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I. COMPARISON WITH OTHER LLMS

In the main text, Llama-3.1-8B is mainly used for fine-tuning process. In this section,
we additionally tested whether other LLMs can have similar performance. We conducted
a benchmark test using three additional LLMs: Llama-3.2-1B, Llama-3.2-3B, and Mistral-
7B. The mean squared error (MSE) and the number of invalid outputs for each model are
presented in Table S1. The results indicate that models with more than 3 billion param-
eters demonstrated comparable prediction accuracy, emphasizing the general applicability
of LLM-based learning.

TABLE S1. Learning performance benchmark results across different LLMs.

Model MSE No. of invalid outputs

Llama-3.2-1B 1.70e-2 8
Llama-3.2-3B 8.25e-3 2
Llama-3.1-8B 7.23e-3 1
Mistral-7B 8.35e-4 0

II. IMPACT OF DATA SIZE ON PREDICTION ACCURACY

The key advantage of pre-trained LLMs lies in their ability to adapt efficiently to new
downstream tasks with relatively small datasets. Using 2000 samples demonstrates this
efficiency, reflecting the practical scale of photonic simulations, where such a dataset size is
achievable within a reasonable computational timeframe.

FIG. S1. Impact of data quantity on model performance.
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To investigate further the effect of data quantity on model performance, we conducted a
benchmark with different numbers of training examples (500, 1000, 1500, 2000, and 2500).
As illustrated in Figure S1, the prediction error decreases as the number of samples increases.
Notably, performance begins to saturate beyond 2000 samples, offering a balance between
practicality and effectiveness.

III. ANALYSIS OF INTERPOLATION AND EXTRAPOLATION PERFORMANCE

In the main text, the fine-tuned LLM model is tested solely on "interpolation," meaning
the range of variables in the test dataset is the same as that in the training dataset. To
explore the model’s capability for extrapolation, we conducted an additional experiment
with new test dataset.

We first define the extrapolation data as containing at least one variable that fall outside
the range of the training set. To quantify this, we first define the distance to the training
dataset for each structure. This distance is measured as the Euclidean distance between a
given structure and its closest neighbor in the training set. Mathematically, the distance L
is defined as

L(w, d, h) = min
(wi,di,hi)∈Xtrain

√
(w − wi)2 + (d− di)2 + (h− hi)2

where w, d, and h is the width, depth, and height of the meta-atom geometry, and
Xtrain denotes the set of training input vectors. Figure S2 presents a scatter plot showing
the relationship between distance and error, highlighting that the extrapolation dataset
frequently exhibits higher error rates.

FIG. S2. Prediction error for interpolation and extrapolation data. Each color represents a
different data type. For example, extrapolation-[height,width] indicates structures with height and
width outside the range of the training dataset.
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IV. FINE-TUNING WITH ALTERNATIVE INPUT REPRESENTATION

The spectral responses of periodic metasurfaces can be expressed in alternative formats,
such as resonance wavelengths and bandwidths. To evaluate whether the fine-tuned LLM
can effectively handle this type of input representation, we used the same dataset but first
filtered out structures with non-resonant characteristics, reducing the total from 2000 to
1708. For the inverse design task, the input was specified as: "The desired wavelength and
bandwidth are 470 nm and 50 nm." Figure S3 demonstrates the model’s ability to adapt
to this format, highlighting its versatility in managing various representations for inverse
design applications.

FIG. S3. Inverse design results with alternative input representations.

V. STASTICAL ANALYSIS OF IN-CONTEX LEARNING BENCHMARK RESULTS

Table S2 summarizes the experimental results of ICL with various prompt techniques in
the form of ‘number of successes / total attempts’.

TABLE S2. Benchmark results for numerical simulation of multilayer films using code generated
by ChatGPT. We report the number of correct responses obtained across 50 trials for each of the
four different prompt engineering techniques. Experiment conducted on January 15, 2025.

1 Layer 2 Layers 3 Layers 5 Layers 10 Layers

Zero-shot 6/50 8/50 7/50 8/50 5/50
Zero-shot CoT 7/50 8/50 8/50 5/50 2/50
One-shot CoT 46/50 45/50 38/50 38/50 35/50
Few-shot CoT 50/50 48/50 42/50 42/50 44/50

In this study, because the LLM’s output tends either to precisely match the groundtruth
or deviate significantly, conventional error measures such as MSE are less meaningful. In-
stead, we treated the success rate in Table S2 as a binomial distribution and applied a 95%
confidence interval for the success rate using the Wilson interval calculation formula. Specif-
ically, for each success count k out of n total attempts, we calculate the adjusted success
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rate p̂, the adjusted standard error SE, and finally the confidence interval CI according to
the formula:

p̂ =
k + z2/2

n+ z2
, SE =

√
p̂(1− p̂)

n+ z2
, CI = p̂± z · SE,

where z is the z-score corresponding to the desired confidence level (e.g., z = 1.96 for
a 95% confidence interval). This approach provides a more robust estimate of uncertainty
in scenarios where the model is either completely accurate or exhibits substantial devia-
tions. Figure 3 in the manuscript illustrates the adjusted success rate and its corresponding
confidence interval for each problem case.
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VI. PROMPT EXAMPLES

In this work, we employed four different prompting techniques: zero-shot, zero-shot CoT,
one-shot CoT, and few-shot CoT. Examples of prompts and their corresponding responses
for each technique are presented in Figures S4–S9.

VII. EXAMPLE OF TRANSFER MATRIX METHOD DOCUMENTATION

In the in-context learning approach, we used a prompt featuring descriptions of the trans-
fer matrix method (TMM) to assist the LLM in predicting the spectral response of multilay-
ered structures. The prompt included a general explanation of the TMM and two example
problems: one for a single-layer structure and the other for a triple-layer structure. The
complete details are provided in the document below.

A. Description

The transfer matrix method (TMM) is used to determine the reflection and transmission
properties of a multilayered structure. In TMM, each layer is represented by a characteristic
matrix Ci, which relates the electromagnetic fields on the reflection side to those on the
transmission side of the ith layer. For a structure with N layers, the overall transfer matrix
M is formed by cascading these N characteristic matrices, as shown below:

M =

N∏
i=1

Ci = C1C2C3 . . . CN−1CN

The characteristic matrix Ci for the ith layer is composed of two specific matrices: the
propagation matrix Pi, which accounts for the propagation phase within the ith layer,
and the transition matrix T(i−1,i), which describes the material transition at the boundary
between the (i − 1)th and the ith layers. The propagation and the transition matrices are
defined as follows, where ni represents the refractive index, ti denotes the thickness, and ηi
is the wave impedance, which is inversely proportional to the refractive index, for the ith

layer.

Pi =

[
exp(−inik0ti) 0

0 exp(inik0ti)

]

T(i−1,i) =
1

2

[
1 + ηi−1

ηi
1− ηi−1

ηi

1− ηi−1

ηi
1 + ηi−1

ηi

]
The transfer matrix M then can be expressed in terms of the propagation and the tran-

sition matrices as follows:

M =

N∏
i=1

Ci = C1C2 . . . CN−1CN = T(0,1)P1T(1,2)P2 . . . T(N−2,N−1)PN−1T(N−1,N)PN

When an incident field passes through the multilayered structure from air, we also account
for the transition between the last N th layer and the transmission-side air, denoted by Tlast.
By multiplying this last transition matrix Tlast = T(N,air) with the transfer matrix M , we
obtain the final transfer matrix Mfinal as shown below:

Mfinal = MTlast = T(0,1)P1T(1,2)P2 . . . T(N−2,N−1)PN−1T(N−1,N)PNT(N,air)
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From the matrix Mfinal, the reflection coefficient r and the transmission coefficients t
can be determined as follows:

t =
1

Mfinal(1, 1)

r =
Mfinal(2, 1)

Mfinal(1, 1)

Finally, the reflectance R and the transmittance T are obtained by taking the absolute
squares of the coefficients:

R = |r|2

T = |t|2

B. Example 1

### Question: When a plane wave with a wavelength of 400 nm is incident perpendic-
ularly, what are the reflectance and transmittance of the following structure?

### Structure: Air/Slab 1/Air
- Slab1: thickness 50 nm, refractive index 1.2 + 1i× 0.01
### Process: First, the material properties are defined as follows:

Air : nair = n0 = 1, ηair =
η0
nair

= η0, tair = 0

Slab1 : n1 = 1.2 + 1i× 0.01, η1 =
η0
n1

, t1 = 50× 10−9

The problem involves a single slab (N = 1) surrounded by air. Therefore, the final transfer
matrix is calculated as:

Mfinal = MTlast =

1∏
i=1

CiTlast = C1Tlast = T0,1P1T1,air

The corresponding matrices are defined as follows:

T0,1 =
1

2

[
1 + η0

η1
1− η0

η1

1− η0

η1
1 + η0

η1

]

Tlast = T1,air =
1

2

[
1 + η1

η0
1− η1

η0

1− η1

η0
1 + η1

η0

]

P1 =

[
exp(−in1k0t1) 0

0 exp(in1k0t1)

]
The final transfer matrix is then computed as:

Mfinal = C1Tlast = T0,1P1T1,air
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From the components of this matrix, the reflection (r) and transmission (t) coefficients are
determined as:

t =
1

Mfinal(1, 1)

r =
Mfinal(2, 1)

Mfinal(1, 1)

The reflectance (R) and transmittance (T ) are then calculated as:

R = |r|2

T = |t|2

Using these equations, the results are obtained as:

R = 0.021

T = 0.962

### Answer: The reflectance (R) and the transmittance (T ) is R = 0.021, T=0.962

C. Example 2

### Question: When a plane wave with a wavelength of 630 nm is incident perpendic-
ularly, what are the reflectance and transmittance of the following structure in the air?

### Structure: Air/Slab 1/Slab 2/Slab 3/Air
- Slab1: thickness 50 nm, refractive index 1.3 + 1i× 0.02
- Slab2: thickness 20 nm, refractive index 0.3 + 1i× 1.4
- Slab3: thickness 40 nm, refractive index 1.8 + 1i× 0.01

### Process: First, the material properties are defined as follows:

Air : nair = n0 = 1, ηair =
η0
nair

= η0, tair = 0

Slab1 : n1 = 1.3 + 1i× 0.02, η1 =
η0
n1

, t1 = 50× 10−9

Slab2 : n2 = 0.3 + 1i× 1.4, η2 =
η0
n2

, t2 = 20× 10−9

Slab3 : n3 = 1.8 + 1i× 0.01, η3 =
η0
n3

, t3 = 40× 10−9

The problem involves a triple slab (N = 3) surrounded by air. Therefore, the final transfer
matrix is calculated as:

Mfinal = MTlast =

3∏
i=1

CiTlast = C1C2C3Tlast = T0,1P1T1,2P2T2,3P3T3,air
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The corresponding matrices are defined as follows:

T0,1 =
1

2

[
1 + η0

η1
1− η0

η1

1− η0

η1
1 + η0

η1

]

T1,2 =
1

2

[
1 + η1

η2
1− η1

η2

1− η1

η2
1 + η1

η2

]

T2,3 =
1

2

[
1 + η2

η3
1− η2

η3

1− η2

η3
1 + η2

η3

]

Tlast = T3,air =
1

2

[
1 + η3

η0
1− η3

η0

1− η3

η0
1 + η3

η0

]

P1 =

[
exp(−in1k0t1) 0

0 exp(in1k0t1)

]

P2 =

[
exp(−in2k0t2) 0

0 exp(in2k0t2)

]

P3 =

[
exp(−in3k0t3) 0

0 exp(in3k0t3)

]
The final transfer matrix is then computed as:

Mfinal = C1C2C3Tlast = T0,1P1T1,2P2T2,3P3T3,air

From the components of this matrix, the reflection (r) and transmission (t) coefficients are
determined as:

t =
1

Mfinal(1, 1)

r =
Mfinal(2, 1)

Mfinal(1, 1)

The reflectance (R) and transmittance (T ) are then calculated as:

R = |r|2

T = |t|2

Using these equations, the results are obtained as:

R = 0.066

T = 0.823

### Answer: The reflectance (R) and the transmittance (T ) is R = 0.066, T = 0.823
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VIII. USER DEPENDENT PROMPTING STYLE

The prompt components beyond the lecture notes (such as problem definitions and
structural descriptions) can vary depending on the user’s approach. To verify the user-
independent effectiveness of the ICL approach, we conducted additional experiments using
the same lecture materials but with varying forms of problem-setting prompts. While the
original prompt included ### and used well-organized format, the additional experiments
employed unstructured, prose-style prompts, as illustrated in the following example. We
conducted 30 experiments for each case and the result summarized in Table S3.

“I want to calculate the transmittance and reflectance for a triple slab at a wavelength
of 400 nm.
The refractive index of Slab 1 is 1.45 with a thickness of 50 nm, the refractive index
of Slab 2 is 0.64 + 2.98i with a thickness of 25 nm, and the refractive index of Slab
3 is 1.768 with a thickness of 50 nm.
What are the values?"

TABLE S3. Benchmark results for different prompt style. Experiment conducted on January 09,
2025.

1 Layer 2 Layers 3 Layers 5 Layers 10 Layers

Zero-shot 1/30 7/30 8/30 3/30 3/30
Zero-shot CoT 1/30 2/30 6/30 1/30 3/30
One-shot CoT 27/30 29/30 26/30 25/30 25/30
Few-shot CoT 29/30 30/30 27/30 28/30 25/30

The result demonstrates a good alignment with the original experiments. This consistency
suggests that ICL effectively enhances the accuracy of LLM responses, even with varying
prompt styles. Based on these observations, we believe that ICL is broadly applicable,
regardless of differences in user input style.
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IX. PROMPT FOR CONVERSATIONAL DESIGN

For the conversational design of multilayer thin films, we prompted the LLM according
to the workflow outlined in Figure 4a in the main text. We included the specific prompts
used for each step, along with the corresponding code generated by ChatGPT in response.

A. Construct forward prediction model

We provided the document "Supplementary Materials VII.A–VII.C" and prompted the
LLM with, "Using the information, develop a code that can be generally applied to retrieve
the reflectance and transmittance of an N-layered structure across multiple wavelengths."

In response, the LLM generated forward prediction code as shown in Figure S10

B. Set objective function

We prompted the LLM with: “I aim to develop optimization code for designing multilayer
films to create a bandpass filter operating within the 500–600 nm range of the visible
spectrum. Generate code for the objective function.”

The LLM generated an appropriate objective function, such as the mean square error
between the desired and designed responses, as shown in Figure S11.

C. Set configuration

We prompted the LLM with: “Let’s consider a 5-layer structure and each layer is a
realistic dielectric material that can be used in actual fabrication. The upper limit of the
total thickness is 2 microns. Generate code for the configuration.”

The LLM generated configurational parameters and constraints, including maximum
thickness, number of layers, and realistic material property data, as shown in Figure S12

D. Conduct optimization

We prompted the LLM with: “Generate code for the entire optimization process with a
plot for the final result."

The LLM provided the full optimization code, incorporating the appropriate optimiza-
tion algorithm such as the evolutionary algorithm (Figure S13). We then executed the
optimization and attained the result shown in Fig S14.

E. Result feedback

We prompted the LLM with: “The optimization results are unsatisfactory. Let’s increase
the number of layers and try a different configuration. Please regenerate the optimization
code."

In response, the LLM regenerated code with the NUM_LAYERS parameter updated,
and offered additional material data such as Si3N4, and Hf2O. Figure S15 shows the result
from the modified code in the feedback process. The result shown in Figure 4c in the main
text is obtained from the modified code in the final conversational loop (Figure S16).
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FIG. S4. Results of failed zero-shot prompting for a single-layer structure. (a) The user’s input
prompt. (b) The LLM explains the solution for the problem but makes an error in considering
the interfaces. (c) The code generated based on the reasoning shows inconsistencies, including
errors such as using only the real part of the refractive index to compute transmittance. (d) The
LLM outputs incorrect final values for transmission and reflectance. The groundtruth values are
R = 0.3056 and T = 0.6631.
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FIG. S5. Results of failed zero-shot CoT prompting for a triple-layer structure. (a) The user’s
input prompt. (b) The LLM generates reasoning steps that are relevant but contain incorrect
mathematical definitions, such as errors in the transfer matrix and normalized impedance. (c) The
Python code produced based on the reasoning. (d) The output generated from executing the code.
The correct groundtruth values are R = 0.4421 and T = 0.2801.
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FIG. S6. Results of failed one-shot CoT prompting for a five-layer structure. (a) The user’s
input prompt. (b) The reasoning process generated by the LLM. The LLM accurately followed the
provided information to produce reasoning steps and equations. (c) The generated code for for-
ward prediction of the five-layer structure contains misinterpretations, such as incorrectly applying
conjugation to the phase term when defining the propagation matrix. (d) The results produced by
the LLM. The correct groundtruth values are R = 0.1998 and T = 0.1852.
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FIG. S7. Results of successful one-shot CoT prompting for a double-layer structure. (a) The user’s
input prompt. (b) The reasoning process generated by the LLM. The LLM accurately produced
reasoning steps and equations based on the provided information. (c) The generated code for
forward prediction of the double-layer structure. (d) The results from the LLM align with the
groundtruth values: R = 0.9079 and T = 0.0061.
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FIG. S8. Results of failed few-shot CoT prompting for a 10-layer structure. (a) The code
generated by the LLM contains an error in the matrix multiplication order, leading to an incorrect
reflectance prediction, although the transmittance prediction is correct. (b) The final prediction
from executing the code. The groundtruth values are R = 0.7784 and T = 0.0412.
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FIG. S9. Results of successful few-shot CoT prompting for a 10-layer case. (a) The user’s input
prompt. (b) The LLM’s reasoning process correctly followed the provided information to generate
accurate reasoning steps and equations. (c) The code produced by the LLM. (d) The final results
from executing the code align with the groundtruth values: R = 0.7784 and T = 0.0412.
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FIG. S10. Code generated for the numerical simulation.
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FIG. S11. Code generated for the objective function.

FIG. S12. Code generated for defining the structural configuration.
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FIG. S13. The complete code was generated during the initial conversational loop. Modifications
were applied to the visualization component.
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FIG. S14. A bandpass filter designed using the initial inverse design code shown in Figure S13.
(a) The spectral response of the optimized structure. (b) The layout of the optimized structure
consists of five alternating layers of high and low refractive index materials.

FIG. S15. A bandpass filter designed using the inverse design code modified with a single
conversational feedback. (a) The spectral response of the optimized structure. (b) The optimized
structure layout includes 7 alternating layers of TiO2 and SiO2.
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FIG. S16. The complete code was generated in the final conversational loop. Modifications were
applied to the visualization component.
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