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Abstract: Structured light is a widely used 3D imaging
method with a drawback that it typically requires a long
baseline length between the laser projector and the camera
sensor, which hinders its utilization in space-constrained
scenarios. On the other hand, the application of passive
3D imaging methods, such as depth from depth-dependent
point spread functions (PSFs), is impeded by the challenge in
measuring textureless scenes. Here, we combine the advan-
tages of both structured light and depth-dependent PSFs and
propose a baseline-free structured light 3D imaging system.
A metasurface is designed to project a structured dot array
and encode depth information in the double-helix pattern
of each dot simultaneously. Combined with a straightfor-
ward and fast algorithm, we demonstrate accurate 3D point
cloud acquisition for various real-world scenarios including
multiple cardboard boxes and a living human face. Such a
technique may find application in a broad range of areas
including consumer electronics and precision metrology.

Keywords: structured light 3D imaging; baseline-free; meta-
surface double-helix dot projector

1 Introduction

Three-dimensional (3D) imaging technology, due to its piv-
otal role in enabling machines and artificial intelligence
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to perceive and interact with the world, has drawn enor-
mous interest in recent years [1]-[5]. Structured light, as
one of the most commonly adopted 3D imaging technolo-
gies [6], can allow highly reliable acquisition of 3D point
clouds and has found extensive applications in emerging
fields such as consumer electronics and robotics. Structured
light technology relies on the triangulation principle to
measure depth, which consequently necessitates a baseline
length between the laser projector and the camera sen-
sor and oftentimes requires a complicated image-matching
algorithm [7], [8]. The baseline length between the projector
and receiver leads to bulky hardware. For instance, smart-
phones equipped with structured light-based 3D imaging
modules typically have multiple black openings or a long
black stripe on their screens. Moreover, an extremely long
baseline length is required for high-accuracy 3D imaging
at long distances. The matching algorithm, typically includ-
ing calibration, image correlation, cost aggregation, and
depth calculation, imposes a high demand on computational
resources [9], [10].

Depth-from-defocus (DfD) is another widely studied
3D imaging method, since it is not limited by the prin-
ciple of triangulation and can obtain depth information
from axial image blur using only a single camera [11]-[15].
More sophisticated depth-dependent point-spread func-
tions (PSFs) are also proposed to further improve the depth
accuracy of DID, such as double-helix PSF, which features
two foci rotating around a central point with the rotation
angle depending on the axial depth of the object point
[16]-[22]. Nevertheless, since its depth calculation relies on
the texture of the target object, DfD often fails in measur-
ing textureless scenes. In addition, DfD typically requires
the use of relatively complex image feature extraction and
matching algorithms, resulting in even higher computa-
tional costs. A 3D imaging system combining the high reli-
ability of conventional structured light techniques and the
compactness of the DD method is highly desired.

Optical metasurfaces [23]-[34], due to their versatility
in tailoring the light field at subwavelength scale, have been
widely adopt to remarkably enhance the performance and
compactness of 3D imaging systems [19], [35]-[43]. Notably,
Li etal. recently proposed a structured light-based 3D
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imaging method without triangulation based on 3D holo-
grams using metasurface [44]. By eliminating the need for
baseline length, the volume of structured light systems can
be reduced. Nonetheless, since the light intensity distribu-
tion of 3D holograms is only considered at a few discrete
distances, clear and continuous correspondence between
distance and hologram distribution is absent. In addition,
the image correlation algorithm is still rather complicated.
It remains a major challenge to build a compact structured
light-based 3D imaging system that allows high-accuracy
depth sensing for continuous depth values using a fast
algorithm.

Here, we propose and experimentally demonstrate
accurate 3D point cloud generation for various complex
scenes using a compact baseline-free structured light system
equipped with a metasurface double-helix dot projector.
Leveraging the versatility of metasurface to manipulate the
light field at subwavelength precision, we design and opti-
mize a metasurface projector that projects a structured dot
array and encodes depth information in the double-helix
pattern of each dot simultaneously. The rotation angle of
the double-helix pattern of each dot has a continuous mono-
tonic one-to-one correspondence relationship with depth. A
beam splitter is employed to fold the projection and receiv-
ing light path to enable a single-opening system configura-
tion. Combined with a straightforward and fast algorithm
to calculate depth from the rotation angle of the dot pat-
terns, we demonstrate accurate 3D point cloud acquisition
for scenes including multiple boxes and a living human face,
towards applications including robotic operation and 3D
face authentication.

2 Results and discussions

2.1 Framework of the baseline-free
structured light 3D imaging system

The framework of the baseline-free structured light 3D
imaging system is schematically illustrated in Figure 1. At
the projection end, with a collimated 635-nm laser as the
light source, a metasurface is designed and optimized to
project a 64 X 64 dot array with a 60° diagonal field-of-view
(FOV), while encoding depth information in the double-helix
pattern of each dot. The receiving end consists of a camera
with a sufficient FOV and high resolution. The optical axes of
the dot projector and the camera are perpendicular to each
other, with a beam splitter adopted to fold the projection
and receiving light paths and align the center of the camera
imaging plane with that of the projector. Consequently, the
projector and receiver share a single opening. From a single
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Figure 1: Schematic of baseline-free structured light 3D imaging system
using a metasurface double-helix dot projector. The light source of the
projector is a collimated laser, after being modulated by the metasurface,
a dot array with depth-related double-helix patterns is projected.

The rotation angle of each projected double-helix pattern can be mapped
to the depth value z,;, thus eliminating the baseline length requirement
in a traditional structured light system. The receiver is a conventional
camera that captures the structured light pattern. We use a beam splitter
to fold the projection and receiving light path and align the center

of the camera imaging plane with the center of the projector. Therefore,
the projector and receiver share a single opening. From a single image
captured by the camera, one can reconstruct an accurate 3D point cloud
of the scene.

image captured by the camera, based on the one-to-one
correspondence between the rotation angle of the double-
helix pattern and the object depth, an accurate 3D point
cloud of the scene can be generated.

2.2 Metasurface design and fabrication

To realize a dot projector with a depth-dependent double-
helix pattern, we first need to determine the transmission
phase distribution of the metasurface. The phase to generate
a rotating double-helix pattern is initialized by arranging
generalized Fresnel zones carrying spiral phase profiles
with gradually increasing topological quantum numbers
towards the outer rings of the zone plate [45], [46]. The phase
term y (u, ¢, ) is given by,

w(u @)= {[(1—1)x2+11<ou|<lzl) <u< <Ll) ,

l=1,...,L},

where u is the normalized radial coordinate and ¢, is the
azimuth angle in the aperture plane. [L, €] are adjustable
design parameters. Here we choose [L, €] = [12, 0.8] as our
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initial phase design to generate double-helix patterns with
suitable distance between the two main lobes. Compared
with the Gauss-Laguerre mode-based approach widely
used in the design of double-helix PSFs [19], [36], [47], the
adopted generalized Fresnel zone approach can generate
a more compact rotating pattern with the shape of the
pattern kept almost invariant over an extended depth of
field [45].

Subsequently, an iterative Fourier transform algorithm
is employed to maximize the energy in the main lobe of
the double-helix pattern within the 180° rotation range,
as shown in Figure 2a. The iterative optimization process
improves the peak intensity of the main lobe of the double-
helix pattern by 31% in average. The optimized phase
to generate double-helix patterns and the corresponding
patterns at different projection distances are shown in
Figure 2b. To avoid ambiguities, the double-helix patterns
beyond the 180° rotation range are designed to spread
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significantly, and can be easily distinguished from those
within the 180° rotation range.

Meanwhile, a Dammann grating phase that projects a
highly uniform 64 X 64 normal structured light dot array
over the 60° diagonal FOV is designed using the Gerch-
berg—Saxton algorithm [48]. Through the superposition of
the double-helix pattern encoding phase profile and the
Dammann grating phase profile, we obtain the target phase
profile of the metasurface that projects a double-helix dot
array, as shown in Figure 2c.

The unit cell of the metasurface is composed of silicon
nano-cylinder (top panel of Figure 2d), with a height H =
300 nm, and a period U = 250 nm. The diameter D of the
nano-cylinder is swept between 50 and 200 nm to achieve a
full 2r phase modulation and a transmittance above 78 %
(bottom panel of Figure 2d). As shown in Figure 2e, the
fabrication of the metasurface starts with spin-coating of
photoresist on a silicon-on-sapphire substrate, where the
thickness of the monocrystalline silicon film is 300 nm.
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Figure 2: Metasurface design and fabrication. (a) Optimization process of the metasurface phase profile. The forward propagation and inverse
propagation are calculated using the angular spectrum method. z, is the location of the metasurface plane, and z, ~ z,, are different propagation
distances. (pé is the double-helix pattern encoding phase after jth iteration. A} exp(i(p,’,) is the complex amplitude of the light field propagated to

targrt .
distance z,. A;"®

is the target amplitude distribution of the double-helix pattern. Aé exp<i¢£n) is the complex amplitude of the light field back

propagated to the metasurface plane from distance z,. k, is the weight of the weighted average of phase. (b) Optimized pattern encoding phase
profile and numerically calculated pattern as a function of the projected depth. (c) Phase design of the metasurface. The phase profile of the meta-
surface is the linear superposition of the Dammann grating phase which forms a dot array and the double-helix phase which tailors the pattern of
each dot. (d) The unit-cell of the metasurface is composed of silicon nanopillars with circular in-plane cross-sections on a sapphire substrate,

with height H = 300 nm, period U = 250 nm, the diameter D is swept between 50 and 200 nm to achieve a full 2 phase modulation and a high
transmittance. (e) Fabrication process of the metasurface. (f) Scanning electron microscopy images of the fabricated metasurface sample.
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Electron beam lithography (EBL) is employed to write the
metasurface pattern onto the photoresist. Subsequently,
the pattern is transferred to the silicon layer via reactive
ion etching (RIE). Finally, the photoresist layer is removed.
The scanning electron microscopy images of the fabricated
metasurface are shown in Figure 2f.

2.3 Experimental system setup

The photograph of the experimental setup is shown in
Figure 3a. As schematically illustrated in Figure 3b, the light
source of the experimental system is a 635-nm diode laser
(SZ Laser ZLMADG635-16GD). After being collimated, the laser
passes through a spatial filtering system consisting of two
lenses and a pinhole, which is used to improve the laser
beam quality, and is incident on the metasurface. Although
the relative positions of the projector and the camera in the
structured light system can be arbitrarily arranged, we use
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a beam splitter to fold the projection and receiving light
paths and align the center of the camera’s imaging plane
and the center of the metasurface at the projection end so
that they completely overlap in their corresponding mir-
ror space. Thereby, we can realize a single-opening system
configuration. Moreover, since the central position of each
dot is fixed in the captured image, the depth reconstruction
process can be drastically simplified and accelerated. The
camera is equipped with a CMOS image sensor (Daheng
Imaging ME2P — 2622 — 15U3M) with an active area of 12.8
% 12.8 mm? and a 12-mm focal length lens group with a low
image distortion.

The correspondence between distances and rotation
angles of the double helix pattern is calibrated before 3D
imaging of actual scenes. We place a flat plate at different
distances to measure the distributions of the projected dou-
ble helix dot array. The comparison between central areas
of the measured and calculated double helix dot arrays is
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Figure 3: Experimental system and calibration. (a) Photograph of the experimental set-up. (b) Schematic of the experimental set-up. (c) Calculated
(top panel) and experimentally measured (bottom panel) patterns of the central area of the dot array. (d) Calculated (red line) and experimentally
measured (blue star) rotation angles of the projected pattern as a function of the distance.
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shown in Figure 3c. Figure 3d shows that the calculated and
experimental measured relationships between distances
and the rotation angles of the double helix pattern are in
close agreement.

2.4 Experimental demonstration of 3D
imaging

To demonstrate 3D imaging of real-world scenarios, we first
setup a scene consisting of three cardboard boxes located at
different distances, a scenario that may occur in industrial
robotic operations, as shown in Figure 4a. Figure 4b shows
the raw image captured by the proposed system. In the
inset of Figure 4b, four double helix patterns at different dis-
tances are magnified, showcasing differences in their rota-
tion angles. Based on the experimentally calibrated rela-
tionship between the rotation angles of the double helix
patterns and distances and a straightforward algorithm that
calculates the rotation angle of the double helix pattern of
each dot, a 3D point cloud can be generated within 0.4 s
from the raw measurement, on a laptop computer with Intel
17-10875H CPU and 16 GB RAM. As shown in Figure 4c, the
calculated 3D point cloud accurately depicts the 3D distri-
bution of the scene, including the individual shapes and
precise absolute distances of each box. There are some less
accurate stray points in the 3D point cloud, which could
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potentially be minimized by enhancing the signal-to-noise
ratio of the imaging system and by optimizing the 3D recon-
struction algorithm. The reconstruction can also be further
accelerated when deploying to edge computation platforms,
through operator optimization or hardware acceleration
[49].

To quantitatively assess the depth measurement accu-
racy of the baseline-free structured light 3D imaging sys-
tem, we deploy a flat cardboard plate at different distances
and calculate the mean absolute error (MAE) between the
measured depth value of each dot and the true depth value
to characterize the distance measurement error. As shown
in Figure 4d, the depth measurement errors are predomi-
nantly below 1 cm for all distances within the depth measur-
ing range of 500 mm. We further calculate the relative depth
measurement error, defined as distance measurement error
Az, divided by true distance z,;, of our system. The cal-
culated relative depth measurement error of our system is
about 2.4 %, which is close to the relative depth measure-
ment error of within 2 % of typical commercial structured
light products, such as Intel® RealSense™ Depth Camera
D435.

A single-opening structured light system is ideally
suited for space-constrained platforms. Here, 3D reconstruc-
tion of a living human face, which is a widely used func-
tion on smartphones, is demonstrated using the proposed
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Figure 4: Experimental demonstration of 3D imaging. (a) Photograph of a target scene consisted of three cardboard boxes. (b) The raw image
captured by the proposed structured light system for the scene shown in panel (a). The red arrows point to the regions of the magnified dot patterns.
(c) Tilted view (left panel) and top view (right panel) of the 3D point cloud of the scene shown in panel (a) generated by the baseline-free structured
light 3D imaging system. (d) Quantitative test result of depth accuracy. The red stars are the measured mean absolute error (MAE) at each distance.
(e) Raw image captured by our structured light system for a living human face (the face of the 1st-author). (f) Tilted view (left panel) and side view
(right panel) of the 3D point cloud of the scene shown in panel (e) generated by the baseline-free structured light 3D imaging system.
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system. We capture an image of a living human face located
at distances between 20 and 40 cm, as shown in Figure 4e.
The resulting 3D point cloud exhibits fine features of the
human face, as shown in Figure 4f. Note that the zero-order
light spot in Figure 4e has a measured power of less than
0.01 mW, which complies with the laser safety standard for
human eyes [50], and could be substantially diminished by
optimizing the fabrication process of the metasurface.

3 Conclusions

In summary, we have demonstrated a baseline-free struc-
tured light system for accurate and rapid 3D imaging of
different real-world scenarios. By exploiting the subwave-
length precision light field manipulation ability of meta-
surfaces for the projection of double-helix dot array, high-
accuracy 3D imaging for complex scenes using a baseline-
free structured light system is achieved.

The single-opening configuration enabled by the folded
light path, which can be substantially shrunk in volume
via the standard lens module assembly process [51], holds
potential in various application scenarios that require
miniaturization of the 3D imaging system, such as 3D
face authentication of smartphones, robotic operations, and
endoscopes. For application scenarios that are highly sensi-
tive to the thickness of the 3D imaging system, such as smart-
phones, we envision that by adopting a 45° prism mirror
that has been widely applied in periscope telephoto mod-
ules on smartphones [52] to rotate the optics by 90° in the
housing, the thickness of the baseline-free single-opening
structured light system may be further reduced.

The straightforward depth calculation algorithm, sim-
pler than those of existing structured light techniques, may
empower high frame-rate 3D imaging on various mobile
platforms that can only carry limited computing resources.
For applications requiring larger FOV, by using near-to-far
field transformation methods that do not rely on the parax-
ial approximation in the Dammann grating phase design
process, the FOV of our system may be expanded up to 180°
[41], [53].

Similar to the effect of increasing baseline length
L in triangulation-based 3D structured light systems, the
increase of the diameter D of the metasurface projector in
our baseline-free system can be used to increase the depth
measurement accuracy and range. For instance, to maintain
the same relative depth measurement error Az,/z,; for
100 times further distance, triangulation-based 3D struc-
tured light systems need 100 times larger baseline length L,
while our baseline-free system needs 10 times larger diame-
ter D of the metasurface projector [21]. Apart from diameter
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D of the metasurface projector, the relatively low signal-
to-noise ratio (SNR) of the captured image and the fabri-
cation error of the metasurface are the other two factors
that restrict the current accuracy of our system and can be
further improved in the future engineering implementation
process. We anticipate that by applying a high-quality laser
source with higher power to improve the SNR of our cap-
tured image, refining our metasurface fabrication process,
as well as optimizing the metasurface design for better fab-
rication error tolerance, further improvement of our depth
measurement accuracy can be realized. Such improvements
in the 3D imaging range and accuracy of our system may
help it to be adapted to an even broader range of applica-
tion scenarios. Such a compact, accurate, and reliable 3D
imaging solution may be useful for numerous application
domains, including but not limited to consumer electronics,
robot vision, autonomous driving, and biomedical imaging.
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