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Abstract: We present a photonic mode converter based on a
grating structure, modeled and inversely designed by deep
neural networks. The neural network maps the physical
parameters of the grating to the grating responses, i.e.,
complex scattering parameters representing the reflected
modes from the grating structure. We design different neu-
ral networks to output the magnitudes and the phases of the
scattering parameters associated with the multiple reflected
modes. Following the training process, we use the trained
networks to perform inverse design of the grating based on
the desired magnitudes of the scattering parameters. The
inverse design effort provides a full control on the magni-
tudes and the phases of the reflected modes from the mode
converter. Our techniques help in creating a rich landscape
of multiple interfering waves that provide higher control on
optical near fields, complex resonators, and their relevant
nanophotonic applications.

Keywords: artificial neural networks; inverse design; grat-
ing; mode converter

1 Introduction

Light-matter interactions in photonic devices bring about
the emergence of several interdependent physical phenom-
ena. The design of those devices relies on analytical knowl-
edge, physical intuitions, and experiments.
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In most design cases, practitioners resort to numerical
simulations of the electromagnetic problems arising from
light-matter interactions in photonic devices. Since last two
decades, in addition to discovering and creating new func-
tionalities in photonic systems, there have been vigorous
efforts to maximize the capabilities of the devices through
various optimization and inverse design techniques. Those
efforts have been inevitable since novel photonic technolo-
gies often require a combination of small-size integration,
sub-wavelength features, efficient utilization of optical non-
linearity, broadband capabilities, etc. [1]-[6].

Inverse problems, in general, can be understood
from the perspective of forward problems. Forward prob-
lems, particularly in photonics and electromagnetism,
involve analytically and numerically solving the Maxwell’s
equations to obtain the responses of light interactions with
physical domains such as waveguides, couplers, and nanos-
tructures. These responses might be in the forms of scat-
tering coefficients, radiation patterns, bandwidth, etc. On
the other hand, in inverse problems, one or more desired
responses are selected, then an optimization algorithm tries
to achieve the desired response through systematic fine-
tuning of the material and geometrical parameters of the
physical domain [5]. Inverse problems often involve the
maximization or minimization of one or multiple objective
functions subject to some constraints. There are several
techniques to achieve inverse optimal design of photonics
devices. Among those techniques, we can mention evolu-
tionary algorithms such as genetic algorithm [7]-[11] and
particle swarm optimization [12]-[16], gradient-based meth-
ods for topology optimization [17]-[22], optimization via
deep neural networks [23]-[26], etc.

Due to the power of deep learning techniques in tack-
ling both forward and inverse problems, they have vigor-
ously expanded since the last decade. Furthermore, another
reason for the expansion is the emergence of computational
hardware, like graphical processing units [27], [28], and soft-
ware technologies [29] that have facilitated deep learning
methods.
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The deep neural networks, in forward problems, could
be exploited to map a collection of feature vectors of vari-
ables — input independent variables — to the output vectors
that are paired with the input vectors. A trained neural net-
work could predict new outputs from new input provided
that the input is within the space of the training data set.
The capability of neural networks in creating maps from the
input features to the output labels could be boosted by using
a large number of data samples in the training process. The
training mechanism in the neural network for a forward
problem is initiated by feeding data at the network’s input.
Initially, the parameters of the network (weights and biases)
are randomly generated. The network’s output is estimated
based on the generated parameters and the input data fea-
tures. The estimated values of output would be compared
with the actual labels from the dataset via a chosen loss
function. The gradients of the loss function with respect to
the weights and the biases are calculated, and the parame-
ters of the network are adjusted according to the procedure
stated in the gradient descent algorithm. This procedure
would repeat until the value of the loss function becomes
less than a defined threshold number.

On the other hand, an inverse design problem might be
solved with the assistance of a trained deep neural network
in which the weights and biases are fixed values. First, the
desired values for the dependent variables are selected.
Then, the mechanism is initiated by generating a random
set of values as input features of the neural network. The
trained neural network estimates the corresponding out-
puts. In this inverse design problem, gradient descent is
also the core algorithm to achieve optimal results. A loss
function is defined, and the error value between the desired
output and the calculated output is obtained from the loss
function. The derivatives of the loss function with respect to
the input features are computed. The updated values of the
input features can be obtained according to the algorithm.
This procedure repeats until the value of the loss function
becomes smaller than a defined threshold [5]. Two lucid
examples of using the mentioned mechanism in nanopho-
tonic inverse design are the studies conducted by Purifoy
et al. [30] and Lenaerts et al. [31], where the former used
deep neural networks for forward approximation of scat-
tered fields from a multi-layered dielectric particle. Further-
more, they used the trained neural network in inversely
design of the particle for desired scattered responses. In the
latter research work, a deep neural network was utilized
first for modeling the transmission spectra of a Fabry—Perot
resonator. The trained model was exploited to optimize
the physical parameters satisfying the desired transmission
spectra.
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This article uses inverse design for grating mode con-
verters in order to precisely engineer the amplitudes and
phases of multiple reflected modes at once. This is crucial in
advanced applications such as designing the intricate near
fields resulting from the interference of cascaded counter-
propagating modes created by a succession of engineered
mode converters [32], and creating novel optical resonators
with unconventional electromagnetic properties [33].

All the modeling through deep neural networks and the
inverse design process are performed by taking advantage
of the codes provided in well-established Python library
Tensorflow [34]. We use Python libraries Pandas [35] and
Scikit-learn [36] for data manipulation and some statistical
calculations.

2 Deep neural network modeling
of the grating waveguide mode
converter

Photonic waveguide gratings have been exploited in numer-
ous applications such as optical couplers [37], [38], wave-
length filtering [39], Bragg-reflection devices [40], mode-
converting devices [41], field enhancement and nonlinear
optical phenomena via resonant effects in grating dielectric
waveguide [42], [43] etc. Cascaded mode-conversion [32],
[33] is another intriguing application of waveguide gratings
which is also the subject of this letter.

The mode-conversion capability of a waveguide grating
emanates from the violation of mode orthogonality between
guided modes due to the presence of the longitudinal peri-
odic perturbation. The longitudinal phase matching condi-
tionrequired to be satisfied for the mode conversion is given

by [41], [44]:
2

B+ B -m(%) =0, M
where g, and f, are the propagation constants of the
excited mode and the converted mode respectively. The
parameters A and m are the grating period and an arbitrary
integer, respectively.

The dielectric waveguide is designed to guide the first
three TE modes at wavelength 1,550 nm. Silicon, with refrac-
tive index equal to 3.48, has been selected as the dielec-
tric material to be utilized for the waveguide and the grat-
ing. The dielectric portion of the waveguide is periodically
removed to create the grating structure. The area surround-
ing the structure is determined to be vacuum. The whole
structure is illustrated in Figure 2n on the bottom. The sym-
bols A, d and t are respectively denoting the grating period,
the depth of corrugations and the waveguide thickness.
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The structure is simulated by exciting the first TE mode
of the waveguide. The scattering coefficients S;;, S;; and
S3 are calculated. The S;;, S5 and Ss; are representing the
reflection of the 1st mode, the reflection of the 2nd mode
when the 1st mode is excited, and the reflection of the 3rd
mode when the 1st mode is excited, respectively. In the
simulation part, we sweep the parameters A, d, and duty
cycle over a range of values and compute the scattering
parameters. The duty cycle refers to the portion of the grat-
ing period that constitutes the grating material (Silicon). The
caption of the Figure 2 provides more information about the
specified ranges of the sweeping parameters. For the elec-
tromagnetic simulations of the grating mode converter, we
employed COMSOL Multiphysics which is a finite element
software. A data set comprising 50,545 samples is created
from the simulations. Figure 1 illustrates the norms of the
electric fields associated with three of these samples. Figure
la—c depict the grating mode-converter for highly efficient
conversion of the 1st mode to the 1st, the 2nd, and the 3rd
mode, respectively.

The input of the deep neural network (DNN) consists of
three nodes representing the physical features of the grating
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i.e. the period, corrugation depth, and the duty cycle. This
DNN is a supervised learning model, so that the labels cor-
responding to the input features are selected as two of the
scattering parameters (for instance |S, | and |Sy |). The DNN
architecture is illustrated in Figure 20. The DNN possesses
five hidden layers each with 600 nodes. The activation func-
tion designated for the first and the last two hidden layers is
the ReLU function. The Sigmoid function is specified as the
activation function of the hidden layer located at the middle
of the DNN. In the training process, a batch size 0of 128 is used.
The loss function for the forward DNN model is designated
as the logarithm of hyperbolic cosine which is given by:

_ 1 . e<y;1_y£;1)+e_()’i>l—yél)
L= ﬁz log :

i=1

e(yi’z_ygz) —+ e_(yi’z_ygz)

5 ) @

+ log

where n denotes the number of samples from the train-
ing set. The symbols y, and y,, indicate the DNN output

40 Mm

Figure 1: The plots illustrate the electric field norms in the presence of the grating mode-converter. The grating structure is distributed in the hori-
zontal direction from x = 25 pm to around x = 38.5 pm. The first waveguide mode is excited from the left side in all plots. In all three scenarios,

the figures illustrate a substantial decrease in the electric field on the right side of the gratings. This observation indicates that a substantial fraction
of the energy in the field is reflected by the grating mode-converter. (a) Demonstrates the reflection of the 1st mode. The magnitude of S, is equal

to 99 %. The geometrical properties that result in the value of |S;| are as follows: the period A is 340 nm, the corrugation depth d is 490 nm, and

the duty cycle is 0.216. (b) The plot illustrates the conversion of the 1st mode to the 2nd mode when the 1st mode is excited. The converted mode is
reflected back from the grating. The magnitude of S,, quantifies the extent to which the incident field is converted into the 2nd mode field. In this case,
the magnitude of S,, is equal to 86.5 %. The grating’s geometric properties that contribute to this outcome are as follows: the period (A) is 320 nm,
the corrugation depth (d) is 390 nm, and the duty cycle is 0.417. (c) This plot shows the conversion of the 1st mode to the 3rd mode when the 1st mode
is excited. The |S;,| indicates the how much of the incident mode field is converted to the 3rd mode. In this case the parameter |S;,| is equal to 97.5 %,
and the relevant geometrical properties of the grating are as follows: the period A is 343 nm, the corrugation depth d is 130 nm, and the duty cycle

is 0.74.
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Figure 2: The plots are in three groups. The first group (a-g) shows the performance of a double-output neural network created to output the two
scattering parameters’ magnitudes. The second group (h-m) demonstrates the changes in various parameters during the inverse design process
using the double-output neural network. The third group (n-0) shows the appearance of the grating mode converter and the utilized neural network.
(a)-(c) Illustration of the scatter plots of the predicted |S,,| over their actual values for different training epochs of 5, 1,000, and 10,000. Similar plots
for |Sy| are also depicted in (d)-(f), respectively. (g) Shows plot of the training (red) and validation (blue) losses over the 10,000 epochs.

(h)-(m) Depict the results obtained from the inverse design of the grating mode converter via the trained neural network for desired magnitude

of the scattering parameters |S,,| = 0.7 and |S3;| = 0.15. The inverse design algorithm is used many times leading to four different fairly accurate
solutions. Each figure shows the evolutions of different variables such as value of the mean squared-error function, the scattering parameters and
the physical features of the grating during optimization process. It is noteworthy that each colored curve in the figures is assigned to the same
inverse design solution. (n) Illustration of the shape of the grating mode-converter connected to a waveguide. The waveguide thickness is equal to
520 nm. For the simulations to establish the data set, the ranges of the grating period, the corrugation depth, and the duty cycle are respectively
chosen as 315-350 nm, 10-520 nm, and 0.1-0.9. (o) The neural network architecture used for the forward and the inverse problems is illustrated.

It possesses 3 input nodes - period “A”, corrugation depth “d”, and duty cycle - and 2 output nodes being magnitudes of the scattering parameters
ISy | and [S3].

in Figure 2a—f. The Figures show how the DNN’s prediction
performance improves with increasing epoch number. The

predictions. The corresponding ground truth values are rep-
resented by y; and yg, . The factor 2in loss function relation

2 denotes the numbers of the output nodes of the DNN. The
size of the training set is determined as 80 % of the number
of samples in the data set.

The scatter plots of the predicted |S,| and |Ss| over
their actual values for various training epochs are depicted

points in the scatter plots are from a test set that include
10 % of the whole data set. Figure 2g shows the decreasing
trend of the loss function with increasing epochs. The red
curve depicts the loss-function values for the training set,
which constitutes 80 % of the whole data set. The blue curve
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Table 1: The list of the statistical measures for the assessment

of the double-output DNN model for the prediction of |S,,| and |Sy].
MAE, MSE, and EVS stand for mean-absolute error, mean-squared error,
and explained-variance score respectively.

MAE MSE R? score EVS
For |Sx| 0.014353 0.001106 0.960086 0.960177
For S| 0.008272 0.000293 0.991627 0.991627

demonstrates the loss function values associated with the
validation dataset. Both curves suggest low values at their
end points without significant divergence between them.

We calculate some statistical measures such as “Mean-
squared error” (MSE), “R% Score”, and “Explained variance
score” (EVS) in order to quantitatively assess the DNN
performance in prediction of |S,;| and | Sy, |. These statistical
measures are listed in Table 1. The values in the Table are
attributed to models depicted in Figure 2c and f. The R?
score is a metric that measures how well the variability of
the independent variables (DNN inputs) can account for the
variability of the dependent variables (DNN outputs). In an
ideal case, R? score is equal to unity that implies the trained
model has zero error in its prediction ability. Another statis-
tical measure mentioned in Table 1 is EVS indicating how
much the prediction errors are dispersed in a regression
model. EVS ranges from 0 to 1, with unity being the ideal
number. A large value of EVS means that the variance of the
prediction error is small compared to the variance of the
actual labels which is desired.

3 Inverse design assisted by the
trained neural network model

The trained DNN with fixed weights and biases could be
exploited for the inverse design of the grating mode con-
verter. We define the desired values of the two scattering
parameters, for instance |S,| and |Sy|. The initial step in
the inverse design algorithm is to randomly generate the
physical features at the input nodes of the trained DNN.
The trained DNN estimates the scattering parameters based
on the features. The estimated scattering parameters are
evaluated by comparing them with the desired scattering
parameters using a loss function such as mean squared-
error (MSE), that has the given mathematical form:

L= ;((IS;’{I ~18a) + (1831~ |§31|)2), )

where the terms with the hat are associated with the con-
stant desired parameters, and the ones with “m” superscript
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are the DNN outputs which are the functions of the three
physical features of the mode converter. Based on the pro-
cedure in the gradient descent algorithms, it is required to
compute the derivatives of the loss function with respect to
the DNN’s input features. Subsequently, the updated version
of the features is computed based on the old values of the
features and the values obtained from the derivatives. For
the step size (learning rate) in the gradient descent, we use
the Adam optimizer [45] with learning rate parameter equal
to 0.001. This process continues until the value of the loss
function decreases below a specified threshold.

Let the selected loss function and the output function of
the trained neural network be represented by the symbols
L and J, respectively. The mathematical formulation for the
update equations to update the values of the grating geomet-
rical characteristics is as follows:

1 2
L= ﬁ Z(I(Am’ dmv tm) - Idesired) ’ @
JL
Am+1 = Am - aaAm; (5)
JL
dm+1 = dm - (xﬁ, (6)
JL
[ aa’ @

where the symbol m denotes the iteration number in the
gradient descent process. The J,.ieq 1S the target value
for which we aim to achieve through inverse design. The
trained DNN, represented by the symbol J, is a function of its
inputs: grating period (A), corrugation depth (d), and duty
cycle (¢).

The results of the inverse design for simultaneous
desired magnitudes of the scattering parameters |S,| =
0.7 and |Ss;| = 0.15 are illustrated in Figure 2h—m. These
curves are the results of running the optimization algorithm
several times in which we obtain eight different satisfac-
tory results that approximately meet the requirements. The
Figure 2h—m shows four of these eight cases to keep the
graph neat. We choose 3,000 as the iteration counts in
the optimization process. Each time utilization of the opti-
mization algorithm takes around 1 min. The changes in the
MSE loss function, |S,| and |Ss;| are depicted in Figure
2h-j. Moreover, the gradual developments of the period,
corrugation depth, and duty cycle from their initial ran-
dom guess to their final optimal values are illustrated in
Figure 2k-m. Table 2 lists the final optimal values of the
grating physical features from the eight optimal cases. The
table also includes four cases depicted in Figure 2, which
are written in non-black colors. These features are also
tested in COMSOL software and the results are listed in the
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Table 2: This table lists the values of the grating physical features obtained from the inverse design with desired scattering parameters |S,,| = 0.7,
|S3;] = 0.15. We use the COMSOL software to simulate the grating with the obtained physical features. The computed scattering parameters through
the software, indicated by [S,;.|, |S31c], are listed beside the estimated scattering parameters, denoted by |S,;,1, 1S3, |, obtained from the double-
output DNN model. The colored rows are related to the inverse design curves in Figure 2h-m. DC stands for duty cycle.

A d DC 1S21m| 21! 1S31m| IS31c |
329.97 294.46 0.23 0.71 0.71 0.17 0.18
33412 353.7 0.27 0.685 0.66 0.166 0.17
323.36 3321 0.289 0.696 0.696 0.167 0.168
324.96 300.47 0.26 0.695 0.688 0.16 0.16
317.65 319.6 0.3 0.699 0.72 0.15 0.17
322.14 379.28 0.4 0.685 0.665 0.16 0.17
330 383.87 0.35 0.681 0.688 0.18 0.2

Table 2. The computed scattering parameters in the soft-
ware (|S,.|, |S3;.|) are listed beside the calculated scattering
parameters obtained from the DNN model (|Sy,, 15 [S31m])-

4 Forward modeling and inverse
design via triple-outputs DNN

We also conduct inverse design of the grating mode-
converter to achieve desired values of |Sy|, |Sy|, and |Sy|
simultaneously. The first step is to train a new DNN model
that consists of three output nodes. This model will be used
to estimate the magnitude of the scattering parameters. The
DNN also has five hidden layers, each consisting of 600
nodes, and utilizes the same activation functions ReLU and
Sigmoid.

The key distinction between the double-output and the
triple-output DNN, aside from the number of output nodes,
is that the latter exploits a dropout layer after each hidden
layer. The dropout layer helps prevent the DNN model from
overfitting by randomly deactivating some nodes in each
layer in both forward and backward propagation. In this
case, the droupout layer randomly deactivate the 5 % of the
nodes in each layer.

The loss function utilized in the training process of
triple-output DNN is defined as follows:

1% e(yi’l_yi;l) + e_(yiﬁ_inl)
L= *Z 1
3ni3 2
+ IOg €<yi’2_y£;z) -Ze_(yi’z_ygz) @®
+log e,(y};3 -¥,) _z e—(yi;g -3, |

Table 3: The list of the statistical measures for the assessment of

the triple-output DNN model for the prediction of [S;;], Sy [, and [S3].
MAE, MSE, and EVS stand for mean-absolute error, mean-squared error,
and explained-variance score, respectively.

MAE MSE R? score EVS
[Si11 0.018118 0.001730 0.984159 0.984177
[Sx| 0.015257 0.001088 0.960734 0.960734
[S3] 0.012638 0.000419 0.988031 0.988114

where the factor 3 in the denominator represents the num-
ber of nodes in the output layer of the DNN.

To evaluate the performance of the triple-output DNN,
we calculate the aforementioned statistical measures which
is listed in Table 3. The metrics EVS and R? score, for all three
scattering parameters, are close to unity which is a sign of
an accurate model. Figure 3a—c illustrate the scatter plots
of the predicted |Sy;|, |Sy | and |Ss | over their ground truth
values for the training epoch of 10,000. These scatter plots
are helpful for qualitatively graphical evaluation of the DNN
model. The training loss and the validation loss curves are
also depicted in Figure 3d. The curves are almost overlapped
and hoth are extremely close to zero at their final points.

Similar to the inverse design of the mode converter
based on the double-output DNN, we could use the same pro-
cedure for the triple-output DNN. First, we need to specify
the desired values of the scattering parameters |Sy;|, [Sy|,
and |S;;|, where in this case they are selected to be 0.6, 0.6,
and 0.3 respectively. We employ the optimization algorithm
several times and obtain four cases that satisfy the con-
straints of the inverse design problem. The mathematical
form of the inverse problem loss function is given by:

1 N2 N2 N2
L= 3<(|s;’;| —18ul) "+ (1551 = 18l ) + (151 = 121 )

9
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Figure 3: There are two groups of plots. The first group (a-d) demonstrates the performance of a triple-output neural network designed to produce
the magnitudes of three scattering parameters. The second group (e-k) illustrates the inverse design process employing the triple-output network,
which shows the gradual variations of various parameters during the process. (a)-(c) Demonstrate the scatter plots of the predicted scattering
parameters |Sy|, |Sy|, and |S5,| over their actual values for the training epoch number equal to 10,000. The blue points represent the test set including
10 % of the data set. (d) Shows the plot of the training (red) and validation (blue) losses over the 10,000 epochs. (e)- (k) Demonstrate results obtained
from the inverse design of the grating mode converter for desired scattering parameters |S;,| = 0.6, |S,,| = 0.6, and |S;,| = 0.3.

The inverse design algorithm is used several times leading to four different solutions. Each figure shows the changes of different variables such

as MSE function, the scattering parameters and the physical features of the grating during optimization process. Each colored curve in the figures is
associated with the same inverse design solution.

Figure 3e-k depict the evolution of the MSE loss, the We use the achieved results of the inverse design
three scattering parameters, and the grating physical fea- problem in COMSOL software to check the accuracy of them.
tures, respectively. The results are listed in Table 4. It is clear that the model

Table 4: This table lists the values of the grating physical features obtained from the inverse design with desired scattering parameters |S;;| = 0.6,
[Sy1] = 0.6, |S3| = 0.3. The COMSOL software is exploited to simulate the grating mode converter with the obtained physical features. The computed
scattering parameters through the COMSOL software are indicated by [Sy|, 1Syl |S31c]- The columns denoted by |S;y, 15 1Syl [S31m| are

the estimated results from the triple-output DNN model. The colored rows are associated with the inverse design solution curves in Figure 3e-k.

A d DC IS11m| IS11cl IS21m| IS21c| IS31m| IS31c|
345.22 398.70 0.276 0.593 0.5 0.597 0.77 0.287 0.33
323.45 229.57 0.147 0.597 0.58 0.61 0.63 03 0.28

334.19 249.97 0.149 0.62 0.63 0.6 0.64 0.256 0.27
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predictions and the results from the software are in agree-
ment with one another.

5 Modeling and inverse design
of the phase of the scattering
parameters

The preceding sections examine the process of modeling the
magnitudes of the scattering parameters using deep neural
networks that include multiple output nodes. Moreover, we
perform the inverse design of the mode converter based
on the trained neural networks. Each scattering parameter
is a complex number. We also tried to model the phase of
the scattering parameters through various neural network
architectures. However, the efforts have not led to proper
convergence.

For instance, Figure 5a depicts the training and valida-
tion losses over epoch numbers associated with a double-
output DNN. The neural network is used to map the physical
attributes of the mode converter with the amplitude and
phase of S,;. The ultimate values of the curves suggest that
the losses are not sufficiently low. Furthermore, the curves
diverge from each other that probably denote overfitting
issue. Further evidence of the neural network’s limitations
is shown in Figure 5b, where the blue dots represent the
DNN’s predictions of the S,; phase compared to their actual
values from a test set. Many of the blue points are distant
from the red line, indicating the incapability of the DNN
model. The statistical measures, including explained vari-
ance score (EVS), coefficient of determination (R? score), and
mean squared error (MSE), for S,; phase in this example
are equal to 0.679, 0.679, and 0.36, respectively. These values
show the inadequacy of the DNN model. The reason behind
this phase retrieval issue is partly the phase wrapping in
the data set, partly the high sensitivity of the phase to the
geometric features of the grating. Indeed, a sudden change
in phase values causes a significant challenge for traditional
neural networks to accurately model these values. In con-
trast to the phase, the amplitude is properly modeled by
the double-output network, since the amplitude’s variation
in the data set possesses smooth quality. These different
behaviors of the phases and amplitudes result in highly
nonlinear relations between the inputs and outputs of the
neural network. In Figure 5c, the scatter plot shows the
double-output DNN’s predictions of |S,;| compared to their
ground truth values for the test set. The EVS, R? score, and
MSE values for |S,;| are equal to 0.913, 0.913, and 0.0024,
respectively.
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We tried three other methods to tackle the phase
retrieval. These include data augmentation, the use of alter-
native loss functions, and training a triple-output neural
network mapping the geometrical features to the real part,
imaginary part and the magnitude of the corresponding
scattering parameter. We found that the latter method
works better compared to the former two.

In the data augmentation method, the phase values in
the data set are shifted by small amounts according to the
following relation:

Dyrisied = s, + N'(7,0%) X a, (10)

where the noise to the phase q)521 is a small value, multi-
plied with a sample from a Gaussian distribution (N (r, 6%))
centered around 7 with few degrees standard deviation.
The parameter “a” thus gives us freedom to determine
how much we intend to alter the phase value in percent-
age. It is probable that the data augmentation improves
the network generalization ability. Figure 4c—f demonstrate
the scatter plots of the predicted phase of S, over the
ground truth values resulting from this data augmentation
method. The values of the parameter “a” (in percentage)
and standard deviation (in degrees) are different for each
subfigure.

Another method that we used to tackle the phase
retrieval problem is to exploit an alternative loss function
to alleviate the phase discontinuity. We used the cosine sim-
ilarity function with mathematical formulation:

L=1— COS(‘I)pred _ (I)ground)
Sy '

Sn (1)

The scatter plot associated with this method is shown
in Figure 4g. The figure indicates that the DNN is not
capable of properly representing the data. Finally, the
result of combining the data augmentation and loss func-
tion alteration is also shown in Figure 4g. The plot shows
small improvement, but generally it is not a very useful
model for retrieving the phase. Table 5 includes the list
of statistical measures for S, phase models using the data
augmentation and alternative loss function. It is evident
from the table content that the augmentation method with
o = 2°, and a = 1% possesses better statistical quali-
ties, particularly compared to using cosine similarity loss
function.

A different method for DNN modeling of the phase
includes creating a neural network model that links the
input features to the real part, imaginary part, and magni-
tude of the scattering parameter. In this scenario, the neural
network model must possess a high level of accuracy in esti-
mating both the real and imaginary components. This aids
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Figure 4: The subfigures demonstrate the performance of different methods to solve the scattering phase retrieval problem. (a) Demonstrates

the train and validation loss curves of the data augmentation method to solve the problem of phase retrieval. In the figure the curves at the bottom
indicate the training loss and the ones above are all showing validation loss. These curves do not align, pointing towards an overfitting problem,
which is problematic for the inverse design purpose. (b) Shows the loss curves of another method in which we use a cosine similarity loss function

(1 - cos (I>§;ed - (I>§;’““d)). Although, we do not face the problem overfitting problem here, the end points of the loss curves are not sufficiently low.
(c)-(h) Demonstrate scatter plot of applying a test set to networks explained in (a) and (b). The majority of the points are gathered around the red
bisector, however there is still a significant number of points, located too far away from this target.

Table 5: The list of the statistical measures for the assessment of the DNN model for the prediction of ®(S,,) by utilizing data augmentation and
alternative loss function. MAE, MSE, and EVS stand for mean-absolute error, mean-squared error, and explained-variance score, respectively.

MAE MSE R? score EVS
Triple-output DNN 0.1871 0.3107 0.7256 0.7256
Data augmentationc =2°,a=1% 0.215892 0.331471 0.707396 0.707733
Data augmentation o =2°,a =10 % 0.222337 0.343684 0.696625 0.696626
Data augmentation ¢ =10°, a =10 % 0.230801 0.412481 0.635953 0.636698
Data augmentation 6 =10°,a="1% 0.257033 0432282 0.618382 0.622001
Loss=1— cos((I)';;ea - q)f.;“’““"), and data augmentation 0.448349 0.958009 0154323 0.196733
Loss=1— cos(CDE;ed - q>§;°““d) 0.650124 1.730549 —0.527622 —0.388227

inreducing the error in the ratio between the imaginary and
real components. In this case, the DNN has the same con-
figuration as the ones mentioned in the previous sections.
Figure 5d demonstrates the training and validation losses
over epoch number for the DNN model with output nodes

Re(Sy), Im(S,,), and |Sy|. The curves clearly exhibits low
values for the losses in the final epochs. In Table 6, the sta-
tistical measures calculated for triple-output DNN are listed.
All numbers are adequately qualified to claim that the DNN
exhibits proper performance. Figure 5e—g demonstrate the
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Figure 5: There are two groups of plots. The first group (a-h) shows the performance of a triple-output network designed to output the real part,
imaginary part and the magnitude of one of the scattering parameters. The subfigures in the second group (i-0) illustrate the evolution of various
parameters during the inverse design process for solving the phase retrieval problem. (a) Shows double-output DNN training and validation losses
over epoch number. The neural network maps the mode converter physical properties to S,, amplitude and phase. (b) and (c) Show scatter plots
predicted vs ground truth values of the S,, phase and amplitude for a test set applied to the neural network mentioned in (a). (d) Demonstrates the
loss curves associated with the triple-output DNN. The output nodes are Re(S,,), Im(S,), and |S, . (e)-(g) Illustrate the scatter plots of the test set
applied to triple-output neural network mentioned in (c). These subfigures are representing the Re(S,), Im(S,;), and |S|. (h) Shows the scatter plot of
the phase @ (S,) calculated from the scatter points in subfigures (e) and (f). The phase is calculated by taking inverse tangent of the real and
imaginary parts of S,,. (i)-(0) Demonstrate results obtained from the inverse design of the grating mode converter for desired values Re(S,;) = —0.13,
Im(S,,) = 0.515, and |S,,| = 0.53. The inverse design algorithm is used several times leading to five different solutions. Each colored curve in the

figures is assigned to the same inverse design solution.

scatter plots of the predicted over the ground truth values
of the test set for Re(S,), Im(Sy), and |S,, |, respectively.
Exploiting the values shown in Figure 5e and f, we
are able to calculate the scatter plot points for the S,
phase, which is shown in Figure Sh. Compared to the
case illustrated in Figure 5b (associated with the double-
output network), the Figure 5h exhibits improvement, since

more scattered points are closer the middle ideal line.
In terms of the statistical measures, the EVS, R*> score,
and MSE values for this case are, respectively, equal to
0.72, 0.72, and 0.31. This shows some improvement com-
pared to case of double-output DNN. Furthermore, the
triple-output DNN also improves the statistical measures
associated with [S,| (Table 6) in comparison with the
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Table 6: The list of the statistical measures for the assessment of the
triple-output DNN model for the prediction of Re(S,), Im(S,;), and |S,,].
MAE, MSE, and EVS stand for mean-absolute error, mean-squared error,
and explained-variance score, respectively.

MAE MSE R? score EVS
Re(S,) 0.0155 0.0009 0.9468 0.9468
Im(Sy) 0.0156 0.0011 0.9559 0.9559
[Sxl 0.0144 0.0009 0.9663 0.966370

double-output DNN (EVS = 0.913, R? score = 0.913, MSE =
0.0024). Table 5 contains all statistical information to com-
pare the results from the triple-output DNN with the data
augmentation and using alternative loss function. It is evi-
dent that triple-output exhibits better results. This observa-
tion is also found by comparing Figures 5h with 4c-h, where
the scattered points are more distant from the ideal red
line.

There are other advanced methods capable of mod-
eling the complex behavior of such phase data. Physics-
informed neural networks (PINNs) is a method that the
Maxwell’s equations get involved into the training process
providing the physical constraints on the problem that ulti-
mately assist in generalization capability of the network
[46]. A hybrid utilization of adjoint methods and deep neural
networks is also a powerful method, where the network
performs rapid approximation, and the adjoint solver per-
forms fun-tuning the phase accuracy [47]. Now, based on the
trained triple-output DNN, it is possible to perform inverse
design of the mode converter to achieve pre-defined Re(S,,),
Im(S,,), and |S,;|. The method is the same as the one dis-
cussed in Sections 3 and 4. The primary advantage of this
inverse design is the ability to choose the real and imaginary
components of the associated scattering parameter depend-
ing on the desired phase value of the scattering parameter.
Hence, the results of the inverse design process consist of
the specific geometric characteristics of the grating that not
only generate the intended real and imaginary components
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of the scattering parameter, but also achieve the correct
phase.

For the present case, the selected desired values are
Re(Sy) = -0.13, Im(S,,) = 0.515, and |S, | = 0.53. Based on
the values of the real and imaginary parts, the desired phase
of S, is equal to ¢(S,;) = 104.17°. Figure 5e—j demonstrate
the results of the inverse design. Table 7 lists the numerical
results of the inverse design. It is evident from the last
column of the Table that the results are very close to the
desired phase value ¢(S,,) = 104.17°.

6 Conclusions

In this article, we exploit the power of deep neural networks
to perform inverse design of the waveguide grating mode
converter. For the inverse design goal, we first establish
various forward models based on deep neural networks for
the grating mode converter. The required data to train the
neural networks is obtained through the simulation of the
grating structure by the finite element software COMSOL
Multiphysics. The input nodes of the neural networks are
the grating period, corrugation depth, and the duty cycle.
The neural networks outputs are considered to be mag-
nitudes and the phases of the scattering parameters. The
scattering parameters are the reflection coefficients of the
converted modes reflected from the grating.

There are two layers of complexity to consider when
scaling the proposed technique: As the number of supported
optical modes increases, the number of possible mode con-
versions grows combinatorially, as discussed in previous
work [32]. The second level of complexity involves the
design and optimization of the individual mode converters
and their integration within a deep neural network-based
inverse design framework. This was the focus of our cur-
rent study. The computational complexity of our inverse
design methodology scales with the number of trainable
parameters in the neural network. As the number of guided

Table 7: The following table presents the values of the physical characteristics of the grating (first 3 columns) determined using the inverse design
process for the desired scattering values Re(S,;) = —0.13, Im(S,;) = 0.515, and |S,;| = 0.53. The computed scattering parameters through the COMSOL
software are indicated by the columns denoted by the subscript “c”. The columns denoted by subscript “m” are the estimated results from

the triple-output DNN model. The column denoted by ¢(S,, ) indicates the phase calculated by using the values in Re(S,,.) and Im(S,,.) columns.
Moreover, the column indicated by ¢(S,,,) is the phase calculated from the values Re(S,;,,) and Im(S,;,,) columns. The desired value of the phase
based on Re(S,;) = —0.13 and Im(S,;) = 0.515 is equal to 104.17°. The colored rows are relevant to the inverse design solution curves in Figure 5i-o.

A (nm) d (nm) Duty cycle Re(S;1m) Re(S;1c) Im(S31m) Im(Sy,) S21m| 1521 D(Sz1m) é(521,)
342.75 441.80 0.601 -0.1285 -0.15055 0.5136 0.4908 0.5317 0.5133 104.04° 107.05°
318.90 410.1 0.610 -0.1299 -0.1445 0.5149 0.5736 0.5299 0.5915 104.15° 104.14°
318.20 412.60 0.357 -0.1299 -0.1466 0.5150 0.4953 0.5299 0.5165 104.156° 106.49°
350.90 437.17 0.51900 -0.1277 -0.1314 0.5160 0.4649 0.5275 0.4831 103.90° 105.78°
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optical modes increases, the dimensionality of the scatter-
ing parameter space also grows, requiring a more com-
plex neural network architecture with a larger dataset for
training. However, our approach benefits from the abil-
ity of deep learning models to generalize efficiently across
large design spaces. Our trained models have demonstrated
high accuracy even for multi-output regression tasks, as
shown in the case of triple-output networks predicting mul-
tiple scattering parameters. The computational cost of each
inverse design process is largely independent of the num-
ber of modes. However, generating sufficient training data
through electromagnetic simulations (e.g., using COMSOL)
will become more time-intensive as more modes are con-
sidered. This can be computationally expensive, especially
for complex photonic structures where each data point
requires solving Maxwell’s equations with fine spatial res-
olution. While transfer learning and data augmentation
can partially mitigate this issue, the initial cost of dataset
generation remains a constraint. Computational cost is
another factor, as deep neural networks, particularly
those with large architectures, require significant GPU or
cloud computing resources for training. However, once
trained, the network provides near-instantaneous predic-
tions, making it highly advantageous over traditional iter-
ative optimization methods for large-scale inverse design
problems.

Finally, there’s also a subtlety related to the different
design parameters. In particular the waveguide thickness
is a crucial design parameter, because its variations influ-
ence the system in two fundamental ways. First, thickness
fluctuations alter the effective refractive index of the guided
modes, modifying their propagation constants. Since mode
conversion relies on phase matching, even small deviations
in thickness can cause phase mismatches and reduce con-
version efficiency. In extreme cases, thickness variations
may even cause certain modes to disappear, fundamen-
tally changing the mode structure of the system. Second,
the scattering properties of the grating-based mode con-
verter depend sensitively on the waveguide thickness. A
small shift in thickness alters the reflection/transmission
coefficients and changes the relative amplitudes and phases
of the converted modes. This can degrade the precision
of the designed grating, leading to unexpected behavior
in multi-mode interference and cascaded mode conversion
systems. Thus, controlling and accounting for thickness
variations is essential for ensuring robust inverse design. All
libraries and codes developed and used in this manuscript
are available in a link in Supplementary Materials. With
these efforts, we want to provide the photonics community
with a tool for controlling the phases the magnitudes of the
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multiple waves reflected from integrated mode converters.
This capability could be utilised in interference of multi-
Pple counter-propagating waves or advanced integrated pho-
tonic circuits.
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