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Abstract: I present my perspective on sensing with quan-

tum light. I summarise the motivations and methodology

for identifying quantum enhancements in sensing over a

classical sensor. In the real world, this enhancement will

be a constant factor and not increase with the size of the

quantum probe as is often advertised. I use a limited survey

of interferometry, microscopy and spectroscopy to extract

the vital challenges that must be faced to realise tangible

enhancements in sensing with quantum light.
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1 Introduction

Over the ages, light has been central to sensing and detect-

ing phenomena in the Natural world across length and

timescales, from observational cosmology to nanoscopy.

Light also happens to be the mediumwhose quantum prop-

erties are most readily redolent in ambient conditions [1].

Thus, it is only natural that sensing with quantum light has

been investigated [2] and pursued with some vigour over

the last decade [3]–[11]. It has enabled us to see things that

would have been impossible without it [12].

My endeavour in this perspective on sensingwith quan-

tum light is to note some past advances and future chal-

lenges. Rather than a review, I aim to identify the underlying

commonalities – in existing methodology and foreseeable

problems. My choice of material is evidently selective. I

focus on the three sensing modalities of interferometry,

microscopy and spectroscopy. I choose them because they

form large classes of sensing applications classically and

have the potential of benefitting from quantum light. They

also encapsulate amongst themselves the vital aspects of the
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principle andpractice of sensingwith quantum light and are

naturally amenable to nanophotonics.

I begin with the mathematical formalism that captures

sensing in Section 2. It presents the classical and quantum

Fisher information as quantities to be evaluated to begin

the process of identifying a quantum enhancement in sens-

ing. I summarise its conceptual message – of identifying

quantum enhancement due to quantum light over classi-

cal light in Figure 1. Establishing tangible enhancement of

sensing quantum light can only be done experimentally. In

Section 3, I encapsulate our understanding of classical and

quantum light.

I discuss the illusory quadratic quantum scaling that is

often the objective of quantum sensing studies in Section 4.

I emphasise why it is impossible in the real world and note

how tangible quantumadvantagesmay actually be attained.

In Section 5, I present some advances in interferometry,

microscopy and spectroscopy with quantum light. Rather

than an exhaustive record, I select works to identify the

main challenges in sensing with quantum light. I end in

Section 6 with a collation of these challenges and avenues

to directing efforts to overcome them.

2 Sensing

The mathematical formalism describing sensing is a part

of information theory and statistics ([13], Chapter 11). It is

Figure 1: The layout of sensing with quantum light (above dashed line).

Corresponding sensing task with classical light (below dashed line).

The conceptual route to identifying tangible quantum enhancement

lies in the difference of the two classical Fisher informations F𝜇 and F
cl
𝜇
.

This quantum enhancement can only be established experimentally.

The symbols are defined in Section 2 and 𝜌cl is described in Section 3.

The two blue arrows denote the two optimisations in Section 2.2,

of the two red boxes. The green boxes are typically fixed in advance.
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formally called estimation theory. In the following, I note

the classical aspects of the formalism essential for a swift

transition to the quantum. While nothing in this formalism

is particular to sensing with light and applies in the abstract

to any sensor, I will resort to the former for concreteness.

A sensor operates by estimating certain parameters of

the light field at its detector. It matters not whether the light

came from a distant star or an adjacent nanostructure. The

recorded data at the detector {x1, x2,… , xr} are described
mathematically as a statistical model with probability mea-

sure p𝜇(x) ≡ p(x|𝜇), where 𝜇 denotes the parameter1 to be

estimated and x labels the output of the detector, such as

current, wavelength or photon number. r is the number

of recorded data points or repetitions. I choose x and 𝜇

to be continuous for now. The performance of a sensor

is captured by the accuracy and error of the estimate it

provides. If this estimate is denoted by 𝜇̃(x), its accuracy

is proportional to 𝜇̃(x)− 𝜇 and error to (𝜇̃(x)− 𝜇)2. The

smaller these quantities, the better the sensor.

As the data recorded at the detector are statistical, the

performance of a sensor is formally captured by its bias and

precision. The former is the expectation value of the accu-

racy, defined as b(𝜇̃) = 𝔼
[
𝜇̃(x)− 𝜇

]
= ∫ p𝜇(x)𝜇̃(x) dx − 𝜇,

where I have used ∫ p
𝜇
(x) dx = 1 for a probability measure.

The latter is the expectation value of the error, defined as

the variance

Var𝜇 = 𝔼
[
(𝜇̃(x)− 𝜇)2

]
=

∫
p𝜇(x)(𝜇̃(x)− 𝜇)2 dx. (1)

Var𝜇 is often called the mean square error. Its square root is

the standard deviation.

2.1 Classical estimation theory

To deliver the goal of designing a better sensor, estimation

theory is used to identify the smallest possible value of

Var𝜇 allowed by laws of probability theory. A central result

in classical estimation theory, known as the Cramér–Rao

bound states [13]

rVar𝜇 ≥

(
1+ b′(𝜇̃)

)2
F𝜇

+ b(𝜇̃)2, (2)

where

F𝜇 = 𝔼
[
(𝜕𝜇 ln p𝜇(x))

2
]
=

∫
(𝜕𝜇 p𝜇(x))

2

p𝜇(x)
dx (3)

1 I focus on a single parameter. The classical estimation of multiple

parameters simultaneously is not conceptually different. The quantum

estimation of multiple parameters simultaneously is a fascinating area

due to the non-commutativity of measurements. I do not address this

here. See, for instance, Ref. [14].

is the classical Fisher information (CFI). For an unbiased

estimator, b(𝜇̃) = 0 and

Var𝜇 ≥
1

rF𝜇
. (4)

This inequality is saturated with unbiased estimators

under certain regularity conditions on p𝜇(x). For instance,

the maximum likelihood estimator achieves the equality

asymptotically [13].

The Cramér–Rao bound shows that variance of an

estimator cannot be made arbitrarily small. It thus places

a mathematical limit on how precise any sensor can be.

This limit is imposed by the amount of information that

can extract about a parameter from recorded data. More

data or larger r leads to a lower variance. From Eq. (3), it

follows that a larger Fisher information and consequently

lower variance relies on the recorded data p𝜇(x) varying

strongly with the parameter 𝜇. This is to be expected and

is intuitively familiar to all sensor designers.

2.2 Quantum estimation theory

Born rule is the ingredient of quantum mechanics that per-

tains most directly to sensing. This is unsurprising, as it con-

nects quantum states with observable probabilities. This is

the starting point of quantum estimation theory, pioneered

in the works of Helstrom [15] and Holevo [16] in quantum

information theory.

Mathematically,

p𝜇(x) = Tr[𝜌𝜇Πx], (5)

where 𝜌𝜇 denotes the quantum state of the light field, which

depends on the parameter 𝜇 to be estimated, and Πx is

the operator describing the detector outcome x, formally

called the positive operator-valued measure (POVM) 𝚷 =
{Πx} [17]. Inserting Eq. (5) in Eq. (1) shows that the variance
Var𝜇 depends on the quantum state 𝜌𝜇 and the choice of the

detector𝚷. The same holds for the CFI.

This sets the stage for quantum-enhanced sensing,

which is a two-step process to improve the precision of a

sensor or reduce the corresponding variance by choosing

𝚷 and 𝜌𝜇 judiciously. See Figure 1.

The first step is to minimise the variance Var𝜇 over all

physically allowed detectors, that is, POVMs 𝚷. Combining

this with Eq. (4) results in the quantum Cramér–Rao bound

Var𝜇 ≥
1

rF𝜇
≥

1

rQ𝜇

, (6)

where Q𝜇 = max𝚷F𝜇 is the quantum Fisher information

(QFI). The minimisation of the variance translates into a

maximisation of the CFI due to reciprocal relation in Eq. (4).
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This is denoted by the blue arrow numbered 1 in Figure 1.

Mathematically [15]

Q𝜇 = Tr
[
𝜌𝜇L

2
]
,where 𝜌𝜇L+ L𝜌𝜇 = 2𝜕𝜇𝜌𝜇 . (7)

The Hermitian operator L is known as the symmetric

logarithmic derivative. The eigenvectors of L are the POVM

elementsΠx that minimise the variance.

As in classical estimation, the amount of information

that can be extracted from a quantum state depends on how

strongly it changes with the parameter 𝜇. The operator L is

proportional to this rate of change, with the symmetrisation

necessary to account for the non-commutative nature of

the Hilbert space in which 𝜌𝜇 resides. The precision of a

quantum sensor thus depends solely on the quantum state

𝜌𝜇 and its derivative with respect to the parameter 𝜇.
2

Quantum sensors are, at least in principle, no worse

than classical sensors. This is because the QFI is greater than

or equal to the CFI, that is, Q𝜇 = max𝚷F𝜇 ≥ F𝜇 . Making this

relevant in practice is the fact that there always exists an

optimal POVM 𝚷∗ for which the CFI equals the QFI, that

is, the second inequality in Eq. (6) can be saturated. The

ease with which 𝚷∗ may be implemented physically is a

technological issue we address later.

The second step is to maximise the QFI Q𝜇 over probe

quantum states 𝜌, where 𝜌𝜇 = Λ𝜇[𝜌] denoted by the blue

arrow numbered 2 in Figure 1. Here, Λ𝜇[⋅] captures the
physics of the sensor that imprints the parameter 𝜇 on 𝜌.

For a light-based sensor, thismay range from a linear optical

element such as a phase shift to an elaborate spectroscopic

setup involving nonlinear interactions of a complex quan-

tum system with one or more pulses of light. Mathemati-

cally, these can all be described by a completely positive,

trace-preserving (CPTP) map [17], which can be obtained

from the underlying physical model of the sensor captur-

ing the interaction of the parameter of interest 𝜇 with the

quantum state 𝜌 of the probe light field. The geometry of

the space of CPTP maps plays a central role in determining

2 I focus solely on the scenario where the parameter 𝜇 has a unique

true value. Another typical scenario iswhen theparameter takes values

from a prior distribution Ppri(𝜇). Then, the minimum mean square

error (MMSE) is given by [18]

MMSE = min
M ∫

Ppri(𝜇 ) Tr
[
𝜌𝜇(M − 𝜇I )2

]
d𝜇, (8)

where theminimisation is undertaken over all Hermitian operators M.

The operator M
∗
attaining this minimum is given by the solution of

[18]

𝜌(1)M
∗
+M

∗
𝜌(1) = 2𝜌(2), (9)

where 𝜌(1) = ∫ Ppri(𝜇)𝜌𝜇d𝜇, 𝜌
(2) = ∫ 𝜇Ppri(𝜇)𝜌𝜇d𝜇. Note the similari-

ties to and differences from the structure of Eq. (7).

the performance of quantum sensors in the real world. See

Section 4.

A quantum sensor using the probe 𝜌 is, in principle, bet-

ter than its classical counterpart, if the QFI corresponding to

𝜌𝜇 exceeds that of 𝜌cl
𝜇
= Λ𝜇[𝜌

cl], where 𝜌cl corresponds to

classical light. The latter QFI is denoted as Qcl
𝜇
in Figure 1. In

practice, a quantum sensor using the probe 𝜌 is better than

its classical counterpart, if F𝜇 > Fcl
𝜇
, that is, the former has

a higher CFI, as depicted in Figure 1.

But what is ‘classical’ light?

3 Light

‘Classical’ light may, strictly speaking, be considered an oxy-

moron. This is because light, more formally the electromag-

netic field, has a fundamental quantummechanical descrip-

tion due to Dirac. A very lucid exposition was provided by

Fermi [19]. Like many orxymoronic expressions, however,

‘classical’ light has a purchase due to reason, convenience

and utility, as I summarise below.

3.1 Classical light

Following the successful development of quantum electro-

dynamics [20], attention reverted to the quantum mechan-

ical description of optics – quantum optics [21]–[23]. It

showed that light fields generated by arbitrary distributions

of classical currents have an especially simple description

in terms of coherent states [21]. The coherent state of the

light field of a single mode is thus identified with ‘classical’

light, as is the Poisson distribution of the average occupa-

tion number of the nth Fock state |n⟩ – the quantum state

with exactly n photons. In this basis, the coherent state is

expressed as

|𝛼⟩ = exp

(
− |𝛼|2

2

) ∞∑
n=0

𝛼n√
n!

|n⟩, (10)

where 𝛼 is a complex number proportional to amplitude of

electric field. In my notation, 𝜌cl = |𝛼⟩⟨𝛼|.
The coherent state 𝜌cl is, in fact, the quantum mechan-

ical ground state of the Hamiltonian of the free quantum

electromagnetic field in absence of charges and currents.

This Hamiltonian corresponds to that of an isolated one-

dimensional harmonic oscillator [23]. A coherent state is

thus aminimumuncertainly wavepacket in the phase space

spanned by the position q andmomentum p of the oscillator

and satisfies

(Δ2p̂)(Δ2q̂) = ℏ2

4
. (11)
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Here,Δ2Ô = ⟨Ô2⟩− ⟨Ô⟩2 is the variance and ⟨⋅⟩denotes
the expectation value of Ô, in this instance in the quantum

state 𝜌cl. Conceptually, the coherent state thus represents as

close an approach to classical localisation as possible [23].

A coherent state is also very close to the output state of

a laser near its threshold [24]. The identification of coherent

states as classical light is thus both conceptual and opera-

tional, the latter stemming from the ubiquity of high quality

of lasers for swathes of the electromagnetic spectrum. I

should emphasise that both these routes, via Eq. (11) and the

laser, are fundamentally quantum mechanical.

3.2 Quantum light

In the parlance, nonclassical or quantum light is a light field

whose state does not have a simple description in terms

of coherent states. Technically, a state of light is nonclas-

sical if its Glauber–Sudarshan P-function is not a positive

probability density function. Resting on a negative, this

definition is quantitively unwieldy. Consequently, a plethora

of measures of nonclassicality have developed over time

[25], including those relying on other distribution functions

[26]. All these measures seek to capture how different a

given state of the light field is from a coherent state.

Generating quantum light involves acting on the output

of a laser in some way, typically via a nonlinear material.

While there is an infinitude of possible quantum states of

light, much effort has been directed to generating states

with exactly one [27] and two photons [28]. The former often

relies on the saturation nonlinearity of a quantum emitter.

The emitted single photons can, in principle, be interfered

in quantum networks of linear optical elements to produce

quantum states of light with a larger number of photons

[29].

Quantum states of light can also have an indefinite

number of photons. The most prominent in this class

are squeezed states [30]. These are, like coherent states,

minimum uncertainly wavepackets satisfying Eq. (11), but

with the variance in one of the quadratures reduced (or

squeezed) at the expense of the other. Their generation

relies in the second or third order nonlinear susceptibility

of amaterial. Other quantum states of light can be produced

by interfering definite and indefinite photon number states

[31]. Yet others, such as superpositions of coherent states

called Schrödinger cat states, can be obtained by subtracting

photons from squeezed states [32], [33].

3.3 Modes, entanglement and confusion

The quantum states of light I noted above reside in a single

mode. A mode is a solution of the electromagnetic wave

equation given a set of boundary conditions [34]. They play

a central role in the design and operation of nanophotonic

devices [35]. Quantum states of light can also be constructed

that reside across multiple modes. They could also contain

definite or indefinite numbers of photons. An example of the

latter is a multimode squeezed state [36].

Quantum entanglement is another notion of nonclas-

sicality. An entangled quantum state of two or more sub-

systems is defined as one that is not separable, that is, it

cannot be expressed a mixture of tensor products of quan-

tum states belonging to the individual subsystems [17]. This

is distinct from a state not having a simple description in

terms of coherent states, as in Section 3.2. An example is a

single-mode squeezed state. It is a nonclassical state but not

an entangled state. Quantum light may have entanglement

between photons residing in different modes [37].

The indistinguishability of photons in the same mode

sometimes confuses matters. This is because the identifica-

tion of distinct (or distinguishable) subsystems of indistin-

guishable particles (photons) is not possible. Thus, entan-

glement between photons in the same mode may be judged

unphysical. Indeed, efforts to imbue it with operational

information theoretic meaning resorts to the use of modes

[38]

4 Quantum sensing – elusive

scaling

As the electromagnetic field is defined by an amplitude and

a phase, the categories of parameters it can sense are losses,

relative phases and their combinations. Amongst these, esti-

mating the difference in the path lengths of light travelling

by two different routes from a source to a detector is per-

haps the most elementary. This can be cast as relative phase

sensing and captures applications ranging from gravita-

tional wave detection [2] to phase-contrast imaging [39]. The

formal study of quantum sensing with light has its origins

in the work of Helstrom [15] and later in the development of

laser-interferometric gravitational wave detectors,3 which

are in effect Michelson interferometers.

Using the formalism from Section 2.2 with 𝜇 ≡ 𝜙 a rel-

ative phase parameter, Λ𝜇 ≡ U𝜙 = exp
{
−i𝜙n̂

}
is a unitary

map where n̂ is the number operator. Then, 𝜌𝜙 = U𝜙𝜌U
†
𝜙
,

and the QFI Q𝜇 = Δ2n̂, now evaluated for input state 𝜌 into

the interferometer [40]. Maximising this, as per the second

3 https://www.ligo.caltech.edu/system/media_files/binaries/386/

original/LIGOHistory.pdf.

https://www.ligo.caltech.edu/system/media_files/binaries/386/original/LIGOHistory.pdf
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step in Section 2.2 over quantum states of light with N pho-

tons – exactly or on average [41], gives

Q𝜙 ∼ N2. (12)

This quadratic dependence of the QFI of estimating the

relative phase on thenumber of photons is hailed as thehall-

mark of quantum-enhanced sensing, compared to the QFI

for classical light Q𝜙 ∼ N where N = |𝛼|2 for 𝜌cl = |𝛼⟩⟨𝛼|.
The quadratic dependence in Eq. (12) is often dubbed

the Heisenberg limit or scaling [42], though its connection

to the uncertainly relation in Eq. (11) is tenuous. The quan-

tum states that attain the quadratic scaling in the photon

number (exact or average) are certainly nonclassical and

include instances such as N00N states and squeezed states

[41]. Aspiring for this quadratic scaling in phase estima-

tion has driven much of the interest in quantum-enhanced

sensing [43], [44], rooted in seeking a more precise sensor

using fewer probe resources. I emphasise that the number

of photons actually used is rN . The scaling in r is entirely of

classical and statistical origin and not subject to quadratic

quantum enhancements.

A central challenge is the production of quantum states

of light with large photon numbers at a repetition rate com-

parable to a coherent state, which can easily have billions

or trillions of photons. ‘Bright’ squeezed states with compa-

rable mean photon numbers have been reported recently

[45]. Preparing quantum states with high fixed photon num-

ber remains hard despite novel theoretical ideas [46], [47].

Should such ideas become realisable, their integration in to

the wider quantum photonic sensing architecture would be

most welcome.

The quadratic scaling for phase estimation is impossi-

ble in real-world sensing scenarios even if desirable quan-

tum states are available. This is because all real world sen-

sors inevitably encounter losses and other noise or decoher-

ence processes [48]. Consequently, the best possible scaling

is

Q𝜙 ∼ cN, (13)

where c is a constant independent of N . It depends on

the nature and strength of the loss, noise or decoherence

processes.

The quadratic scaling for phase estimation in Eq. (12) in

the absence of loss and noise also applies to any parameter

𝜇 generated by aΛ𝜇 that is a unitary map. The concomitant

linear scaling in Eq. (13) then applies to it in the real world.

The QFI associated with the estimation of parameters, such

as (linear) loss or absorption, have such a linear dependence

on N to start with.

The root of the linear scaling in Eq. (13) lies in the

geometry of the space of CPTP maps Λ𝜇 [48]. This space is

convex, that is, if Λ𝜇,Λ′
𝜇
are CPTP maps, then so is Λ𝕡

𝜇
=

𝕡Λ𝜇 + (1− 𝕡)Λ′
𝜇
for a probability 𝕡. Furthermore, Λ𝕡

𝜇
can

be realised physically by randomly applyingΛ𝜇 orΛ′
𝜇
with

probabilities 𝕡 and 1− 𝕡, respectively. Thus, the CPTP map
corresponding to a quantum sensor subject to noise or

decoherence acting on a N-photon quantum state of light

is equivalent to a convex combination of N separate maps

acting on single photons. In particular, these separate maps

are independent of 𝜇, which only enters through the proba-

bilities describing the convex combination. This essentially

makes the sensing task one of classical estimation and leads

to the linear scaling in Eq. (13).

Maps that cannot be decomposed into a convex com-

bination of other maps are called extremal. An instance of

an extremal map is a unitary such as U𝜙, which lead to the

quadratic scaling in Eq. (12). The linear scaling in Eq. (13) is

thus, if possibly abstract, of most fundamental origins and

seemingly insurmountable. Consequently, all stakeholders

in the field of quantum sensing must recognise it.

The constant c has been evaluated analytically for

widely prevalent processes such as photon loss, dephasing

and spontaneous emission [48]. These suggest that dimin-

ishing losses and decoherence increase the value of c. While

its exact behaviour depends on the details of the sensor as

well as the loss and noise processes, the magnitude of c can

be increased with improved technology, leading to possibly

substantial tangible quantum enhancements in sensing.

5 Sensing modalities

In my view, the future of quantum-enhanced sensing rests

on increasing the constant c. This depends on the specifics of

the sensing modality. From the domain of umpteen sensing

modalities [49], [50], even with light [4]–[6], [8]–[10], I will

focus on three in this section. If this suggests that the drive

for quantum-enhanced sensing to be platform and applica-

tion specific, it is only partially true. In the following, I will

highlight some general concepts and insights that are appli-

cable across sensing domains and modalities while restrict-

ing myself to three common paradigms with relevance for

nanophotonics.

5.1 Interferometry

I begin with the estimation of a relative phase, the nat-

ural sensing task emanating from interferometry. A real

linear interferometer, especially implemented using inte-

grated photonics, is subject to losses [51], [52]. These are typ-

ically assumed to be linear and associated with the prepa-

ration 𝜂 p and detection 𝜂d, as well as the sensing of the
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Figure 2: Relative phase 𝜙 estimation in a linear interferometer, where

𝜂 p, 𝜂 and 𝜂d are the preparation, transmission and detection losses,

respectively. 𝜂 p = 𝜂 = 𝜂d = 1 denotes no losses. Taken from Ref. [51].

phase 𝜙 itself 𝜂. The performance of the quantum sen-

sor in Figure 2, with fixed-photon-number state inputs and

photon-number-resolving detectors (PNRDs), is quantified

by the CFI of estimating𝜙 using the formalism of Section 2.2.

For quantum enhancement, this must exceed the CFI of

estimating 𝜙 using classical light with |𝛼|2 = 2N , as noted

in Figure 1. This is only possible if the losses are such as to

lie within a region of the unit cube of 𝜂 p, 𝜂, 𝜂d as shown for

N = 1 andN = 3 in Figure 3. I extract two observations from

them.

The first observation is that the most demanding call is

placed on the detector efficiency 𝜂d. In other words, high-

efficiency PNRDs are necessary for phase estimation with

quantum light using a linear interferometer as envisaged

in Figure 2, to outperform its classical counterpart. This

is because the most damage to a quantum state in sensor

occurs when the quantum light has picked up all the infor-

mation it can about the parameter to be estimated.

Integrated, high-efficiency PNRDs have become avail-

able in recent years [53]. To minimise losses in the prepara-

tion, the source of the quantum light can be placed on the

same integrated chip. This is also becoming possible [54].

Finally, placing the sample on the same platform is essen-

tial to fulfil the vision of quantum nanophotonic sensing,

especially in biomedical settings. This remains a challenge

Figure 3: Region of (𝜂 p, 𝜂, 𝜂d) space of losses for which quantum

enhancement is possible using N = 1 (left) and N = 3 (right) in the sensor

in Figure 2. Taken from Ref. [51].

even in nanophotonic biosensing with classical light ([55],

Fig. 4) as is that of having sources and detectors operating

at light wavelengths most relevant for the sample [56].

The second observation is that the demand on 𝜂d is

greater for the larger N . The same applies to 𝜂 p. While hav-

ing more photons does allow greater protection from trans-

mission losses 𝜂, the performance of the sensor is limited

by its most demanding component 𝜂d. Quantum states with

more photons are by themselves thus not enough for a bet-

ter quantum sensor. Indeed, classical states of light aremore

robust against losses than quantum states. Better quantum

sensors thus need detectors with efficiency increasing with

N , and number resolvability. These do not make for a scal-

able approach for quantum enhanced sensing.

Quantum error correction might counter losses in a

scalable manner. Some theoretical works have shown that

quantum error correction can indeed combat certain kinds

of noise processes in sensing [57]–[60]. These and other

works [61] find that the elusive quadratic scaling of Eq. (12)

can be recovered but require unphysical error correcting

operations such as infinitely fast ones. They also rely on

unphysical assumptions such as perfect error correcting

operations. Experimentally, quantum error correction does

help improve quantum sensing for small N by combating

certain kinds of noise in nitrogen-vacancy centre based

magnetometry [62]. Similar demonstrations against loss in

sensing with quantum light would be exciting.

All real-world error-correction operations are them-

selves error prone. Combating that requires fault tolerance.

Fault-tolerant quantum sensing has been explored theoret-

ically [63]. It identified two categories of noise: (i) beyond

our control, associated with sensing the parameter, and (ii)

under our control, associated with in operations such as

preparing, manipulating and measuring probes and ancil-

lae. It then introduced noise thresholds to quantify the noise

resilience of parameter estimation schemes, and theoreti-

cally demonstrated improvednoise thresholds over thenon-

fault-tolerant schemes. More importantly, it showed that

better devices, which can be engineered under our con-

trol, can counter larger noise beyond our control. The use

of bespoke quantum error correcting codes for combating

losses would identify the efficacy of fault-tolerant sensing

with quantum light.

Despite the specificity of the sensing modality in this

subsection, I hope that both the importance of detectors

and centrality of combating losses in a scalable manner are

general aspects of sensing with quantum light worth recog-

nising. Quantum sensor designers may feel the suggested

remedy of deploying the machinery of quantum fault toler-

ance excessive and foreign. This feeling is perhaps nurtured
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by the belief that building a quantum sensor ought to be

an easier endeavour than building a quantum computer,

the domain to which fault tolerance is typically associated.

As quantum light with more photons become available and

losses which are determined by material properties of sen-

sors and detectors cannot be reduced in proportion, exper-

imenters may be forced to tread the path traced above.

5.2 Microscopy

I now move to microscopy with quantum light. The set of

possibilities is immense even within optical microscopy.4

Following the strategy noted in Figure 1, I focus on

microscopy with quantum light that improves upon clas-

sical schemes limited by shot noise [66], [67]. Shot noise is

attributed to the Poissionian photon number distribution

of the coherent state and identified with the linear scaling

of the QFI for coherent states noted in Section 4. Brighter

coherent state pulses can give more precision but lead to

greater photodamage of the sample, a particular concern in

biomedical applications. The strength of the coherent state

thus limited, the purpose of microscopy with quantum light

is to continue improving the precision.

Quantum enhanced stimulated emission microscopy

[68] and quantum enhanced stimulated Raman spec-

troscopy [69], [70] achieve this goal. The latter work also

undertook a detailed study of photodamage. These detect

the concentration of a sample, which is proportional to the

number of photons absorbed (or lost) from a probe pulse.

Mathematically, the best quantum state for estimating loss

is a Fock state with a fixed number of photons, say |n⟩ [71].
This because on the quantum state after the loss is â|n⟩ ∝
|n− 1⟩, which is orthogonal to |n⟩ and â is the annihilation
operator of the appropriate field mode. On the contrary, the

coherent state is the worst, because â|𝛼⟩ ∝ |𝛼⟩, making it
less sensitive to the loss. The microscopy experiments [68],

[70] use pulses of intensity-squeezed coherent states of light.

This is a judicious compromise between themathematically

optimal and physically practical – an abiding principle to be

followed in any real world undertaking.

Another abiding principle, essential for sensing with

quantum light to beworthwhile, is to operate in a shot-noise-

limited regime. In other words, the classical method must

be limited in a manner that quantum ones can improve

upon. This is typically not the case. Indeed, operating a

4 I will not address quantum-inspired spatial superresolution of opti-

cal sources [64], [65] as it does not rely on the use of quantum light but

rather on spatial mode-resolved measurements. These mode-resolved

measurements are mathematically akin to their temporal or spectral

counterparts noted in Section 5.3.

shot-noise-limited classical sensor may be harder in prac-

tice than imposing quantum enhancements on it. In many

optical sensors as in the microscopy schemes noted above,

the classical noise sources such as technical laser noise and

photodetector electronic noise dominate the shot noise at

low frequencies. This is overcome by modulating the signal

at a fewmegaHertz where shot noise is dominant. Intensity-

squeezed coherent states of light then perform quantum-

enhanced microscopy.

Generating intensity-squeezed coherent states of light

is easier than high-n Fock states but harder than coherent

states. The challenge arises due to incomplete understand-

ing of nonlinear process of a pulsed nature such as group

velocitymismatch between the pumpand seed pulses, beam

divergence, spatial walk-off or spatiotemporal coupling in

the parametric gain [68]. Furthermore, higher gain, which is

necessary formore squeezing and hence quantum enhance-

ment, requires a more thorough analysis [72] than low gain

efforts providing a squeezing of a dB or lower. This ties back

to the challenge of producing quantum states of light with

large photon numbers and high repetition rates, as noted in

Section 4.

This modality once again highlights the challenge of

generating quantum states of light with large numbers of

photons. Another crucial issue in sensing with quantum

light is identifying the limitation of the corresponding sen-

sor using classical light. Itmust be that the classical nature of

the light – shot noise is the limitation in the classical sensor.

Attaining that limit, whichmaybe anontrivial experimental

and technological step in itself, is essential before embark-

ing on sensing with quantum light.

5.3 Spectroscopy

I finally turn to spectroscopy, perhaps the most ubiquitous

of analytical tools in the natural sciences. I also expand to a

paradigmwhereΛ𝜇 captures the interaction between quan-

tum light and quantum matter from the first principles of

quantummechanics. Effective quantities such as phase and

loss discussed the last two sensing modalities are functions

of the underlying ‘microscopic’ parameters of the quantum

matter system such as transition energies, line widths or

lifetimes, dipole–dipole couplings, electron–phonon cou-

plings, etc. This expanded paradigm leads to an operational

definition of spectroscopy as the precise estimation of these

‘microscopic’ parameters. It is also more informative when

novel complex quantum matter systems are studied spec-

troscopically than merely estimating effective macroscopic

parameters such as absorption and refractive index.

Contemporary theoretical studies of spectroscopy treat

the light classically, leading to a semiclassical light–matter
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interaction [73]. Formally, the total Hamiltonian

Ĥ = ĤM
𝜇
+ ĤL + ĤLM, (14)

captures the operation Λ𝜇[𝜌cl], where Ĥ
M
𝜇
is the Hamilto-

nian of a matter system or sample with parameters 𝜇, and

ĤL, ĤLM are those of the light and light–matter interaction,

respectively. For a chosen measurement described by the

operatorΠ corresponding to a spectroscopic configuration,

the theoretically evaluated signal Tr
[
Λ𝜇[𝜌cl]Π

]
is compared

with experimental data to estimate 𝜇 by data fitting.

Early experiments efforts towards quantum light spec-

troscopy used classical laser light to measure semiconduc-

tor quantum wells and processed the data to mimic the

response of the system to a quantum state of light [74]. Early

theoretical works did study the effect of shining quantum

light directly on complex quantum systems. They evaluated

the signal for specific spectroscopic configurations andmea-

surement schemes [75] and showed that some excitation

transfer pathways in coupled quantum systems obscured

in nonlinear spectroscopy using classical light could be

revealed by using quantum light. As these studies workwith

specific input states and measurements, they are incapable

of optimising over input states and measurements as out-

lined in Section 2.2 and Figure 1.

Recent works have cast spectroscopy in the framework

of quantum estimation theory to begin traversing the path

outlined in Figure 1. It relies on calculating the quantum

state of the light pulse Λ𝜇[𝜌] after it has interacted with

a quantum matter system, as in Figure 4. This is the cen-

tral ingredient in the evaluation of the QFI of estimating

‘microscopic’ parameters of the matter system and identi-

fication of optimal measurements [76], [77]. These works

reproduce known results on absorption spectroscopy when

a two-level system (TLS) starts in the ground state and

should do so for stimulated emission spectroscopywhen the

TLS starts in an excited state.

The new insight from this formalism is that additional

information about the matter system is available in the

distorted quantum light pulse after the interaction. This

Figure 4: Illustration (not to scale) of the excitation of quantum matter

system by a quantum pulse of light (with Gaussian temporal envelope).

Γ represents the interaction strength with the pulse, while Γ⊥ describes

emission into other (inaccessible) orthogonal field modes. As illustrated,

the shape of the wave packet is changed by the interaction with

the matter system. Taken from Ref. [76]

is in addition to the information that can be extracted

from absorption or emission spectroscopy. In other words,

beyond counting the number of photons, there is more

information in the shape of the pulse itself that can be

extracted from quantum light spectroscopy, as illustrated

in Figure 4. The relative contributions depend on the time

duration of the experiment relative to the lifetime, as well

as the fraction Γ∕Γ⊥ of the light detected.

Another novel insight is that higher precision in esti-

mating a parameter such as lifetime is not coincident with

higher excitation probability or cross section [76]. This is

significant as the latter is often taken to be a surrogate

for the efficacy of spectroscopy [78]. Other insights can be

extracted using entangled quantum states as probes such

as biphotons and more involved matter systems such as

coupled dimers [79].

Extracting this additional information from the pulse

shape requires temporal or spectral mode-resolved mea-

surements. Such measurements are now available [80]

for single photons. Non-destructive photon number count-

ing is necessary to extract the information from absorp-

tion or emission spectroscopy simultaneously. This is more

challenging for single photons at optical wavelengths. The

strength of the formalismalso lies in showingwhat is unnec-

essary. For instance, entangled measurements are not nec-

essary to attain the best fundamental precision if only one

mode of a biphoton state interacts with the sample, as in

Figure 5.

To obtain the quantum state Λ𝜇[𝜌] of the pulse of light

after the interaction, the dynamical equations of quantum

mechanics such as the Schrödinger equation for the Hamil-

tonian in Eq. (14) must be solved. For pulsed interactions,

ĤLM is time-dependentwhile for complex quantum systems,

ĤM
𝜇
typically consists of electronic and phononic contribu-

tions as well as their couplings. Accounting for the latter

requires the use of hierarchical equations of motion [81].

Figure 5: Schematic of pulsed biphoton spectroscopy. Taken from

Ref. [79]
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Coupling this with incident quantum states of light with

indefinite photon numbers such as squeezed states requires

tools such as tensor networks to express Λ𝜇[𝜌] efficiently

such that their QFI can be evaluated [82]. This moves us into

realm of quantum light–matter interactions [83], a rich field

of study in itself.

Quantum light spectroscopy is deeply intertwined the

study of quantum light–matter interactions, especially in

quantum nanophotonics. The latter engineers configura-

tions that can enhance the light–matter interaction to probe

the physics of quantum matter systems such as complex

molecules. Cavities, waveguides and surfaces provide the

varied platforms to perform quantum light spectroscopy,

including providing sources of quantum light. Combining

these with integrated photonic setups with efficient detec-

tors ([84], Fig. 10) could vastly expand the arena of quantum

light spectroscopy into domains such as quantum nanopho-

tonic biosensing [55].

6 Conclusions

I conclude with an enumerated gist of the vital challenges

in sensing with quantum light and possible avenues for

overcoming them.

1. Detecting quantum states of light with high efficiency.

This is tomake themost of the available quantum states

of light. The efforts will have to be in material science

and technology.

2. Generating ‘bright’ quantum states of light with large

numbers of photons at repetition rates and determi-

nacy comparable to classical sources. The efforts should

be in developing sources of ‘bright’ squeezed states of

light.

3. Combat inevitable losses in the sensing process by

develop error correction and fault tolerance for quan-

tum sensing. The efforts will have to be in quantum

information and coding theory.

4. Integrating sources, interactions and detectors on the

same platform. This will be pulled by specific applica-

tions and pushed by fabrication technologies.

Acknowledgments: I thank my numerous colleagues and

collaborators for stimulating discussions over the years.

Research funding: This work was supported, in part, by

grant from the UKRI (Reference Number: 10038209) under

the UK Government’s Horizon Europe Guarantee for the

EuropeanUnion’s Horizon Europe Research and Innovation

Programme under agreement 101070700 (MIRAQLS).

Author contributions: The author confirms the sole respon-

sibility for the conception of the study, presented results and

manuscript preparation.

Conflict of interest: Author states no conflicts of interest.

Data availability: Data sharing is not applicable to this arti-

cle as no datasets were generated or analysed during the

current study.

References

[1] I. A. Walmsley, “Quantum optics: Science and technology in a new

light,” Science, vol. 348, no. 6234, pp. 525−530, 2015..
[2] C. M. Caves, “Quantum-mechanical noise in an interferometer,”

Phys. Rev. D, vol. 23, no. 8, p. 1693, 1981..

[3] R. Schnabel, N. Mavalvala, D. E. McClelland, and P. K. Lam,

“Quantum metrology for gravitational wave astronomy,” Nat.

Commun., vol. 1, no. 1, p. 121, 2010..

[4] M. A. Taylor and W. P. Bowen, “Quantum metrology and its

application in biology,” Phys. Rep., vol. 615, pp. 1−59, 2016,.
[5] B. J. Lawrie, P. D. Lett, A. M. Marino, and R. C. Pooser, “Quantum

sensing with squeezed light,” ACS Photonics, vol. 6, no. 6,

pp. 1307−1318, 2019..
[6] I. R. Berchera and I. P. Degiovanni, “Quantum imaging with

sub-poissonian light: Challenges and perspectives in optical

metrology,” Metrologia, vol. 56, no. 2, p. 024001, 2019..

[7] S. Szoke, H. Liu, B. P. Hickam, M. He, and S. K. Cushing, “Entangled

light−matter interactions and spectroscopy,” J. Mater. Chem. C,
vol. 8, no. 31, pp. 10732−10741, 2020..

[8] C. Lee, B. Lawrie, R. Pooser, K.-G. Lee, C. Rockstuhl, and M. Tame,

“Quantum plasmonic sensors,” Chem. Rev., vol. 121, no. 8, p. 4743,

2021..

[9] L. Kim, H. Choi, M. E. Trusheim, H. Wang, and D. R. Englund,

“Nanophotonic quantum sensing with engineered spin-optic

coupling,” Nanophotonics, vol. 12, no. 3, pp. 441−449, 2023..
[10] H. Defienne, et al., “Advances in quantum imaging,” Nat. Photonics,

vol. 18, no. 10, p. 1024, 2024..

[11] E. Moreva, et al., “Quantum photonics sensing in biosystems,” APL

Photonics, vol. 10, no. 1, p. 010902, 2025..

[12] D. Ganapathy, et al., LIGO O4 Detector Collaboration, “Broadband

quantum enhancement of the LIGO detectors with

frequency-dependent squeezing,” Phys. Rev. X , vol. 13, p. 041021,

2023..

[13] T. M. Cover and J. A. Thomas, Elements of Information Theory,

2nd ed. Nashville, TN, John Wiley & Sons, 2006.

[14] F. Albarelli, M. Barbieri, M. G. Genoni, and I. Gianani, “A

perspective on multiparameter quantum metrology: From

theoretical tools to applications in quantum imaging,” Phys. Lett. A,

vol. 384, no. 12, p. 126311, 2020..

[15] C. W. Helstrom, “Quantum detection and estimation theory,” in

Mathematics in Science and Engineering, San Diego, CA, Academic

Press, 1976.

[16] A. S. Holevo, Probabilistic and Statistical Aspects of Quantum Theory,

Monographs (Scuola Normale Superiore), 1st ed. Pisa, Switzerland,

Edizioni della Normale, 2011.

[17] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum

Information, Cambridge, England, Cambridge University Press,

2010.



2002 — A. Datta: Sensing with quantum light

[18] S. Personick, “Application of quantum estimation theory to analog

communication over quantum channels,” IEEE Trans. Inf. Theor.,

vol. 17, no. 3, pp. 240−246, 1971..
[19] E. Fermi, “Quantum theory of radiation,” Rev. Mod. Phys., vol. 4,

no. 1, p. 87, 1932..

[20] S. S. Schweber, “Qed and the men who made it,” in Princeton Series

in Physics, Princeton, NJ, Princeton University Press, 1994.

[21] R. J. Glauber, “Photon correlations,” Phys. Rev. Lett., vol. 10, no. 3,

p. 84, 1963..

[22] E. C. G. Sudarshan, “Equivalence of semiclassical and quantum

mechanical descriptions of statistical light beams,” Phys. Rev. Lett.,

vol. 10, no. 7, p. 277, 1963..

[23] R. J. Glauber, “Coherent and incoherent states of the radiation

field,” Phys. Rev., vol. 131, no. 6, p. 2766, 1963..

[24] J. Gea-Banacloche, “Emergence of classical radiation fields

through decoherence in the scully-lamb laser model,” Found. Phys.,

vol. 28, no. 4, pp. 531−548, 1998.
[25] K. C. Tan and H. Jeong, “Nonclassical light and metrological power:

An introductory review,” AVS Quant. Sci., vol. 1, no. 1, p. 014701,

2019..

[26] M. Hillery, R. O’Connell, M. Scully, and E. Wigner, “Distribution

functions in physics: Fundamentals,” Phys. Rep., vol. 106, no. 3,

pp. 121−167, 1984..
[27] E. Meyer-Scott, C. Silberhorn, and A. Migdall, “Single-photon

sources: Approaching the ideal through multiplexing,” Rev. Sci.

Instrum., vol. 91, no. 4, p. 041101, 2020..

[28] A. S. Solntsev and A. A. Sukhorukov, “Path-entangled photon

sources on nonlinear chips,” Rev. Phys., vol. 2, pp. 19−31,
2017,.

[29] W. R. Clements, P. C. Humphreys, B. J. Metcalf, W. S. Kolthammer,

and I. A. Walmsley, “Optimal design for universal multiport

interferometers,” Optica, vol. 3, no. 12, p. 1460, 2016..

[30] R. Schnabel, “Squeezed states of light and their applications in

laser interferometers,” Phys. Rep., vol. 684, p. 1, 2017,.

[31] T. J. Bartley, et al., “Multiphoton state engineering by heralded

interference between single photons and Coherent states,” Phys.

Rev. A, vol. 86, no. 4, p. 043820, 2012..

[32] K. Wakui, H. Takahashi, A. Furusawa, and M. Sasaki, “Photon

subtracted squeezed states generated with periodically poled

KTiOPO4,” Opt. Express, vol. 15, no. 6, p. 3568, 2007..

[33] T. J. Bartley, P. J. D. Crowley, A. Datta, J. Nunn, L. Zhang, and I.

Walmsley, “Strategies for enhancing quantum entanglement by

local photon subtraction,” Phys. Rev. A, vol. 87, no. 2, p. 022313,

2013..

[34] R. Dändliker, Education and Training in Optics and Photonics,

Washington, DC, Optica Publishing Group, 1999, p. GP193.

[35] J. Lu and J. Vučković, “Nanophotonic computational design,” Opt.

Express, vol. 21, no. 11, p. 13351, 2013..

[36] Y. Cai, et al., “Multimode entanglement in reconfigurable graph

states using optical frequency combs,” Nat. Commun., vol. 8, no. 1,

p. 15645, 2017..

[37] S. Walborn, C. Monken, S. Pádua, and P. Souto Ribeiro, “Spatial

correlations in parametric down-conversion,” Phys. Rep., vol. 495,

no. 4−5, p. 87, 2010..
[38] F. Benatti, R. Floreanini, F. Franchini, and U. Marzolino,

“Entanglement in indistinguishable particle systems,” Phys. Rep.,

vol. 878, p. 1, 2020, entanglement in indistinguishable particle

systems,.

[39] P. C. Humphreys, M. Barbieri, A. Datta, and I. A. Walmsley,

“Quantum enhanced multiple phase estimation,” Phys. Rev. Lett.,

vol. 111, no. 7, p. 070403, 2013..

[40] S. L. Braunstein, C. M. Caves, and G. Milburn, “Generalized

uncertainty relations: Theory, examples, and lorentz invariance,”

Ann. Phys., vol. 247, no. 1, pp. 135−173, 1996..
[41] M. D. Lang and C. M. Caves, “Optimal quantum-enhanced

interferometry,” Phys. Rev. A, vol. 90, no. 2, p. 025802, 2014..

[42] M. J. Holland and K. Burnett, “Interferometric detection of optical

phase shifts at the Heisenberg limit,” Phys. Rev. Lett., vol. 71, no. 9,

p. 1355, 1993..

[43] V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum-enhanced

measurements: Beating the standard quantum limit,” Science,

vol. 306, no. 5700, pp. 1330−1336, 2004..
[44] V. Giovannetti, S. Lloyd, and L. Maccone, “Advances in quantum

metrology,” Nat. Photonics, vol. 5, no. 4, pp. 222−229, 2011..
[45] A. Rasputnyi, et al., “High-harmonic generation by a bright

squeezed vacuum,” Nat. Phys., vol. 20, no. 12, pp. 1960−1965, 2024..
[46] N. Rivera, J. Sloan, Y. Salamin, J. D. Joannopoulos, and M. Soljačić,

“Creating large fock states and massively squeezed states in optics

using systems with nonlinear bound states in the continuum,”

Proc. Natl. Acad. Sci. U. S. A., vol. 120, no. 9, 2023, Art no.

e2219208120.

[47] A. M. de las Heras, D. Porras, and A. González-Tudela,

arXiv:2411.07929, 2024.

[48] R. Demkowicz-Dobrzański, J. Kołodyński, and M. Guţă, “The elusive
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