continue to progress, the role of 2D vdW materi-
als in the field of quantum information will expand fur-
ther. Additionally, the nonlinear optical properties of 2D
vdW materials provide new opportunities for creating com-
pact, tunable photonic devices. Furthermore, the unique
electronic and optical characteristics of 2D vdW materials
allow for integration into multifunctional, complex devices,
enabling the combination of various functions such as light
emission, detection, and modulation. This integration could
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significantly reduce system costs while enhancing device
performance. At the same time, 2D vdW materials exhibit
excellent stability at room temperature, allowing them to
operate across a wider range of temperatures, making them
ideal for diverse applications, from space missions to indus-
trial environments, without the need for additional cooling.

However, realizing these prospects presents several
technical challenges. Current fabrication techniques for 2D
vdW materials, such as mechanical exfoliation, are limited
in terms of scalability and cannot meet commercial pro-
duction demands. To enable the widespread use of 2D vdW
materials, reliable large-scale production methods, such as
CVD, must be developed. These methods need to ensure
the production of high-quality, defect-free materials, while
also allowing for precise control over layer thickness and
composition. Additionally, the sensitivity of 2D vdW materi-
als to external factors such as electric and magnetic fields
make it difficult to achieve precise and stable control over
their properties. Maintaining the stability of these proper-
ties in varying environmental conditions is a key challenge
for improving the reliability of devices. 2D vdW materi-
als are often integrated with other materials or substrates,
but the interface interactions between them can degrade
performance, leading to a loss of optical and electronic
properties. Therefore, optimizing these interfacial interac-
tions and employing techniques such as surface passiva-
tion or encapsulation are essential for enhancing device
performance. Despite the significant potential of 2D vdW
materials for SPE, maintaining their stability and photon
purity — especially in complex environments — remains a
challenge. Controlling noise and ensuring photon purity are
critical for improving their reliability in quantum informa-
tion applications. Finally, many 2D vdW materials exhibit an
indirect bandgap in their multilayer or bulk forms, which
limit their light emission efficiency. Research focused on
achieving efficient lasing or SPE in multilayer structures,
or on maintaining direct bandgap characteristics in thicker
layers, will be key to advancing the application of 2D vdW
materials in integrated photonics.

In summary, while the potential of 2D vdW materials in
photonics is immense, overcoming the current challenges
in fabrication, material integration, and performance sta-
bility will be crucial for realizing their full potential in next-
generation optical and quantum devices.
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