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Abstract: Wepresent a photonicmode converter based on a

grating structure, modeled and inversely designed by deep

neural networks. The neural network maps the physical

parameters of the grating to the grating responses, i.e.,

complex scattering parameters representing the reflected

modes from the grating structure. We design different neu-

ral networks to output themagnitudes and the phases of the

scattering parameters associatedwith themultiple reflected

modes. Following the training process, we use the trained

networks to perform inverse design of the grating based on

the desired magnitudes of the scattering parameters. The

inverse design effort provides a full control on the magni-

tudes and the phases of the reflected modes from the mode

converter. Our techniques help in creating a rich landscape

ofmultiple interferingwaves that provide higher control on

optical near fields, complex resonators, and their relevant

nanophotonic applications.

Keywords: artificial neural networks; inverse design; grat-

ing; mode converter

1 Introduction

Light–matter interactions in photonic devices bring about

the emergence of several interdependent physical phenom-

ena. The design of those devices relies on analytical knowl-

edge, physical intuitions, and experiments.
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In most design cases, practitioners resort to numerical

simulations of the electromagnetic problems arising from

light–matter interactions in photonic devices. Since last two

decades, in addition to discovering and creating new func-

tionalities in photonic systems, there have been vigorous

efforts to maximize the capabilities of the devices through

various optimization and inverse design techniques. Those

efforts have been inevitable since novel photonic technolo-

gies often require a combination of small-size integration,

sub-wavelength features, efficient utilization of optical non-

linearity, broadband capabilities, etc. [1]–[6].

Inverse problems, in general, can be understood

from the perspective of forward problems. Forward prob-

lems, particularly in photonics and electromagnetism,

involve analytically and numerically solving the Maxwell’s

equations to obtain the responses of light interactions with

physical domains such as waveguides, couplers, and nanos-

tructures. These responses might be in the forms of scat-

tering coefficients, radiation patterns, bandwidth, etc. On

the other hand, in inverse problems, one or more desired

responses are selected, then an optimization algorithm tries

to achieve the desired response through systematic fine-

tuning of the material and geometrical parameters of the

physical domain [5]. Inverse problems often involve the

maximization or minimization of one or multiple objective

functions subject to some constraints. There are several

techniques to achieve inverse optimal design of photonics

devices. Among those techniques, we can mention evolu-

tionary algorithms such as genetic algorithm [7]–[11] and

particle swarmoptimization [12]–[16], gradient-basedmeth-

ods for topology optimization [17]–[22], optimization via

deep neural networks [23]–[26], etc.

Due to the power of deep learning techniques in tack-

ling both forward and inverse problems, they have vigor-

ously expanded since the last decade. Furthermore, another

reason for the expansion is the emergence of computational

hardware, like graphical processing units [27], [28], and soft-

ware technologies [29] that have facilitated deep learning

methods.
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The deep neural networks, in forward problems, could

be exploited to map a collection of feature vectors of vari-

ables – input independent variables – to the output vectors

that are paired with the input vectors. A trained neural net-

work could predict new outputs from new input provided

that the input is within the space of the training data set.

The capability of neural networks in creatingmaps from the

input features to the output labels could be boosted by using

a large number of data samples in the training process. The

training mechanism in the neural network for a forward

problem is initiated by feeding data at the network’s input.

Initially, the parameters of the network (weights and biases)

are randomly generated. The network’s output is estimated

based on the generated parameters and the input data fea-

tures. The estimated values of output would be compared

with the actual labels from the dataset via a chosen loss

function. The gradients of the loss function with respect to

the weights and the biases are calculated, and the parame-

ters of the network are adjusted according to the procedure

stated in the gradient descent algorithm. This procedure

would repeat until the value of the loss function becomes

less than a defined threshold number.

On the other hand, an inverse design problemmight be

solved with the assistance of a trained deep neural network

in which the weights and biases are fixed values. First, the

desired values for the dependent variables are selected.

Then, the mechanism is initiated by generating a random

set of values as input features of the neural network. The

trained neural network estimates the corresponding out-

puts. In this inverse design problem, gradient descent is

also the core algorithm to achieve optimal results. A loss

function is defined, and the error value between the desired

output and the calculated output is obtained from the loss

function. The derivatives of the loss function with respect to

the input features are computed. The updated values of the

input features can be obtained according to the algorithm.

This procedure repeats until the value of the loss function

becomes smaller than a defined threshold [5]. Two lucid

examples of using the mentioned mechanism in nanopho-

tonic inverse design are the studies conducted by Purifoy

et al. [30] and Lenaerts et al. [31], where the former used

deep neural networks for forward approximation of scat-

tered fields fromamulti-layered dielectric particle. Further-

more, they used the trained neural network in inversely

design of the particle for desired scattered responses. In the

latter research work, a deep neural network was utilized

first formodeling the transmission spectra of a Fabry–Perot

resonator. The trained model was exploited to optimize

the physical parameters satisfying the desired transmission

spectra.

This article uses inverse design for grating mode con-

verters in order to precisely engineer the amplitudes and

phases of multiple reflectedmodes at once. This is crucial in

advanced applications such as designing the intricate near

fields resulting from the interference of cascaded counter-

propagating modes created by a succession of engineered

mode converters [32], and creating novel optical resonators

with unconventional electromagnetic properties [33].

All themodeling through deep neural networks and the

inverse design process are performed by taking advantage

of the codes provided in well-established Python library

Tensorflow [34]. We use Python libraries Pandas [35] and

Scikit-learn [36] for data manipulation and some statistical

calculations.

2 Deep neural network modeling

of the grating waveguide mode

converter

Photonicwaveguide gratings have been exploited in numer-

ous applications such as optical couplers [37], [38], wave-

length filtering [39], Bragg-reflection devices [40], mode-

converting devices [41], field enhancement and nonlinear

optical phenomena via resonant effects in grating dielectric

waveguide [42], [43] etc. Cascaded mode-conversion [32],

[33] is another intriguing application of waveguide gratings

which is also the subject of this letter.

Themode-conversion capability of awaveguide grating

emanates from the violation ofmode orthogonality between

guided modes due to the presence of the longitudinal peri-

odic perturbation. The longitudinal phase matching condi-

tion required to be satisfied for themode conversion is given

by [41], [44]:

𝛽𝜇 + 𝛽𝜈 −m

(
2𝜋

Λ
)
= 0, (1)

where 𝛽𝜇 and 𝛽𝜈 are the propagation constants of the

excited mode and the converted mode respectively. The

parametersΛ andm are the grating period and an arbitrary

integer, respectively.

The dielectric waveguide is designed to guide the first

three TEmodes at wavelength 1,550 nm. Silicon, with refrac-

tive index equal to 3.48, has been selected as the dielec-

tric material to be utilized for the waveguide and the grat-

ing. The dielectric portion of the waveguide is periodically

removed to create the grating structure. The area surround-

ing the structure is determined to be vacuum. The whole

structure is illustrated in Figure 2n on the bottom. The sym-

bolsΛ, d and t are respectively denoting the grating period,
the depth of corrugations and the waveguide thickness.
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The structure is simulated by exciting the first TEmode

of the waveguide. The scattering coefficients S11, S21 and

S31 are calculated. The S11, S21 and S31 are representing the

reflection of the 1st mode, the reflection of the 2nd mode

when the 1st mode is excited, and the reflection of the 3rd

mode when the 1st mode is excited, respectively. In the

simulation part, we sweep the parameters Λ, d, and duty

cycle over a range of values and compute the scattering

parameters. The duty cycle refers to the portion of the grat-

ing period that constitutes the gratingmaterial (Silicon). The

caption of the Figure 2 providesmore information about the

specified ranges of the sweeping parameters. For the elec-

tromagnetic simulations of the grating mode converter, we

employed COMSOL Multiphysics which is a finite element

software. A data set comprising 50,545 samples is created

from the simulations. Figure 1 illustrates the norms of the

electric fields associated with three of these samples. Figure

1a–c depict the grating mode-converter for highly efficient

conversion of the 1st mode to the 1st, the 2nd, and the 3rd

mode, respectively.

The input of the deep neural network (DNN) consists of

three nodes representing the physical features of the grating

i.e. the period, corrugation depth, and the duty cycle. This

DNN is a supervised learning model, so that the labels cor-

responding to the input features are selected as two of the

scattering parameters (for instance |S21| and |S31|). The DNN
architecture is illustrated in Figure 2o. The DNN possesses

five hidden layers each with 600 nodes. The activation func-

tion designated for the first and the last two hidden layers is

the ReLU function. The Sigmoid function is specified as the

activation function of the hidden layer located at themiddle

of theDNN. In the training process, a batch size of 128 is used.

The loss function for the forward DNN model is designated

as the logarithm of hyperbolic cosine which is given by:

L = 1

2n

n∑
i=1
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⎞⎟⎟⎠
⎞⎟⎟⎠, (2)

where n denotes the number of samples from the train-

ing set. The symbols yP1 and yP2
indicate the DNN output

Figure 1: The plots illustrate the electric field norms in the presence of the grating mode-converter. The grating structure is distributed in the hori-

zontal direction from x = 25 μm to around x = 38.5 μm. The first waveguide mode is excited from the left side in all plots. In all three scenarios,

the figures illustrate a substantial decrease in the electric field on the right side of the gratings. This observation indicates that a substantial fraction

of the energy in the field is reflected by the grating mode-converter. (a) Demonstrates the reflection of the 1st mode. The magnitude of S11 is equal

to 99 %. The geometrical properties that result in the value of |S11| are as follows: the period𝚲 is 340 nm, the corrugation depth d is 490 nm, and

the duty cycle is 0.216. (b) The plot illustrates the conversion of the 1st mode to the 2nd mode when the 1st mode is excited. The converted mode is

reflected back from the grating. The magnitude of S21 quantifies the extent to which the incident field is converted into the 2nd mode field. In this case,

the magnitude of S21 is equal to 86.5 %. The grating’s geometric properties that contribute to this outcome are as follows: the period (𝚲) is 320 nm,
the corrugation depth (d) is 390 nm, and the duty cycle is 0.417. (c) This plot shows the conversion of the 1st mode to the 3rd mode when the 1st mode

is excited. The |S31| indicates the how much of the incident mode field is converted to the 3rd mode. In this case the parameter |S31| is equal to 97.5 %,
and the relevant geometrical properties of the grating are as follows: the period𝚲 is 343 nm, the corrugation depth d is 130 nm, and the duty cycle

is 0.74.
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Figure 2: The plots are in three groups. The first group (a–g) shows the performance of a double-output neural network created to output the two

scattering parameters’ magnitudes. The second group (h–m) demonstrates the changes in various parameters during the inverse design process

using the double-output neural network. The third group (n–o) shows the appearance of the grating mode converter and the utilized neural network.

(a)–(c) Illustration of the scatter plots of the predicted |S21| over their actual values for different training epochs of 5, 1,000, and 10,000. Similar plots
for |S31| are also depicted in (d)–(f), respectively. (g) Shows plot of the training (red) and validation (blue) losses over the 10,000 epochs.
(h)–(m) Depict the results obtained from the inverse design of the grating mode converter via the trained neural network for desired magnitude

of the scattering parameters |S21| = 0.7 and |S31| = 0.15. The inverse design algorithm is used many times leading to four different fairly accurate

solutions. Each figure shows the evolutions of different variables such as value of the mean squared-error function, the scattering parameters and

the physical features of the grating during optimization process. It is noteworthy that each colored curve in the figures is assigned to the same

inverse design solution. (n) Illustration of the shape of the grating mode-converter connected to a waveguide. The waveguide thickness is equal to

520 nm. For the simulations to establish the data set, the ranges of the grating period, the corrugation depth, and the duty cycle are respectively

chosen as 315–350 nm, 10–520 nm, and 0.1–0.9. (o) The neural network architecture used for the forward and the inverse problems is illustrated.

It possesses 3 input nodes – period “Λ”, corrugation depth “d”, and duty cycle – and 2 output nodes being magnitudes of the scattering parameters
|S21| and |S31|.

predictions. The corresponding ground truth values are rep-

resented by yG1 and yG2 . The factor 2 in loss function relation

2 denotes the numbers of the output nodes of the DNN. The

size of the training set is determined as 80% of the number

of samples in the data set.

The scatter plots of the predicted |S21| and |S31| over
their actual values for various training epochs are depicted

in Figure 2a–f. The Figures show how the DNN’s prediction

performance improves with increasing epoch number. The

points in the scatter plots are from a test set that include

10% of the whole data set. Figure 2g shows the decreasing

trend of the loss function with increasing epochs. The red

curve depicts the loss-function values for the training set,

which constitutes 80% of the whole data set. The blue curve
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Table 1: The list of the statistical measures for the assessment

of the double-output DNN model for the prediction of |S21| and |S31|.
MAE, MSE, and EVS stand for mean-absolute error, mean-squared error,

and explained-variance score respectively.

MAE MSE R2 score EVS

For |S21| 0.014353 0.001106 0.960086 0.960177

For |S31| 0.008272 0.000293 0.991627 0.991627

demonstrates the loss function values associated with the

validation dataset. Both curves suggest low values at their

end points without significant divergence between them.

We calculate some statistical measures such as “Mean-

squared error” (MSE), “R2 Score”, and “Explained variance

score” (EVS) in order to quantitatively assess the DNN

performance in prediction of |S21| and |S31|. These statistical
measures are listed in Table 1. The values in the Table are

attributed to models depicted in Figure 2c and f. The R
2

score is a metric that measures how well the variability of

the independent variables (DNN inputs) can account for the

variability of the dependent variables (DNN outputs). In an

ideal case, R2 score is equal to unity that implies the trained

model has zero error in its prediction ability. Another statis-

tical measure mentioned in Table 1 is EVS indicating how

much the prediction errors are dispersed in a regression

model. EVS ranges from 0 to 1, with unity being the ideal

number. A large value of EVS means that the variance of the

prediction error is small compared to the variance of the

actual labels which is desired.

3 Inverse design assisted by the

trained neural network model

The trained DNN with fixed weights and biases could be

exploited for the inverse design of the grating mode con-

verter. We define the desired values of the two scattering

parameters, for instance |S21| and |S31|. The initial step in

the inverse design algorithm is to randomly generate the

physical features at the input nodes of the trained DNN.

The trained DNN estimates the scattering parameters based

on the features. The estimated scattering parameters are

evaluated by comparing them with the desired scattering

parameters using a loss function such as mean squared-

error (MSE), that has the given mathematical form:

L = 1

2

((|Sm
21
|− |Ŝ21|)2 + (|Sm

31
|− |Ŝ31|)2

)
, (3)

where the terms with the hat are associated with the con-

stant desired parameters, and the oneswith “m” superscript

are the DNN outputs which are the functions of the three

physical features of the mode converter. Based on the pro-

cedure in the gradient descent algorithms, it is required to

compute the derivatives of the loss function with respect to

the DNN’s input features. Subsequently, the updated version

of the features is computed based on the old values of the

features and the values obtained from the derivatives. For

the step size (learning rate) in the gradient descent, we use

the Adam optimizer [45] with learning rate parameter equal

to 0.001. This process continues until the value of the loss

function decreases below a specified threshold.

Let the selected loss function and the output function of

the trained neural network be represented by the symbols

L and J, respectively. The mathematical formulation for the

update equations to update the values of the grating geomet-

rical characteristics is as follows:

L = 1

n

∑(
J(Λm, dm, tm )− Jdesired

)2
, (4)

Λm+1 = Λm − 𝛼
𝜕 L

𝜕Λm

, (5)

dm+1 = dm − 𝛼
𝜕 L

𝜕 dm
, (6)

tm+1 = tm − 𝛼
𝜕 L

𝜕 tm
, (7)

where the symbol m denotes the iteration number in the

gradient descent process. The Jdesired is the target value

for which we aim to achieve through inverse design. The

trainedDNN, represented by the symbol J, is a function of its

inputs: grating period (Λ), corrugation depth (d), and duty

cycle (t).

The results of the inverse design for simultaneous

desired magnitudes of the scattering parameters |S21| =
0.7 and |S31| = 0.15 are illustrated in Figure 2h–m. These

curves are the results of running the optimization algorithm

several times in which we obtain eight different satisfac-

tory results that approximately meet the requirements. The

Figure 2h–m shows four of these eight cases to keep the

graph neat. We choose 3,000 as the iteration counts in

the optimization process. Each time utilization of the opti-

mization algorithm takes around 1 min. The changes in the

MSE loss function, |S21| and |S31| are depicted in Figure

2h–j. Moreover, the gradual developments of the period,

corrugation depth, and duty cycle from their initial ran-

dom guess to their final optimal values are illustrated in

Figure 2k–m. Table 2 lists the final optimal values of the

grating physical features from the eight optimal cases. The

table also includes four cases depicted in Figure 2, which

are written in non-black colors. These features are also

tested in COMSOL software and the results are listed in the
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Table 2: This table lists the values of the grating physical features obtained from the inverse design with desired scattering parameters |S21| = 0.7,

|S31| = 0.15. We use the COMSOL software to simulate the grating with the obtained physical features. The computed scattering parameters through

the software, indicated by |S21c|, |S31c|, are listed beside the estimated scattering parameters, denoted by |S21m|, |S31m|, obtained from the double-

output DNN model. The colored rows are related to the inverse design curves in Figure 2h–m. DC stands for duty cycle.

d DC Sm Sc Sm Sc

329.97 294.46 0.23 0.71 0.71 0.17 0.18

327.63 365.43 0.31 0.68 0.69 0.18 0.19

334.12 353.7 0.27 0.685 0.66 0.166 0.17

323.36 332.1 0.289 0.696 0.696 0.167 0.168

324.96 300.47 0.26 0.695 0.688 0.16 0.16

317.65 319.6 0.3 0.699 0.72 0.15 0.17

322.14 379.28 0.4 0.685 0.665 0.16 0.17

330 383.87 0.35 0.681 0.688 0.18 0.2

Table 2. The computed scattering parameters in the soft-

ware (|S21c|, |S31c|) are listed beside the calculated scattering
parameters obtained from the DNN model (|S21m|, |S31m|).

4 Forward modeling and inverse

design via triple-outputs DNN

We also conduct inverse design of the grating mode-

converter to achieve desired values of |S11|, |S21|, and |S31|
simultaneously. The first step is to train a new DNN model

that consists of three output nodes. This model will be used

to estimate the magnitude of the scattering parameters. The

DNN also has five hidden layers, each consisting of 600

nodes, and utilizes the same activation functions ReLU and

Sigmoid.

The key distinction between the double-output and the

triple-output DNN, aside from the number of output nodes,

is that the latter exploits a dropout layer after each hidden

layer. The dropout layer helps prevent the DNNmodel from

overfitting by randomly deactivating some nodes in each

layer in both forward and backward propagation. In this

case, the droupout layer randomly deactivate the 5% of the

nodes in each layer.

The loss function utilized in the training process of

triple-output DNN is defined as follows:

L = 1

3n
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⎛⎜⎜⎝log
⎛⎜⎜⎝
e

(
y
i

P1
−y

i

G1

)
+ e

−
(
y
i

P1
−y

i

G1

)

2

⎞⎟⎟⎠
+ log

⎛⎜⎜⎝
e

(
y
i

P2
−y

i

G2

)
+ e

−
(
y
i

P2
−y

i

G2

)

2

⎞⎟⎟⎠
+ log

⎛⎜⎜⎝
e

(
y
i

P3
−y

i

G3

)
+ e

−
(
y
i

P3
−y

i

G3

)

2

⎞⎟⎟⎠
⎞⎟⎟⎠,

(8)

Table 3: The list of the statistical measures for the assessment of

the triple-output DNN model for the prediction of |S11|, |S21|, and |S31|.
MAE, MSE, and EVS stand for mean-absolute error, mean-squared error,

and explained-variance score, respectively.

MAE MSE R2 score EVS

|S11| 0.018118 0.001730 0.984159 0.984177

|S21| 0.015257 0.001088 0.960734 0.960734

|S31| 0.012638 0.000419 0.988031 0.988114

where the factor 3 in the denominator represents the num-

ber of nodes in the output layer of the DNN.

To evaluate the performance of the triple-output DNN,

we calculate the aforementioned statistical measures which

is listed in Table 3. Themetrics EVS andR2 score, for all three

scattering parameters, are close to unity which is a sign of

an accurate model. Figure 3a–c illustrate the scatter plots

of the predicted |S11|, |S21| and |S31| over their ground truth
values for the training epoch of 10,000. These scatter plots

are helpful for qualitatively graphical evaluation of theDNN

model. The training loss and the validation loss curves are

also depicted in Figure 3d. The curves are almost overlapped

and both are extremely close to zero at their final points.

Similar to the inverse design of the mode converter

based on the double-outputDNN,we could use the samepro-

cedure for the triple-output DNN. First, we need to specify

the desired values of the scattering parameters |S11|, |S21|,
and |S31|, where in this case they are selected to be 0.6, 0.6,
and 0.3 respectively. We employ the optimization algorithm

several times and obtain four cases that satisfy the con-

straints of the inverse design problem. The mathematical

form of the inverse problem loss function is given by:

L = 1

3

((|Sm
11
|− |Ŝ11|)2 + (|Sm

21
|− |Ŝ21|)2+ (|Sm

31
|− |Ŝ31|)2

)

(9)
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Figure 3: There are two groups of plots. The first group (a–d) demonstrates the performance of a triple-output neural network designed to produce

the magnitudes of three scattering parameters. The second group (e–k) illustrates the inverse design process employing the triple-output network,

which shows the gradual variations of various parameters during the process. (a)–(c) Demonstrate the scatter plots of the predicted scattering

parameters |S11|, |S21|, and |S31| over their actual values for the training epoch number equal to 10,000. The blue points represent the test set including
10 % of the data set. (d) Shows the plot of the training (red) and validation (blue) losses over the 10,000 epochs. (e)–(k) Demonstrate results obtained

from the inverse design of the grating mode converter for desired scattering parameters |S11| = 0.6, |S21| = 0.6, and |S31| = 0.3.
The inverse design algorithm is used several times leading to four different solutions. Each figure shows the changes of different variables such

as MSE function, the scattering parameters and the physical features of the grating during optimization process. Each colored curve in the figures is

associated with the same inverse design solution.

Figure 3e–k depict the evolution of the MSE loss, the

three scattering parameters, and the grating physical fea-

tures, respectively.

We use the achieved results of the inverse design

problem in COMSOL software to check the accuracy of them.

The results are listed in Table 4. It is clear that the model

Table 4: This table lists the values of the grating physical features obtained from the inverse design with desired scattering parameters |S11| = 0.6,

|S21| = 0.6, |S31| = 0.3. The COMSOL software is exploited to simulate the grating mode converter with the obtained physical features. The computed

scattering parameters through the COMSOL software are indicated by |S11c|, |S21c|, |S31c|. The columns denoted by |S11m|, |S21m|, |S31m| are
the estimated results from the triple-output DNN model. The colored rows are associated with the inverse design solution curves in Figure 3e–k.

d DC Sm Sc Sm Sc Sm Sc

345.22 398.70 0.276 0.593 0.5 0.597 0.77 0.287 0.33

316.70 430.01 0.68 0.59 0.657 0.59 0.57 0.3 0.29

323.45 229.57 0.147 0.597 0.58 0.61 0.63 0.3 0.28

334.19 249.97 0.149 0.62 0.63 0.6 0.64 0.256 0.27
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predictions and the results from the software are in agree-

ment with one another.

5 Modeling and inverse design

of the phase of the scattering

parameters

The preceding sections examine the process ofmodeling the

magnitudes of the scattering parameters using deep neural

networks that include multiple output nodes. Moreover, we

perform the inverse design of the mode converter based

on the trained neural networks. Each scattering parameter

is a complex number. We also tried to model the phase of

the scattering parameters through various neural network

architectures. However, the efforts have not led to proper

convergence.

For instance, Figure 5a depicts the training and valida-

tion losses over epoch numbers associated with a double-

output DNN. The neural network is used tomap the physical

attributes of the mode converter with the amplitude and

phase of S21. The ultimate values of the curves suggest that

the losses are not sufficiently low. Furthermore, the curves

diverge from each other that probably denote overfitting

issue. Further evidence of the neural network’s limitations

is shown in Figure 5b, where the blue dots represent the

DNN’s predictions of the S21 phase compared to their actual

values from a test set. Many of the blue points are distant

from the red line, indicating the incapability of the DNN

model. The statistical measures, including explained vari-

ance score (EVS), coefficient of determination (R2 score), and

mean squared error (MSE), for S21 phase in this example

are equal to 0.679, 0.679, and 0.36, respectively. These values

show the inadequacy of the DNN model. The reason behind

this phase retrieval issue is partly the phase wrapping in

the data set, partly the high sensitivity of the phase to the

geometric features of the grating. Indeed, a sudden change

in phase values causes a significant challenge for traditional

neural networks to accurately model these values. In con-

trast to the phase, the amplitude is properly modeled by

the double-output network, since the amplitude’s variation

in the data set possesses smooth quality. These different

behaviors of the phases and amplitudes result in highly

nonlinear relations between the inputs and outputs of the

neural network. In Figure 5c, the scatter plot shows the

double-output DNN’s predictions of |S21| compared to their
ground truth values for the test set. The EVS, R2 score, and

MSE values for |S21| are equal to 0.913, 0.913, and 0.0024,

respectively.

We tried three other methods to tackle the phase

retrieval. These include data augmentation, the use of alter-

native loss functions, and training a triple-output neural

network mapping the geometrical features to the real part,

imaginary part and the magnitude of the corresponding

scattering parameter. We found that the latter method

works better compared to the former two.

In the data augmentation method, the phase values in

the data set are shifted by small amounts according to the

following relation:

Φshifted = ΦS21
+ (𝜋, 𝜎2 ) × a, (10)

where the noise to the phase ΦS21
is a small value, multi-

pliedwith a sample fromaGaussian distribution ( (𝜋, 𝜎2 ))

centered around 𝜋 with few degrees standard deviation.

The parameter “a” thus gives us freedom to determine

how much we intend to alter the phase value in percent-

age. It is probable that the data augmentation improves

the network generalization ability. Figure 4c–f demonstrate

the scatter plots of the predicted phase of S21 over the

ground truth values resulting from this data augmentation

method. The values of the parameter “a” (in percentage)

and standard deviation (in degrees) are different for each

subfigure.

Another method that we used to tackle the phase

retrieval problem is to exploit an alternative loss function

to alleviate the phase discontinuity. We used the cosine sim-

ilarity function with mathematical formulation:

L = 1− cos
(
Φpred

S21
−Φground

S21

)
. (11)

The scatter plot associated with this method is shown

in Figure 4g. The figure indicates that the DNN is not

capable of properly representing the data. Finally, the

result of combining the data augmentation and loss func-

tion alteration is also shown in Figure 4g. The plot shows

small improvement, but generally it is not a very useful

model for retrieving the phase. Table 5 includes the list

of statistical measures for S21 phase models using the data

augmentation and alternative loss function. It is evident

from the table content that the augmentation method with

𝜎 = 2◦, and a = 1 % possesses better statistical quali-

ties, particularly compared to using cosine similarity loss

function.

A different method for DNN modeling of the phase

includes creating a neural network model that links the

input features to the real part, imaginary part, and magni-

tude of the scattering parameter. In this scenario, the neural

networkmodel must possess a high level of accuracy in esti-

mating both the real and imaginary components. This aids
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Figure 4: The subfigures demonstrate the performance of different methods to solve the scattering phase retrieval problem. (a) Demonstrates

the train and validation loss curves of the data augmentation method to solve the problem of phase retrieval. In the figure the curves at the bottom

indicate the training loss and the ones above are all showing validation loss. These curves do not align, pointing towards an overfitting problem,

which is problematic for the inverse design purpose. (b) Shows the loss curves of another method in which we use a cosine similarity loss function

(1 – cos
(
Φpred

S21
−Φground

S21

)
). Although, we do not face the problem overfitting problem here, the end points of the loss curves are not sufficiently low.

(c)–(h) Demonstrate scatter plot of applying a test set to networks explained in (a) and (b). The majority of the points are gathered around the red

bisector, however there is still a significant number of points, located too far away from this target.

Table 5: The list of the statistical measures for the assessment of the DNN model for the prediction ofΦ(S21) by utilizing data augmentation and
alternative loss function. MAE, MSE, and EVS stand for mean-absolute error, mean-squared error, and explained-variance score, respectively.

MAE MSE R2 score EVS

Triple-output DNN 0.1871 0.3107 0.7256 0.7256

Data augmentation 𝜎 = 2◦, a= 1 % 0.215892 0.331471 0.707396 0.707733

Data augmentation 𝜎 = 2◦, a= 10 % 0.222337 0.343684 0.696625 0.696626

Data augmentation 𝜎 = 10◦, a= 10 % 0.230801 0.412481 0.635953 0.636698

Data augmentation 𝜎 = 10◦, a= 1 % 0.257033 0.432282 0.618382 0.622001

Loss= 1− cos
(
Φpred

S21
−Φground

S21

)
, and data augmentation 0.448349 0.958009 0.154323 0.196733

Loss= 1− cos
(
Φpred

S21
−Φground

S21

)
0.650124 1.730549 −0.527622 −0.388227

in reducing the error in the ratio between the imaginary and

real components. In this case, the DNN has the same con-

figuration as the ones mentioned in the previous sections.

Figure 5d demonstrates the training and validation losses

over epoch number for the DNN model with output nodes

Re(S21), Im(S21), and |S21|. The curves clearly exhibits low

values for the losses in the final epochs. In Table 6, the sta-

tisticalmeasures calculated for triple-output DNN are listed.

All numbers are adequately qualified to claim that the DNN

exhibits proper performance. Figure 5e–g demonstrate the
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Figure 5: There are two groups of plots. The first group (a–h) shows the performance of a triple-output network designed to output the real part,

imaginary part and the magnitude of one of the scattering parameters. The subfigures in the second group (i–o) illustrate the evolution of various

parameters during the inverse design process for solving the phase retrieval problem. (a) Shows double-output DNN training and validation losses

over epoch number. The neural network maps the mode converter physical properties to S21 amplitude and phase. (b) and (c) Show scatter plots

predicted vs ground truth values of the S21 phase and amplitude for a test set applied to the neural network mentioned in (a). (d) Demonstrates the

loss curves associated with the triple-output DNN. The output nodes are Re(S21), Im(S21), and |S21|. (e)–(g) Illustrate the scatter plots of the test set
applied to triple-output neural network mentioned in (c). These subfigures are representing the Re(S21), Im(S21), and |S21|. (h) Shows the scatter plot of
the phaseΦ (S21) calculated from the scatter points in subfigures (e) and (f). The phase is calculated by taking inverse tangent of the real and

imaginary parts of S21. (i)–(o) Demonstrate results obtained from the inverse design of the grating mode converter for desired values Re(S21)=−0.13,
Im(S21)= 0.515, and |S21|= 0.53. The inverse design algorithm is used several times leading to five different solutions. Each colored curve in the

figures is assigned to the same inverse design solution.

scatter plots of the predicted over the ground truth values

of the test set for Re(S21), Im(S21), and |S21|, respectively.
Exploiting the values shown in Figure 5e and f, we

are able to calculate the scatter plot points for the S21

phase, which is shown in Figure 5h. Compared to the

case illustrated in Figure 5b (associated with the double-

output network), the Figure 5h exhibits improvement, since

more scattered points are closer the middle ideal line.

In terms of the statistical measures, the EVS, R2 score,

and MSE values for this case are, respectively, equal to

0.72, 0.72, and 0.31. This shows some improvement com-

pared to case of double-output DNN. Furthermore, the

triple-output DNN also improves the statistical measures

associated with |S21| (Table 6) in comparison with the
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Table 6: The list of the statistical measures for the assessment of the

triple-output DNN model for the prediction of Re(S21), Im(S21), and |S21|.
MAE, MSE, and EVS stand for mean-absolute error, mean-squared error,

and explained-variance score, respectively.

MAE MSE R2 score EVS

Re(S21) 0.0155 0.0009 0.9468 0.9468

Im(S21) 0.0156 0.0011 0.9559 0.9559

|S21| 0.0144 0.0009 0.9663 0.966370

double-output DNN (EVS = 0.913, R2 score = 0.913, MSE =
0.0024). Table 5 contains all statistical information to com-

pare the results from the triple-output DNN with the data

augmentation and using alternative loss function. It is evi-

dent that triple-output exhibits better results. This observa-

tion is also found by comparing Figures 5hwith 4c–h,where

the scattered points are more distant from the ideal red

line.

There are other advanced methods capable of mod-

eling the complex behavior of such phase data. Physics-

informed neural networks (PINNs) is a method that the

Maxwell’s equations get involved into the training process

providing the physical constraints on the problem that ulti-

mately assist in generalization capability of the network

[46]. A hybrid utilization of adjointmethods anddeepneural

networks is also a powerful method, where the network

performs rapid approximation, and the adjoint solver per-

forms fun-tuning the phase accuracy [47]. Now, based on the

trained triple-output DNN, it is possible to perform inverse

design of themode converter to achieve pre-defined Re(S21),

Im(S21), and |S21|. The method is the same as the one dis-

cussed in Sections 3 and 4. The primary advantage of this

inverse design is the ability to choose the real and imaginary

components of the associated scattering parameter depend-

ing on the desired phase value of the scattering parameter.

Hence, the results of the inverse design process consist of

the specific geometric characteristics of the grating that not

only generate the intended real and imaginary components

of the scattering parameter, but also achieve the correct

phase.

For the present case, the selected desired values are

Re(S21) = –0.13, Im(S21) = 0.515, and |S21| = 0.53. Based on

the values of the real and imaginary parts, the desired phase

of S21 is equal to 𝜙(S21) = 104.17◦. Figure 5e–j demonstrate

the results of the inverse design. Table 7 lists the numerical

results of the inverse design. It is evident from the last

column of the Table that the results are very close to the

desired phase value 𝜙(S21) = 104.17◦.

6 Conclusions

In this article, we exploit the power of deep neural networks

to perform inverse design of the waveguide grating mode

converter. For the inverse design goal, we first establish

various forward models based on deep neural networks for

the grating mode converter. The required data to train the

neural networks is obtained through the simulation of the

grating structure by the finite element software COMSOL

Multiphysics. The input nodes of the neural networks are

the grating period, corrugation depth, and the duty cycle.

The neural networks outputs are considered to be mag-

nitudes and the phases of the scattering parameters. The

scattering parameters are the reflection coefficients of the

converted modes reflected from the grating.

There are two layers of complexity to consider when

scaling the proposed technique: As the number of supported

optical modes increases, the number of possible mode con-

versions grows combinatorially, as discussed in previous

work [32]. The second level of complexity involves the

design and optimization of the individual mode converters

and their integration within a deep neural network-based

inverse design framework. This was the focus of our cur-

rent study. The computational complexity of our inverse

design methodology scales with the number of trainable

parameters in the neural network. As the number of guided

Table 7: The following table presents the values of the physical characteristics of the grating (first 3 columns) determined using the inverse design

process for the desired scattering values Re(S21)=−0.13, Im(S21)= 0.515, and |S21|= 0.53. The computed scattering parameters through the COMSOL

software are indicated by the columns denoted by the subscript “c”. The columns denoted by subscript “m” are the estimated results from

the triple-output DNN model. The column denoted by 𝜙(S21c) indicates the phase calculated by using the values in Re(S21c) and Im(S21c) columns.

Moreover, the column indicated by 𝜙(S21m) is the phase calculated from the values Re(S21m) and Im(S21m) columns. The desired value of the phase

based on Re(S21)=−0.13 and Im(S21)= 0.515 is equal to 104.17◦. The colored rows are relevant to the inverse design solution curves in Figure 5i–o.

(nm) d (nm) Duty cycle Re(Sm) Re(Sc) Im(Sm) Im(Sc) Sm Sc (Sm) (Sc)

346.90 426.86 0.440 –0.1299 –0.1291 0.5149 0.50084 0.5300 0.51721 104.159° 104.45°

342.75 441.80 0.601 –0.1285 –0.15055 0.5136 0.4908 0.5317 0.5133 104.04° 107.05°

318.90 410.11 0.610 –0.1299 –0.1445 0.5149 0.5736 0.5299 0.5915 104.15° 104.14°

318.20 412.60 0.357 –0.1299 –0.1466 0.5150 0.4953 0.5299 0.5165 104.156° 106.49°

350.90 437.17 0.51900 –0.1277 –0.1314 0.5160 0.4649 0.5275 0.4831 103.90° 105.78°
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optical modes increases, the dimensionality of the scatter-

ing parameter space also grows, requiring a more com-

plex neural network architecture with a larger dataset for

training. However, our approach benefits from the abil-

ity of deep learning models to generalize efficiently across

large design spaces. Our trained models have demonstrated

high accuracy even for multi-output regression tasks, as

shown in the case of triple-output networks predicting mul-

tiple scattering parameters. The computational cost of each

inverse design process is largely independent of the num-

ber of modes. However, generating sufficient training data

through electromagnetic simulations (e.g., using COMSOL)

will become more time-intensive as more modes are con-

sidered. This can be computationally expensive, especially

for complex photonic structures where each data point

requires solving Maxwell’s equations with fine spatial res-

olution. While transfer learning and data augmentation

can partially mitigate this issue, the initial cost of dataset

generation remains a constraint. Computational cost is

another factor, as deep neural networks, particularly

those with large architectures, require significant GPU or

cloud computing resources for training. However, once

trained, the network provides near-instantaneous predic-

tions, making it highly advantageous over traditional iter-

ative optimization methods for large-scale inverse design

problems.

Finally, there’s also a subtlety related to the different

design parameters. In particular the waveguide thickness

is a crucial design parameter, because its variations influ-

ence the system in two fundamental ways. First, thickness

fluctuations alter the effective refractive index of the guided

modes, modifying their propagation constants. Since mode

conversion relies on phase matching, even small deviations

in thickness can cause phase mismatches and reduce con-

version efficiency. In extreme cases, thickness variations

may even cause certain modes to disappear, fundamen-

tally changing the mode structure of the system. Second,

the scattering properties of the grating-based mode con-

verter depend sensitively on the waveguide thickness. A

small shift in thickness alters the reflection/transmission

coefficients and changes the relative amplitudes and phases

of the converted modes. This can degrade the precision

of the designed grating, leading to unexpected behavior

in multi-mode interference and cascaded mode conversion

systems. Thus, controlling and accounting for thickness

variations is essential for ensuring robust inverse design. All

libraries and codes developed and used in this manuscript

are available in a link in Supplementary Materials. With

these efforts, we want to provide the photonics community

with a tool for controlling the phases the magnitudes of the

multiple waves reflected from integrated mode converters.

This capability could be utilised in interference of multi-

ple counter-propagatingwaves or advanced integrated pho-

tonic circuits.
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