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Abstract: I present my perspective on sensing with quan-
tum light. I summarise the motivations and methodology
for identifying quantum enhancements in sensing over a
classical sensor. In the real world, this enhancement will
be a constant factor and not increase with the size of the
quantum probe as is often advertised. I use a limited survey
of interferometry, microscopy and spectroscopy to extract
the vital challenges that must be faced to realise tangible
enhancements in sensing with quantum light.
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1 Introduction

Over the ages, light has been central to sensing and detect-
ing phenomena in the Natural world across length and
timescales, from observational cosmology to nanoscopy.
Light also happens to be the medium whose quantum prop-
erties are most readily redolent in ambient conditions [1].
Thus, it is only natural that sensing with quantum light has
been investigated [2] and pursued with some vigour over
the last decade [3]-[11]. It has enabled us to see things that
would have been impossible without it [12].

My endeavour in this perspective on sensing with quan-
tum light is to note some past advances and future chal-
lenges. Rather than a review, I aim to identify the underlying
commonalities — in existing methodology and foreseeable
problems. My choice of material is evidently selective. I
focus on the three sensing modalities of interferometry,
microscopy and spectroscopy. I choose them because they
form large classes of sensing applications classically and
have the potential of benefitting from quantum light. They
also encapsulate amongst themselves the vital aspects of the

*Corresponding author: Animesh Datta, Department of Physics,
University of Warwick, Coventry, CV4 7AL, UK,

E-mail: animesh.datta@warwick.ac.uk.
https://orcid.org/0000-0003-4021-4655

principle and practice of sensing with quantum light and are
naturally amenable to nanophotonics.

I begin with the mathematical formalism that captures
sensing in Section 2. It presents the classical and quantum
Fisher information as quantities to be evaluated to begin
the process of identifying a quantum enhancement in sens-
ing. I summarise its conceptual message — of identifying
quantum enhancement due to quantum light over classi-
cal light in Figure 1. Establishing tangible enhancement of
sensing quantum light can only be done experimentally. In
Section 3, I encapsulate our understanding of classical and
quantum light.

I discuss the illusory quadratic quantum scaling that is
often the objective of quantum sensing studies in Section 4.
I emphasise why it is impossible in the real world and note
how tangible quantum advantages may actually be attained.
In Section 5, I present some advances in interferometry,
microscopy and spectroscopy with quantum light. Rather
than an exhaustive record, I select works to identify the
main challenges in sensing with quantum light. I end in
Section 6 with a collation of these challenges and avenues
to directing efforts to overcome them.

2 Sensing

The mathematical formalism describing sensing is a part
of information theory and statistics ([13], Chapter 11). It is
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Figure 1: The layout of sensing with quantum light (above dashed line).
Corresponding sensing task with classical light (below dashed line).

The conceptual route to identifying tangible quantum enhancement
lies in the difference of the two classical Fisher informations £, and Fﬁl.
This quantum enhancement can only be established experimentally.
The symbols are defined in Section 2 and p¢ is described in Section 3.
The two blue arrows denote the two optimisations in Section 2.2,

of the two red boxes. The green boxes are typically fixed in advance.
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formally called estimation theory. In the following, I note
the classical aspects of the formalism essential for a swift
transition to the quantum. While nothing in this formalism
is particular to sensing with light and applies in the abstract
to any sensor, I will resort to the former for concreteness.

A sensor operates by estimating certain parameters of
the light field at its detector. It matters not whether the light
came from a distant star or an adjacent nanostructure. The
recorded data at the detector {x;, X,, ..., X, } are described
mathematically as a statistical model with probability mea-
sure p,(x) = p(x|u), where u denotes the parameter! to be
estimated and x labels the output of the detector, such as
current, wavelength or photon number. r is the number
of recorded data points or repetitions. I choose x and u
to be continuous for now. The performance of a sensor
is captured by the accuracy and error of the estimate it
provides. If this estimate is denoted by ji(x), its accuracy
is proportional to fi(x) — u and error to (f1(x) — u)*. The
smaller these quantities, the better the sensor.

As the data recorded at the detector are statistical, the
performance of a sensor is formally captured by its bias and
precision. The former is the expectation value of the accu-
racy, defined as b(f1) = E[fi(x) — u| = [ p,00aX) dx — u,
where I have used / p”(x) dx = 1 for a probability measure.
The latter is the expectation value of the error, defined as
the variance

Var, = E[(A(x) — )] = / P, OO0 — ) dx. (D)

Var, is often called the mean square error. Its square root is
the standard deviation.

2.1 Classical estimation theory

To deliver the goal of designing a better sensor, estimation
theory is used to identify the smallest possible value of
Var,, allowed by laws of probability theory. A central result
in classical estimation theory, known as the Cramér—Rao
bound states [13]

e\ 2
rvar, > WD)y, )
Fﬂ
where
(0, p,(x))*
F,=E[(0, Inp,(x)’] = ”p,,# 3)

1 I focus on a single parameter. The classical estimation of multiple
parameters simultaneously is not conceptually different. The quantum
estimation of multiple parameters simultaneously is a fascinating area
due to the non-commutativity of measurements. I do not address this
here. See, for instance, Ref. [14].
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is the classical Fisher information (CFI). For an unbiased
estimator, b(f1) = 0 and

Var, > 4

1
rE,

This inequality is saturated with unbiased estimators
under certain regularity conditions on p,,(x). For instance,
the maximum likelihood estimator achieves the equality
asymptotically [13].

The Cramér-Rao bound shows that variance of an
estimator cannot be made arbitrarily small. It thus places
a mathematical limit on how precise any sensor can be.
This limit is imposed by the amount of information that
can extract about a parameter from recorded data. More
data or larger r leads to a lower variance. From Eq. (3), it
follows that a larger Fisher information and consequently
lower variance relies on the recorded data p,(x) varying
strongly with the parameter u. This is to be expected and
is intuitively familiar to all sensor designers.

2.2 Quantum estimation theory

Born rule is the ingredient of quantum mechanics that per-
tains most directly to sensing. This is unsurprising, as it con-
nects quantum states with observable probabilities. This is
the starting point of quantum estimation theory, pioneered
in the works of Helstrom [15] and Holevo [16] in quantum
information theory.

Mathematically,

p,(x) =Trlp,IL], ®)

where p, denotes the quantum state of the light field, which
depends on the parameter y to be estimated, and I, is
the operator describing the detector outcome x, formally
called the positive operator-valued measure (POVM) II =
{I1,} [17]. Inserting Eq. (5) in Eq. (1) shows that the variance
Var,, depends on the quantum state p,, and the choice of the
detector II. The same holds for the CFI.

This sets the stage for quantum-enhanced sensing,
which is a two-step process to improve the precision of a
sensor or reduce the corresponding variance by choosing
IT and p,, judiciously. See Figure 1.

The first step is to minimise the variance Var,, over all
physically allowed detectors, that is, POVMs II. Combining
this with Eq. (4) results in the quantum Cramér-Rao bound

(6

where Q, = maxyF, is the quantum Fisher information
(QFD). The minimisation of the variance translates into a
maximisation of the CFI due to reciprocal relation in Eq. (4).
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This is denoted by the blue arrow numbered 1 in Figure 1.
Mathematically [15]

Q, =Tr[p,L*],where p,L +Lp, =20,p,. (7

The Hermitian operator L is known as the symmetric
logarithmic derivative. The eigenvectors of L are the POVM
elements I1, that minimise the variance.

As in classical estimation, the amount of information
that can be extracted from a quantum state depends on how
strongly it changes with the parameter p. The operator L is
proportional to this rate of change, with the symmetrisation
necessary to account for the non-commutative nature of
the Hilbert space in which p, resides. The precision of a
quantum sensor thus depends solely on the quantum state
p, and its derivative with respect to the parameter u?

Quantum sensors are, at least in principle, no worse
than classical sensors. This is because the QFIis greater than
or equal to the CFI, thatis, Q,, = maxyF, > F,. Making this
relevant in practice is the fact that there always exists an
optimal POVM II, for which the CFI equals the QFI, that
is, the second inequality in Eq. (6) can be saturated. The
ease with which II, may be implemented physically is a
technological issue we address later.

The second step is to maximise the QFI Q,, over probe
quantum states p, where Pu= Aﬂ[p] denoted by the blue
arrow numbered 2 in Figure 1. Here, AM[-] captures the
physics of the sensor that imprints the parameter u on p.
For a light-based sensor, this may range from a linear optical
element such as a phase shift to an elaborate spectroscopic
setup involving nonlinear interactions of a complex quan-
tum system with one or more pulses of light. Mathemati-
cally, these can all be described by a completely positive,
trace-preserving (CPTP) map [17], which can be obtained
from the underlying physical model of the sensor captur-
ing the interaction of the parameter of interest y with the
quantum state p of the probe light field. The geometry of
the space of CPTP maps plays a central role in determining

2 Ifocus solely on the scenario where the parameter y has a unique
true value. Another typical scenario is when the parameter takes values
from a prior distribution P;(x). Then, the minimum mean square
error (MMSE) is given by [18]

MMSE = mlviln/ Pyi(p) Tr [ p, (M — ul)?] dp, 8)

where the minimisation is undertaken over all Hermitian operators M.
The operator M, attaining this minimum is given by the solution of
[18]

pOM, + M, p® =2p@, 9)

where p® = [ Pi(w)p,du, p? = [ uPy;(u)p,dp. Note the similari-
ties to and differences from the structure of Eq. (7).
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the performance of quantum sensors in the real world. See
Section 4.

A quantum sensor using the probe p is, in principle, bet-
ter than its classical counterpart, if the QFI corresponding to
p, exceeds that of pf} = A, [p"], where p¢ corresponds to
classical light. The latter QFI is denoted as Qf} in Figure 1. In
practice, a quantum sensor using the probe p is better than
its classical counterpart, if F > F;l, that is, the former has
a higher CFI, as depicted in Figure 1.

But what is ‘classical’ light?

3 Light

‘Classical’ light may, strictly speaking, be considered an oxy-
moron. This is because light, more formally the electromag-
netic field, has a fundamental quantum mechanical descrip-
tion due to Dirac. A very lucid exposition was provided by
Fermi [19]. Like many orxymoronic expressions, however,
‘classical’ light has a purchase due to reason, convenience
and utility, as I summarise below.

3.1 Classical light

Following the successful development of quantum electro-
dynamics [20], attention reverted to the quantum mechan-
ical description of optics — quantum optics [21]-[23]. It
showed that light fields generated by arbitrary distributions
of classical currents have an especially simple description
in terms of coherent states [21]. The coherent state of the
light field of a single mode is thus identified with ‘classical’
light, as is the Poisson distribution of the average occupa-
tion number of the nth Fock state |n) — the quantum state
with exactly n photons. In this basis, the coherent state is
expressed as

[so]
la) =exp<—|a2|2>zanln), (10)
n=0 \/m
where « is a complex number proportional to amplitude of
electric field. In my notation, p = |a)(a|.

The coherent state p¢ is, in fact, the quantum mechan-
ical ground state of the Hamiltonian of the free quantum
electromagnetic field in absence of charges and currents.
This Hamiltonian corresponds to that of an isolated one-
dimensional harmonic oscillator [23]. A coherent state is
thus a minimum uncertainly wavepacket in the phase space
spanned by the position g and momentum p of the oscillator
and satisfies

2
(NMN®=%. )
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Here, A20 = (0?) — (O)*isthe variance and (-) denotes
the expectation value of 0, in this instance in the quantum
state p°l. Conceptually, the coherent state thus represents as
close an approach to classical localisation as possible [23].

A coherent state is also very close to the output state of
alaser near its threshold [24]. The identification of coherent
states as classical light is thus both conceptual and opera-
tional, the latter stemming from the ubiquity of high quality
of lasers for swathes of the electromagnetic spectrum. I
should emphasise that both these routes, via Eq. (11) and the
laser, are fundamentally quantum mechanical.

3.2 Quantum light

In the parlance, nonclassical or quantum light is a light field
whose state does not have a simple description in terms
of coherent states. Technically, a state of light is nonclas-
sical if its Glauber—Sudarshan P-function is not a positive
probability density function. Resting on a negative, this
definition is quantitively unwieldy. Consequently, a plethora
of measures of nonclassicality have developed over time
[25], including those relying on other distribution functions
[26]. All these measures seek to capture how different a
given state of the light field is from a coherent state.

Generating quantum light involves acting on the output
of a laser in some way, typically via a nonlinear material.
While there is an infinitude of possible quantum states of
light, much effort has been directed to generating states
with exactly one [27] and two photons [28]. The former often
relies on the saturation nonlinearity of a quantum emitter.
The emitted single photons can, in principle, be interfered
in quantum networks of linear optical elements to produce
quantum states of light with a larger number of photons
[29].

Quantum states of light can also have an indefinite
number of photons. The most prominent in this class
are squeezed states [30]. These are, like coherent states,
minimum uncertainly wavepackets satisfying Eq. (11), but
with the variance in one of the quadratures reduced (or
squeezed) at the expense of the other. Their generation
relies in the second or third order nonlinear susceptibility
of a material. Other quantum states of light can be produced
by interfering definite and indefinite photon number states
[31]. Yet others, such as superpositions of coherent states
called Schrodinger cat states, can be obtained by subtracting
photons from squeezed states [32], [33].

3.3 Modes, entanglement and confusion

The quantum states of light I noted above reside in a single
mode. A mode is a solution of the electromagnetic wave
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equation given a set of boundary conditions [34]. They play
a central role in the design and operation of nanophotonic
devices [35]. Quantum states of light can also be constructed
that reside across multiple modes. They could also contain
definite or indefinite numbers of photons. An example of the
latter is a multimode squeezed state [36].

Quantum entanglement is another notion of nonclas-
sicality. An entangled quantum state of two or more sub-
systems is defined as one that is not separable, that is, it
cannot be expressed a mixture of tensor products of quan-
tum states belonging to the individual subsystems [17]. This
is distinct from a state not having a simple description in
terms of coherent states, as in Section 3.2. An example is a
single-mode squeezed state. It is a nonclassical state but not
an entangled state. Quantum light may have entanglement
between photons residing in different modes [37].

The indistinguishability of photons in the same mode
sometimes confuses matters. This is because the identifica-
tion of distinct (or distinguishable) subsystems of indistin-
guishable particles (photons) is not possible. Thus, entan-
glement between photons in the same mode may be judged
unphysical. Indeed, efforts to imbue it with operational
information theoretic meaning resorts to the use of modes
(38]

4 Quantum sensing - elusive
scaling

As the electromagnetic field is defined by an amplitude and
aphase, the categories of parameters it can sense are losses,
relative phases and their combinations. Amongst these, esti-
mating the difference in the path lengths of light travelling
by two different routes from a source to a detector is per-
haps the most elementary. This can be cast as relative phase
sensing and captures applications ranging from gravita-
tional wave detection [2] to phase-contrast imaging [39]. The
formal study of quantum sensing with light has its origins
in the work of Helstrom [15] and later in the development of
laser-interferometric gravitational wave detectors,® which
are in effect Michelson interferometers.

Using the formalism from Section 2.2 with y = ¢ a rel-
ative phase parameter, A, = U, = exp{—i¢n} is a unitary
map where fi is the number operator. Then, py = U, pU i
and the QFI Q,, = A%, now evaluated for input state p into
the interferometer [40]. Maximising this, as per the second

3 https://www.ligo.caltech.edu/system/media_files/binaries/386/
original/LIGOHistory.pdf.
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step in Section 2.2 over quantum states of light with N pho-
tons — exactly or on average [41], gives

Qp ~ N2 12)
This quadratic dependence of the QFI of estimating the
relative phase on the number of photons is hailed as the hall-
mark of quantum-enhanced sensing, compared to the QFI
for classical light 9, ~ N where N = |a|? for po = |a)(a].

The quadratic dependence in Eq. (12) is often dubbed
the Heisenberg limit or scaling [42], though its connection
to the uncertainly relation in Eq. (11) is tenuous. The quan-
tum states that attain the quadratic scaling in the photon
number (exact or average) are certainly nonclassical and
include instances such as NOON states and squeezed states
[41]. Aspiring for this quadratic scaling in phase estima-
tion has driven much of the interest in quantum-enhanced
sensing [43], [44], rooted in seeking a more precise sensor
using fewer probe resources. I emphasise that the number
of photons actually used is rN. The scaling in r is entirely of
classical and statistical origin and not subject to quadratic
quantum enhancements.

A central challenge is the production of quantum states
of light with large photon numbers at a repetition rate com-
parable to a coherent state, which can easily have billions
or trillions of photons. ‘Bright’ squeezed states with compa-
rable mean photon numbers have been reported recently
[45]. Preparing quantum states with high fixed photon num-
ber remains hard despite novel theoretical ideas [46], [47].
Should such ideas become realisable, their integration in to
the wider quantum photonic sensing architecture would be
most welcome.

The quadratic scaling for phase estimation is impossi-
ble in real-world sensing scenarios even if desirable quan-
tum states are available. This is because all real world sen-
sors inevitably encounter losses and other noise or decoher-
ence processes [48]. Consequently, the best possible scaling
is

Q, ~ CN, (13)

where ¢ is a constant independent of N. It depends on
the nature and strength of the loss, noise or decoherence
processes.

The quadratic scaling for phase estimation in Eq. (12) in
the absence of loss and noise also applies to any parameter
w generated by a A, that is a unitary map. The concomitant
linear scaling in Eq. (13) then applies to it in the real world.
The QFI associated with the estimation of parameters, such
as (linear) loss or absorption, have such a linear dependence
on N to start with.

The root of the linear scaling in Eq. (13) lies in the
geometry of the space of CPTP maps A, [48]. This space is
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convex, that is, if Aw A;l are CPTP maps, then so is Aﬁ =
pA, + 11— [p)A:l for a probability p. Furthermore, Aﬂ can
be realised physically by randomly applying A, or A; with
probabilities p and 1 — p, respectively. Thus, the CPTP map
corresponding to a quantum sensor subject to noise or
decoherence acting on a N-photon quantum state of light
is equivalent to a convex combination of N separate maps
acting on single photons. In particular, these separate maps
are independent of y, which only enters through the proba-
bilities describing the convex combination. This essentially
makes the sensing task one of classical estimation and leads
to the linear scaling in Eq. (13).

Maps that cannot be decomposed into a convex com-
bination of other maps are called extremal. An instance of
an extremal map is a unitary such as U e which lead to the
quadratic scaling in Eq. (12). The linear scaling in Eq. (13) is
thus, if possibly abstract, of most fundamental origins and
seemingly insurmountable. Consequently, all stakeholders
in the field of quantum sensing must recognise it.

The constant ¢ has been evaluated analytically for
widely prevalent processes such as photon loss, dephasing
and spontaneous emission [48]. These suggest that dimin-
ishing losses and decoherence increase the value of c. While
its exact behaviour depends on the details of the sensor as
well as the loss and noise processes, the magnitude of ¢ can
be increased with improved technology, leading to possibly
substantial tangible quantum enhancements in sensing.

5 Sensing modalities

In my view, the future of quantum-enhanced sensing rests
onincreasing the constant c. This depends on the specifics of
the sensing modality. From the domain of umpteen sensing
modalities [49], [50], even with light [4]-[6], [8]-[10], I will
focus on three in this section. If this suggests that the drive
for quantum-enhanced sensing to be platform and applica-
tion specific, it is only partially true. In the following, I will
highlight some general concepts and insights that are appli-
cable across sensing domains and modalities while restrict-
ing myself to three common paradigms with relevance for
nanophotonics.

5.1 Interferometry

I begin with the estimation of a relative phase, the nat-
ural sensing task emanating from interferometry. A real
linear interferometer, especially implemented using inte-
grated photonics, is subject to losses [51], [52]. These are typ-
ically assumed to be linear and associated with the prepa-
ration 7, and detection 7,4, as well as the sensing of the
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PNRD

Figure 2: Relative phase ¢ estimation in a linear interferometer, where
11,> 11 and n, are the preparation, transmission and detection losses,
respectively. 7, = n = 1, = 1 denotes no losses. Taken from Ref. [51].

phase ¢ itself #. The performance of the quantum sen-
sor in Figure 2, with fixed-photon-number state inputs and
photon-number-resolving detectors (PNRDs), is quantified
by the CFI of estimating ¢ using the formalism of Section 2.2.
For quantum enhancement, this must exceed the CFI of
estimating ¢ using classical light with |a|?> = 2N, as noted
in Figure 1. This is only possible if the losses are such as to
lie within a region of the unit cube of #,,, , 4 as shown for
N =1and N = 3inFigure 3.1 extract two observations from
them.

The first observation is that the most demanding call is
placed on the detector efficiency #,. In other words, high-
efficiency PNRDs are necessary for phase estimation with
quantum light using a linear interferometer as envisaged
in Figure 2, to outperform its classical counterpart. This
is because the most damage to a quantum state in sensor
occurs when the quantum light has picked up all the infor-
mation it can about the parameter to be estimated.

Integrated, high-efficiency PNRDs have become avail-
able in recent years [53]. To minimise losses in the prepara-
tion, the source of the quantum light can be placed on the
same integrated chip. This is also becoming possible [54].
Finally, placing the sample on the same platform is essen-
tial to fulfil the vision of quantum nanophotonic sensing,
especially in biomedical settings. This remains a challenge

Figure 3: Region of (17, 17, 1,) space of losses for which quantum
enhancement is possible using N = 1 (left) and N = 3 (right) in the sensor
in Figure 2. Taken from Ref. [51].
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even in nanophotonic biosensing with classical light ([55],
Fig. 4) as is that of having sources and detectors operating
at light wavelengths most relevant for the sample [56].

The second observation is that the demand on #, is
greater for the larger N. The same applies to 77,. While hav-
ing more photons does allow greater protection from trans-
mission losses #, the performance of the sensor is limited
by its most demanding component 7, Quantum states with
more photons are by themselves thus not enough for a bet-
ter quantum sensor. Indeed, classical states of light are more
robust against losses than quantum states. Better quantum
sensors thus need detectors with efficiency increasing with
N, and number resolvability. These do not make for a scal-
able approach for quantum enhanced sensing.

Quantum error correction might counter losses in a
scalable manner. Some theoretical works have shown that
quantum error correction can indeed combat certain kinds
of noise processes in sensing [57]-[60]. These and other
works [61] find that the elusive quadratic scaling of Eq. (12)
can be recovered but require unphysical error correcting
operations such as infinitely fast ones. They also rely on
unphysical assumptions such as perfect error correcting
operations. Experimentally, quantum error correction does
help improve quantum sensing for small N by combating
certain kinds of noise in nitrogen-vacancy centre based
magnetometry [62]. Similar demonstrations against loss in
sensing with quantum light would be exciting.

All real-world error-correction operations are them-
selves error prone. Combating that requires fault tolerance.
Fault-tolerant quantum sensing has been explored theoret-
ically [63]. It identified two categories of noise: (i) beyond
our control, associated with sensing the parameter, and (ii)
under our control, associated with in operations such as
preparing, manipulating and measuring probes and ancil-
lae. It then introduced noise thresholds to quantify the noise
resilience of parameter estimation schemes, and theoreti-
cally demonstrated improved noise thresholds over the non-
fault-tolerant schemes. More importantly, it showed that
better devices, which can be engineered under our con-
trol, can counter larger noise beyond our control. The use
of bespoke quantum error correcting codes for combating
losses would identify the efficacy of fault-tolerant sensing
with quantum light.

Despite the specificity of the sensing modality in this
subsection, I hope that both the importance of detectors
and centrality of combating losses in a scalable manner are
general aspects of sensing with quantum light worth recog-
nising. Quantum sensor designers may feel the suggested
remedy of deploying the machinery of quantum fault toler-
ance excessive and foreign. This feeling is perhaps nurtured
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by the belief that building a quantum sensor ought to be
an easier endeavour than building a quantum computer,
the domain to which fault tolerance is typically associated.
As quantum light with more photons become available and
losses which are determined by material properties of sen-
sors and detectors cannot be reduced in proportion, exper-
imenters may be forced to tread the path traced above.

5.2 Microscopy

I now move to microscopy with quantum light. The set of
possibilities is immense even within optical microscopy.*
Following the strategy noted in Figure 1, I focus on
microscopy with quantum light that improves upon clas-
sical schemes limited by shot noise [66], [67]. Shot noise is
attributed to the Poissionian photon number distribution
of the coherent state and identified with the linear scaling
of the QFI for coherent states noted in Section 4. Brighter
coherent state pulses can give more precision but lead to
greater photodamage of the sample, a particular concern in
biomedical applications. The strength of the coherent state
thus limited, the purpose of microscopy with quantum light
is to continue improving the precision.

Quantum enhanced stimulated emission microscopy
[68] and quantum enhanced stimulated Raman spec-
troscopy [69], [70] achieve this goal. The latter work also
undertook a detailed study of photodamage. These detect
the concentration of a sample, which is proportional to the
number of photons absorbed (or lost) from a probe pulse.
Mathematically, the best quantum state for estimating loss
is a Fock state with a fixed number of photons, say |n) [71].
This because on the quantum state after the loss is a|n) «
[n — 1), which is orthogonal to |n) and & is the annihilation
operator of the appropriate field mode. On the contrary, the
coherent state is the worst, because a|a) o |a), making it
less sensitive to the loss. The microscopy experiments [68],
[70] use pulses of intensity-squeezed coherent states of light.
This is a judicious compromise between the mathematically
optimal and physically practical — an abiding principle to be
followed in any real world undertaking.

Another abiding principle, essential for sensing with
quantum light to be worthwhile, is to operate in a shot-noise-
limited regime. In other words, the classical method must
be limited in a manner that quantum ones can improve
upon. This is typically not the case. Indeed, operating a

4 Iwill not address quantum-inspired spatial superresolution of opti-
cal sources [64], [65] as it does not rely on the use of quantum light but
rather on spatial mode-resolved measurements. These mode-resolved
measurements are mathematically akin to their temporal or spectral
counterparts noted in Section 5.3.
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shot-noise-limited classical sensor may be harder in prac-
tice than imposing quantum enhancements on it. In many
optical sensors as in the microscopy schemes noted above,
the classical noise sources such as technical laser noise and
photodetector electronic noise dominate the shot noise at
low frequencies. This is overcome by modulating the signal
at a few megaHertz where shot noise is dominant. Intensity-
squeezed coherent states of light then perform quantum-
enhanced microscopy.

Generating intensity-squeezed coherent states of light
is easier than high-n Fock states but harder than coherent
states. The challenge arises due to incomplete understand-
ing of nonlinear process of a pulsed nature such as group
velocity mismatch between the pump and seed pulses, beam
divergence, spatial walk-off or spatiotemporal coupling in
the parametric gain [68]. Furthermore, higher gain, which is
necessary for more squeezing and hence quantum enhance-
ment, requires a more thorough analysis [72] than low gain
efforts providing a squeezing of a dB or lower. This ties back
to the challenge of producing quantum states of light with
large photon numbers and high repetition rates, as noted in
Section 4.

This modality once again highlights the challenge of
generating quantum states of light with large numbers of
photons. Another crucial issue in sensing with quantum
light is identifying the limitation of the corresponding sen-
sor using classical light. It must be that the classical nature of
the light — shot noise is the limitation in the classical sensor.
Attaining thatlimit, which may be a nontrivial experimental
and technological step in itself, is essential before embark-
ing on sensing with quantum light.

5.3 Spectroscopy

I finally turn to spectroscopy, perhaps the most ubiquitous
of analytical tools in the natural sciences. I also expand to a
paradigm where A, captures the interaction between quan-
tum light and quantum matter from the first principles of
quantum mechanics. Effective quantities such as phase and
loss discussed the last two sensing modalities are functions
of the underlying ‘microscopic’ parameters of the quantum
matter system such as transition energies, line widths or
lifetimes, dipole-dipole couplings, electron—phonon cou-
plings, etc. This expanded paradigm leads to an operational
definition of spectroscopy as the precise estimation of these
‘microscopic’ parameters. It is also more informative when
novel complex quantum matter systems are studied spec-
troscopically than merely estimating effective macroscopic
parameters such as absorption and refractive index.
Contemporary theoretical studies of spectroscopy treat
the light classically, leading to a semiclassical light—matter
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interaction [73]. Formally, the total Hamiltonian

A= Fﬂ,\f + A + AWM, (14)
captures the operation A, [p,], where Flll‘f is the Hamilto-
nian of a matter system or sample with parameters yu, and
HY, A™ are those of the light and light—matter interaction,
respectively. For a chosen measurement described by the
operator IT corresponding to a spectroscopic configuration,
the theoretically evaluated signal Tr [A u [pd]H] is compared
with experimental data to estimate y by data fitting.

Early experiments efforts towards quantum light spec-
troscopy used classical laser light to measure semiconduc-
tor quantum wells and processed the data to mimic the
response of the system to a quantum state of light [74]. Early
theoretical works did study the effect of shining quantum
light directly on complex quantum systems. They evaluated
the signal for specific spectroscopic configurations and mea-
surement schemes [75] and showed that some excitation
transfer pathways in coupled quantum systems obscured
in nonlinear spectroscopy using classical light could be
revealed by using quantum light. As these studies work with
specific input states and measurements, they are incapable
of optimising over input states and measurements as out-
lined in Section 2.2 and Figure 1.

Recent works have cast spectroscopy in the framework
of quantum estimation theory to begin traversing the path
outlined in Figure 1. It relies on calculating the quantum
state of the light pulse A, [p] after it has interacted with
a quantum matter system, as in Figure 4. This is the cen-
tral ingredient in the evaluation of the QFI of estimating
‘microscopic’ parameters of the matter system and identi-
fication of optimal measurements [76], [77]. These works
reproduce known results on absorption spectroscopy when
a two-level system (TLS) starts in the ground state and
should do so for stimulated emission spectroscopy when the
TLS starts in an excited state.

The new insight from this formalism is that additional
information about the matter system is available in the
distorted quantum light pulse after the interaction. This

L
B

r ;Eﬁ&

Figure 4: Illustration (not to scale) of the excitation of quantum matter
system by a quantum pulse of light (with Gaussian temporal envelope).
I represents the interaction strength with the pulse, while I"; describes
emission into other (inaccessible) orthogonal field modes. As illustrated,
the shape of the wave packet is changed by the interaction with

the matter system. Taken from Ref. [76]
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is in addition to the information that can be extracted
from absorption or emission spectroscopy. In other words,
beyond counting the number of photons, there is more
information in the shape of the pulse itself that can be
extracted from quantum light spectroscopy, as illustrated
in Figure 4. The relative contributions depend on the time
duration of the experiment relative to the lifetime, as well
as the fraction I'/T"; of the light detected.

Another novel insight is that higher precision in esti-
mating a parameter such as lifetime is not coincident with
higher excitation probability or cross section [76]. This is
significant as the latter is often taken to be a surrogate
for the efficacy of spectroscopy [78]. Other insights can be
extracted using entangled quantum states as probes such
as biphotons and more involved matter systems such as
coupled dimers [79].

Extracting this additional information from the pulse
shape requires temporal or spectral mode-resolved mea-
surements. Such measurements are now available [80]
for single photons. Non-destructive photon number count-
ing is necessary to extract the information from absorp-
tion or emission spectroscopy simultaneously. This is more
challenging for single photons at optical wavelengths. The
strength of the formalism also lies in showing what is unnec-
essary. For instance, entangled measurements are not nec-
essary to attain the best fundamental precision if only one
mode of a biphoton state interacts with the sample, as in
Figure 5.

To obtain the quantum state A ,[p] of the pulse of light
after the interaction, the dynamical equations of quantum
mechanics such as the Schrodinger equation for the Hamil-
tonian in Eq. (14) must be solved. For pulsed interactions,
H™ is time-dependent while for complex quantum systems,
ﬁi‘f typically consists of electronic and phononic contribu-
tions as well as their couplings. Accounting for the latter
requires the use of hierarchical equations of motion [81].

Dyipn (s, 1) e .
nvironmen

Biphoton

“’-....~':
)_’1
Measurement

Figure 5: Schematic of pulsed biphoton spectroscopy. Taken from
Ref. [79]
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Coupling this with incident quantum states of light with
indefinite photon numbers such as squeezed states requires
tools such as tensor networks to express A, [p] efficiently
such that their QFI can be evaluated [82]. This moves us into
realm of quantum light-matter interactions [83], a rich field
of study in itself.

Quantum light spectroscopy is deeply intertwined the
study of quantum light—matter interactions, especially in
quantum nanophotonics. The latter engineers configura-
tions that can enhance the light—matter interaction to probe
the physics of quantum matter systems such as complex
molecules. Cavities, waveguides and surfaces provide the
varied platforms to perform quantum light spectroscopy,
including providing sources of quantum light. Combining
these with integrated photonic setups with efficient detec-
tors ([84], Fig. 10) could vastly expand the arena of quantum
light spectroscopy into domains such as quantum nanopho-
tonic biosensing [55].

6 Conclusions

I conclude with an enumerated gist of the vital challenges
in sensing with quantum light and possible avenues for
overcoming them.

1. Detecting quantum states of light with high efficiency.
This is to make the most of the available quantum states
of light. The efforts will have to be in material science
and technology.

2. Generating ‘bright’ quantum states of light with large
numbers of photons at repetition rates and determi-
nacy comparable to classical sources. The efforts should
be in developing sources of ‘bright’ squeezed states of
light.

3. Combat inevitable losses in the sensing process by
develop error correction and fault tolerance for quan-
tum sensing. The efforts will have to be in quantum
information and coding theory.

4. Integrating sources, interactions and detectors on the
same platform. This will be pulled by specific applica-
tions and pushed by fabrication technologies.
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