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Abstract: Photodetectors are crucial for modern
technologies such as optical communications, imaging,
autonomous vehicles, and machine vision. However,
conventional semiconductor-based photodetectors require
additional filtering systems due to their broad spectral
response, leading to increased costs and complexity. Here,
we present a narrow spectral response photodetector
using hexagonally arranged plasmonic Au nanohole
structures, eliminating the need for optical filters. The
device achieves a full-width at half maximum (FWHM)
bandwidth of ~40 nm with a response peak at 760 nm
and a linear photocurrent responsivity of 0.95 pA/W. The
photothermoelectric effect, induced by the nonradiative
decay of plasmonic resonance, converts optical radiation
into an electric potential on the Au surface. The hexagonal
nanohole design generates polarization-independent
photocurrents and allows spectral tuning beyond the cutoff
region of silicon photodetectors. This versatile approach
enables customizable response characteristics across
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a broad wavelength range through geometric design,
enhancing its potential for diverse applications.
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1 Introduction

Photodetectors are crucial components in various systems
that utilize light as a signal carrier, such as optical commu-
nications [1], [2], chemical analysis [3], autonomous vehi-
cles [4], and machine vision [5]-[7]. Photodetectors can be
classified into broadband and narrowband types based on
their spectral response bandwidth, with each type offer-
ing distinct advantages depending on the intended appli-
cation. Narrowband detectors, the focus of this study, are
particularly advantageous for detecting a narrow range of
wavelengths. This selective detection minimizes noise by
avoiding extraneous signals from the surrounding environ-
ment that fall outside the target wavelength range, thereby
enhancing image resolution and sensing accuracy. Con-
ventional photodetectors, typically based on semiconduc-
tor materials such as Si, GaP, and GaN, offer high optical
sensitivity, but their spectral response is inherently limited
by the bandgap energy of the semiconductor, functioning
similarly to a low-pass filter. This limitation complicates
the realization of a narrowband spectral response. Conse-
quently, optical filter systems are often combined with semi-
conductor detectors to operate as narrowband photodetec-
tors [8]-[10], but this approach can lead to increased cost,
size, complexity, and energy losses due to additional optical
interference or scattering [11]-[14]. Conventional dichroic
bandpass filters, which achieve selective transmission and
reflection properties through the repeated deposition of
high- and low-refractive index materials on a glass sub-
strate, are particularly challenging to miniaturize to a chip
scale or integrate with photodetectors [15], [16]. Therefore,
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novel approaches that enable chip-scale, narrowband
photodetection without reliance on semiconductors are
needed.

In this context, numerous studies have reported nar-
rowband photodetectors that selectively absorb specific
wavelengths through the deposition of quantum dot (QD)
materials on sensor surfaces [16]-[20]. However, achiev-
ing narrowband sensors with diverse wavelength selectiv-
ity requires new synthesis and deposition processes for
suitable quantum dot materials. In place of QDs, surface
plasmons (SPs) provide an alternative method for selective
optical absorption in metals. Metals such as Au and Ag,
which exhibit high negative permittivity in the visible or
infrared (IR) range, can induce strong collective oscillation
of free electrons at the interface between the metal and
dielectric surroundings [21], [22]. These oscillations occur
at specific wavelengths and can be manipulated by design-
ing the geometrical parameters of the nanostructure. This
light-matter interaction converts the energy of incident
light into the collective motion of electrons, generating
intense, localized near-fields around nanostructures with
specific shapes. The local fields generated by SP resonance
can enhance the efficiency of optical absorption or nonlin-
ear harmonic generation in nanoscale materials such as QDs
[20], [23], [24] and two-dimensional (2D) materials [25]-[27].
Interestingly, SPs can directly convert optical energy into
electric potential on the metal surface. The near-field gen-
erated by irradiated light can decay radiatively, emitting
a photon, or nonradiatively, generating hot electron-hole
pairs [28], [29]. These high-energy hot electrons undergo
relaxation over 100 fs to 1ps, redistributing their energy
as heat to the surrounding materials [30], [31]. This pro-
cess creates localized temperature increments within the
metal film, converting light energy into electrical poten-
tial through the localized Seebeck effect. Unlike traditional
semiconductor-based photodetectors, this photodetection
mechanism is not constrained by the material’s bandgap
energy and requires no additional bias voltage [32]. Fur-
thermore, by adjusting the geometric parameters of the
plasmonic structure, the resonant wavelength range can
be precisely tuned across a broad region of the infrared
spectrum.

In this study, we demonstrate a narrowband photode-
tector by exploiting a hexagonal array of Au nanoholes to
induce a narrowband plasmonic photothermoelectric (PTE)
effect. The hexagonal array of nanoholes exhibits nearly
equivalent PTE effects for any polarization state of the irra-
diated light. The designed plasmonic structure shows reso-
nant field enhancement at a wavelength of 760 nm, while
the maximum optical transmission peak occurs at 770 nm
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due to a discrepancy between surface and longitudinal
plasmonic resonances. The plasmonic PTE device demon-
strates a linear photocurrent responsivity of approximately
0.95 pA/W when irradiated with a continuous wavelength
laser at 770 nm under zero-bias voltage, with a narrow
full-width at half maximum (FWHM) spectral response of
~40 nm. Additionally, unlike a square array of plasmonic
nanoholes, the hexagonal array enables stronger plasmonic
interactions due to the simultaneous excitation of mul-
tidirectional plasmon modes arising from the hexagonal
arrangement [33]. This configuration results in higher field
enhancement and more efficient photocurrent generation.
Experimental results and numerical simulations indicate
thatlocal heat generation in the hexagonal array is indepen-
dent of light polarization, reducing polarization-dependent
energy losses and the need for calibration in photodetection.
We also numerically calculated the tunability of the reso-
nant wavelength across a range from the visible to the near-
infrared spectrum (specifically from 650 nm to 1,150 nm) by
adjusting the pitch and hole diameter of the Au nanohole
array. This ultra-compact, chip-scale PTE-based narrow-
band photodetector holds potential for advanced applica-
tions in sensing, imaging, and quantum communications.

2 Results and discussion

2.1 Principle of plasmonic PTE effect and its
characteristics

Figure 1a shows a schematic of the narrowband photodetec-
tor utilizing the plasmonic thermoelectric effect. The pho-
todetector is composed of a hexagonal array of Au nanohole
structures fabricated on a thin Au/Si;N, substrate. This Au
film, perforated with nanoscale periodic holes as illustrated
in the figure, supports extraordinary optical transmission
(EOT), where the transmission efficiency through the sub-
wavelength apertures is strongly enhanced when SPs are
resonantly excited by the irradiated light [34]-[36]. Thus,
measuring EOT is useful for experimentally evaluating the
SP resonant wavelength. The excited SPs either transfer
their energy through a radiative decay process, such as
EOT, or lose energy through nonradiative decay, generating
hot-electron pairs, which are converted into heat within
the metal structure during their relaxation process [30].
This heat leads to a temperature difference between the
plasmonically excited holes and other regions, inducing a
photocurrent in the device via the Seebeck effect. The ther-
moelectric voltage (AU) generated by the Seebeck effect is
expressed as AU = —SAT, where S is the Seebeck coeffi-
cient of the material and AT is the temperature gradient
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Figure 1: Concept of narrowband plasmonic PTE photodetection. (a) Schematic illustration of the narrowband plasmonic PTE photodetector.

The plasmonic PTE effect is strongly induced by an incident laser beam with a center wavelength matching the SP resonance condition (shown in red),
while a weak PTE effect is observed under the nonresonant SP condition (shown in green). The local near-field generated by the SP resonance causes
temperature increments around the nanoholes. Free electrons in the Au film move from the hot region to the cold region via the Seebeck effect.

(b) Calculated intensity distribution (top), heat source density (middle), and heat distribution (bottom) at the Au surface. Wavelengths of 770 nm and
800 nm were selected for surface plasmon resonance and non-resonance conditions, respectively, with the power of the incident light set to 10 mW

in both cases.

[32]. This equation shows that higher photocurrent can be
induced when a stronger temperature gradient is formed
due to the intense field enhancement from the SP resonance
(colored in red). On the other hand, when non-resonant
light (colored in green) is irradiated on the same plasmonic
structure, the SP resonance is weakly induced, leading to
low photocurrent due to an insignificant temperature gra-
dient. The amount of photocurrent corresponds to the reso-
nant characteristics of SPs, enabling a narrowband photode-
tector that generates current only near the SP resonance
wavelength.

The analysis of the local heat source distribution
induced by SPs was performed to investigate the plas-
monic photocurrent generation process. The finite element
method (FEM) was used to calculate the local electromag-
netic fields and the local heat source distribution around
the Au nanohole. The hexagonal array of nanoholes was
modeled as a rectangular unit cell. A perfectly matched
layer (PML) was applied to the planes orthogonal to the
optic axis of the unit cell, and periodic boundary conditions
were applied to the other boundary planes. To align with
the experimental conditions, a plane wave excitation with
an average power of 10 mW was applied in these calcula-
tions. Figure 1b shows the simulation results for the elec-
tric field (E-field) (top panel), heat source density (middle
panel), and temperature distribution (bottom panel) gener-
ated by the laser irradiation on the hexagonal Au nanohole
array. The initial temperature of the nanohole was set to
20 °C, near room temperature. We designed the hexagonal
array of Au nanoholes on an Si;N, substrate to achieve

maximum optical transmission at a wavelength of 770 nm
(top-left panel), displaying a strong electromagnetic field
enhancement at the edge of the nanohole. In contrast, laser
excitation at a wavelength of 800 nm, only 30 nm from the
plasmonic resonant wavelength, did not produce any signif-
icant field enhancement. This discrepancy in electric field
enhancement leads to a different local heat source within
the nanohole.

When light at the resonant wavelength is incident on
the nanohole array, a strong electric field (top-left panel)
is generated along the polarization direction of the inci-
dent light at the aperture edges. The heat source density,
reflecting power dissipation from the excited local electric
field, is localized along the aperture edges and distributed
perpendicularly to the local electric field. This suggests that
the excited SPs experience nonradiative energy loss during
their collective oscillation along the arc of the nanohole.
In the resonant mode, the temperature was predicted to
increase by up to 2 °C from the initial temperature of 20 °C
(bottom-left panel). In contrast, in the non-resonant mode,
due to the weaker E-field compared to the resonant mode,
no distinct heat source was generated, and the tempera-
ture distribution remained at the initial 20 °C (bottom-right
panel). These simulation results clearly demonstrate that
SP resonance significantly affects photocurrent generation
and that the formation of localized heat sources during
the nonradiative decay process of SPs leads to a noticeable
temperature increase along the arc of the nanohole.

To experimentally validate the narrowband pho-
todetection by the plasmonic PTE effect, a 100 nm-thick
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Figure 2: The experimental setup and optical/PTE characteristics of the Au nanohole array. (a) Schematic image and optical microscope image

of the PTE device, showing an Au nanohole array deposited on a Si;N, membrane. The fabricated nanohole array has a diameter of 400 nm, a pitch

of 800 nm, and a thickness of 100 nm on a 200 nm-thick Si;N, membrane. The nanohole array size is approximately 500 pm X 500 pm. (b) SEM image
of the Au nanohole array, arranged in a hexagonal pattern with a hole diameter of 400 nm and a pitch distance of 800 nm. The Au film thickness is
100 nm. (c) Theoretical (black line) and experimental (red line) transmittance spectra through the PTE device. (d) Schematic illustration of the exper-
imental PTE setup: the external cavity diode laser (ECDL) is modulated by a chopper synchronized with a lock-in amplifier. The polarization state

of the laser is controlled using a half-wave plate (HWP) combined with a polarizer, and the laser is focused onto the sample using a 10X objective lens.
(e) Laser position-dependent PTE characteristics: the nanohole array has higher resistivity than the electrode region, causing the dominant

photocurrent direction to vary with the laser beam position.

hexagonal array of Au nanoholes was fabricated on a
200 nm-thick Si;N, membrane (21584-10, TED PELLA INC.)
(Figure 2a). Each nanohole has a diameter of 400 nm and
a uniform lattice distance of 800 nm between neighboring
nanoholes (Figure 2b). The size of the patterned region was
500 pm X 500 pm in the x—y direction, and Cu electrodes
were precisely attached to the unpatterned strips on the
Au film to minimize resistive noise during photocurrent
measurement. Figure 2c shows the EOT spectrum of the
fabricated hexagonal array of Au nanoholes (colored in
red) compared with the calculated EOT spectrum, which
was obtained using the FEM method to calculate Maxwell’s
equations in the nanohole array. The simulation was per-
formed using the same material parameters as the fabri-
cated nanoholes, with a hole diameter of 400 nm, a period
of 800 nm, and an Au film thickness of 100 nm (inset of

Figure 2c). The optical transmission spectra of the fabri-
cated sample were measured using a collimated halogen
light source (FOK-150W, Fiber Optic Korea) in combination
with a spectrometer (HR4000, Ocean Optics). The polariza-
tion of the incident light was aligned with the electrode
direction using a linear polarizer. The experimental EOT
spectrum closely matches the theoretical EOT spectrum,
although slight discrepancies were observed due to geomet-
ric imperfections in the fabrication and the optical focusing
effect of using a lens, as opposed to plane wave excitation
in the simulation. From the theoretical and experimental
EOT spectra, we confirmed that the hexagonal array of Au
nanoholes provides sufficient SP resonance at a wavelength
0f 770 nm. In the PTE experimental setup, a tunable external
cavity diode laser (ECDL, Toptica, DL pro) was focused on
the hexagonal array of Au nanoholes with a spot size of
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~8.4 pm (1/e?) using a 10X objective lens (Figure 2d). The
laser polarization was controlled using a half-wave plate
(HWP) combined with a linear polarizer. The photocurrent
induced by the irradiated laser was measured with a lock-
in amplifier (SR860, Stanford Research Systems) while the
incident laser was modulated with a chopper system (SR540,
Stanford Research Systems).

Based on the theoretical heat source distribution
around the nanohole, as shown in Figure 1b, the photocur-
rent generated at each nanohole radiates outward from
its center. The photocurrent produced at each hole can
superimpose with photocurrents generated at neighboring
nanoholes to form a collective flow. However, the flow of
the generated photocurrent encounters varying resistance
depending on the laser beam’s position within the pattern
due to the increased sheet resistance in the nanohole array
compared to a flat surface. This variation results in different
photocurrent detection characteristics for identical laser
power irradiation. Figure 2e presents the measured pho-
tocurrent as a function of the laser beam’s position along the
electrode. When the laser beam passes over the electrode
regions, the generated photocurrent is nearly zero, indicat-
ing that an unpatterned flat Au surface does not induce
any PTE effect. When the laser beam fully illuminates the
nanohole array (position 1), localized heat is efficiently gen-
erated from each nanohole due to SP resonance, producing
a substantial photocurrent of —10 nA. However, as the laser
beam moves toward the pattern’s center, the photocurrent
gradually decreases. Due to the higher resistance of the
nanohole array region compared to a flat Au surface, when
the laser beam is focused on position 1, the left electrode
region exhibits lower resistance than the nanohole array
region on the right, resulting in less photocurrent loss to the
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left than to the right. According to this mechanism, the resis-
tance encountered by the photocurrent varies as the laser
beam position changes, determining the dominant direction
of photocurrent flow. At the center of the nanchole array
region (position 2), the generated photocurrent experiences
nearly symmetrical resistance in both electrode directions,
resulting in a photocurrent near zero. As the laser beam
is further shifted to the right side of the patterned region
(position 3), the photocurrent reappears with the opposite
sign and nearly the same magnitude as observed at the
left edge (position 1). The number of nanoholes within the
illuminated area also affects heat generation, so the peak
photocurrent occurs not at the edge of the nanohole region
but where the laser spot fully covers the nanohole array.
The effect of laser spot size on photocurrent magnitude is
shown in Figure S1. We confirmed that the photocurrent
generated by the Seebeck effect is influenced by the struc-
tural resistance within the device, which determines the
direction of current flow. These findings allow us to iden-
tify the optimal laser beam position to achieve maximum
photocurrent.

2.2 Optoelectronic performance
of plasmonic PTE device

To evaluate the optoelectronic performance of the PTE
device, a 3dB bandwidth measurement was conducted,
along with an assessment of linearity in optical power mea-
surement. In this measurement, the wavelength of the ECDL
laser was set to 770 nm, with its polarization aligned parallel
to the nanohole array (see inset of Figure 3a). The laser
beam was fixed at position 1, as shown in Figure 2e, to
achieve the maximum photocurrent signal. Figure 3a shows
the frequency bandwidth characteristics of the PTE device.
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Figure 3: The optoelectronic characterization of the PTE device. (a) The measured photocurrent in the PTE device at different modulation frequencies
using the optical chopper. (b) Laser power-dependent photocurrent and localized heat generation. The green circles represent the measured
photocurrent from the PTE device, while the red squares correspond to the localized temperature increase generated in the Au nanohole array.

(c) Polarization dependence of PTE generation, showing the measured photocurrent signal as the incident laser polarization, varies from 0° to 360°

in 6° increments (sky blue line), alongside the calculated maximum intensity (red line) and localized heat (black line). (d) Calculated E-field distribution
in the nanohole as a function of the polarization direction of the incident light.
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By increasing the rotation speed of the chopper connected
to the lock-in amplifier, the input laser was gradually mod-
ulated from 1 Hz to 20 kHz. The average power of the mod-
ulated laser was set to be the same at all modulation fre-
quencies. The 3 dB bandwidth of the PTE device was 1.2 kHz,
indicating the optical detection bandwidth of the device.
Additionally, the rise time of the PTE device was calculated
using the relationship denoted as

0.35
fsam

IR

)]

T

where 7, is rise time and f_,;; is the frequency at the
—3dB point. According to this equation, response time of
the PTE device is calculated to be approximately 0.292 ms.
The response time is considerably faster than the typi-
cal response time of reported PTE-based photodetectors,
which ranges from a few to several hundred milliseconds
[37]1-[40]. Additionally, we evaluated the long-term stabil-
ity of the photocurrent response to investigate the effect
of accumulated heat during laser exposure (Supplemen-
tary Figure 3). The measurements were conducted under
continuous exposure of a CW laser for 5h. The average
photocurrent measured during this period was 14.37 nA,
with a standard deviation of 0.3055nA. The calculated
relative standard deviation (RSD) was 2.14 %, indicating
stable performance throughout the entire measurement
period. These results show that the Au plasmonic structure
did not accumulate heat during the laser exposure. This
confirms the device’s suitability for long-term operation
in practical environments without degrading its detection
capability.

Figure 3b shows the linearity of the photocurrent
response to the laser power irradiated onto the Aunanohole
array and the localized heat source generation as a function
of laser power, calculated by FEM simulation. The ECDL
laser, with a wavelength of 770 nm, was irradiated onto the
PTE device, and the photocurrent signal was measured as
the laser power was incrementally increased from 0 mW to
20 mW in steps of 1 mW. In the numerical heat source sim-
ulation, a continuous electromagnetic wave with a wave-
length of 770 nm was modeled as a plane wave, and its
power was varied from 2mW to 20 mW in 2mW incre-
ments. The measured photocurrent increased linearly with
the incident laser power, consistent with theoretical results
on localized heat generation. The calculated results show
that the localized heat generated around the nanocholes
increases linearly with the incident light energy. These find-
ings indicate that the localized heat induced by SP reso-
nance increases linearly with laser energy, leading to a
corresponding linear increase in photocurrent generation
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according to the Seebeck effect. This linear response demon-
strates that the plasmonic-PTE photodetector can quantita-
tively measure laser energy, with a responsivity of approx-
imately 0.95 pA/W, as calculated from the experimental
results. The device’s responsivity could be further enhanced
by utilizing plasmonic structures that induce greater field
intensity (see Supplementary Figure 4 for details).

In the square-array plasmonic EOT structure first intro-
duced by Ebbersen [41], the resonance condition varies
depending on the polarization of the incident light relative
to the periodic direction of the holes. Consequently, differ-
ent PTE effects are observed for each polarization state,
requiring additional calibration to account for polarization
under the same light energy, which can introduce errors
in the measurement signal. To overcome these limitations,
a hexagonal array of nanoholes was used in these experi-
ments instead of the conventional square array. Figure 3c
shows the polarization-dependent photocurrent measure-
ment in the PTE device, with linear polarization swept from
0° to 180° in 30° increments. Interestingly, while the calcu-
lated electric field enhancement distribution in the nanos-
tructure follows the rotating polarization state (Figure 3d),
the measured photocurrents are nearly identical for all
polarization states of the incident light. Note that due to the
hexagonal geometry of the nanohole array, the maximum
electric field enhancement is unaffected by the polariza-
tion state (red line in Figure 3c). Thus, a consistent amount
of localized heat is generated due to steady electric field
enhancement, although the heat source distribution rotates
with the polarization angle. However, the experimental
results confirm that this rotational characteristic of the
heat source distribution does not significantly impact the
measurable photocurrent. The minor variations observed
in the measured photocurrent with changes in the polar-
ization of the incident laser are attributed to slight shifts
in the laser beam position on the PTE nanodevice, caused
by minor changes in the optical path during the rotation
of the half-wave plate and linear polarizer. These positional
shifts, as discussed in Figure 2, can lead to variations in pho-
tocurrent even under the same laser power. These results
experimentally validate the polarization independence of
the hexagonal array of Au nanoholes that generates the
plasmonic PTE effect in the device, confirming its potential
as a photodetector for measuring light energy, regardless of
incident light polarization.

2.3 Narrowband photocurrent generation
and its tunability

The main reason for using SP resonance for localized heat
generation and photon-to-electron conversion is its strong
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compared with the measured photocurrent response of the PTE device (red

square). The field enhancements were overlaid on the EOT spectra as matching colored dots to align with the corresponding EOT spectrum. The pitch

was set to 2D, forming a hexagonal array, with an Au thickness of 100 nm.

wavelength dependence, which enables narrowband pho-
todetection without requiring additional optical filtering.
Figure 4a shows the measurement results of the narrow-
band photocurrent response of the PTE device. The inci-
dent laser wavelength was precisely scanned from 760 nm
to 860 nm in 5nm steps using the ECDL laser. Additional
laser diodes with wavelengths of 700 nm (HL7001MG, Thor-
labs) and 730 nm (HL7302MG, Thorlabs) were also used, as
the ECDL laser does not cover the entire spectral range
from 700 nm to 900 nm. The measured FWHM spectral
bandwidth of the PTE device is approximately 40 nm, with
the maximum photocurrent observed at a wavelength of
760 nm, showing a spectral peak difference of 10 nm from
the peak optical transmission through the PTE device. This
difference indicates that, while the resonant optical trans-
mission can be influenced by other plasmonic longitudi-
nal modes formed along the Au/SisN, interface, the PTE
effect is attributed solely to lateral plasmonic resonance
formed along the Au surface. This suggests that the spectral
responses of the two physical phenomena behave similarly
but are not induced by exactly the same surface plasmon
resonance modes. Numerical calculations of the electric
field enhancement on the Au nanohole show maximum
enhancement at a wavelength of 760 nm, corresponding
to the maximum photocurrent condition (see Supplemen-
tary Figure S2 for details). The FWHM bandwidth is about
40 nm, offering wavelength selectivity comparable to or
even greater than that of the narrowband photodetectors
listed in Table 1. Moreover, compared to other works, it has
the capability of wavelength tuning across the visible and
NIR regions, enabling more flexible wavelength adjustment
over a broad spectral range.

An additional advantage of developing narrowband
photodetectors based on plasmonic resonance is the ability
to selectively tune the narrowband photocurrent response
to a desired wavelength by adjusting the geometric design.
Figure 4b shows the simulation results of the EOT spec-
trum calculated by adjusting the geometric structure of
the nanostructure to tune the surface plasmon resonance
conditions. While the SP resonance characteristics can be
tuned by exploiting different materials or adjusting the
film thickness, the nanochole periodicity was modified to
achieve fine control over the resonance wavelength in these
calculations. The resonance wavelength was controlled by
adjusting the nanohole diameter D in a hexagonal array
with a period of 2D, while maintaining an Au film thick-
ness of 100 nm in all cases. The SP resonance conditions
were analyzed through the calculated EOT spectrum. As
the period 2D decreases, plasmon resonance occurs at
shorter wavelengths, and as 2D increases, plasmon reso-
nance shifts to longer wavelengths. As expected, the max-
imum field enhancement at each condition (indicated by
dots) shows a slight mismatch with the EOT peak wave-
length. However, the EOT spectrum provides solid exper-
imental evidence for evaluating the designed PTE charac-
teristics. This confirms that narrowband responses can be
achieved in the visible range and the near-infrared range
above 1,000 nm. The narrowband photocurrent response
of the fabricated device closely matches the EOT spec-
trum predicted by the simulation, confirming that the reso-
nance wavelength was accurately implemented as designed.
These results demonstrate the potential for designing nar-
rowband photodetectors with high sensitivity to specific
wavelengths.
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Table 1: Summary of narrowband photodetectors.
Spectral range Strategy Material Response peak (nm) FWHM (nm) Ref.
VIS Narrowband absorber BET/Zny Mg, 4,0 530 60 [42]
VIS CCN CH3NH;Pbl,Br 650 80 [13]
VIS Nanowire Si 400-650 50 [43]
NIR CCN (EDN) NT812:Y¢ 860 50 1]
NIR CCN MAPbI;/CuSCN 810 95 [44]
NIR Microcavity ZnPc:Cq 810-1,550 36 [45]
NIR Nanograting Si/PBDBT-DTBT:BTP-4F 895 26 [46]
912 38
945 127
977 201
NIR CCN PCDTBT:PC;,BM 950 90 [47]
NIR Plasmonic grating Si 1,295-1,635 85 [48]
NIR Tamm plasmon PEDOT:PSS/Au 1,500 ~188 [49]
NIR Tamm plasmon Ge/Au 1,600-1,650 - [50]
NIR Plasmonic nanohole array Au 760 (Exp.) 40 This work

VIS-NIR

650-1,150 (Sim.) 50 (VIS), 30 (NIR)

CCN (charge collection narrowing), EDN (exciton dissociation narrowing).

3 Conclusions

We developed a narrowband photodetector with high wave-
length tunability by utilizing the PTE effect induced by
SP resonance. By implementing a hexagonal array of Au
nanoholes, we selectively enhanced electric field on the
Au nanoholes at specific resonant wavelengths to detect
its optical power. The plasmonic fields generate localized
heat through a nonradiative decay process, which in turn
induces photocurrent via the Seebeck effect. This approach
enables a narrowband photocurrent response with high
wavelength selectivity without requiring an external bias.
Notably, the adoption of a hexagonal plasmonic structure,
which efficiently generates heat and is insensitive to polar-
ization, allows the device to achieve consistent light detec-
tion regardless of the incident light’s polarization state.
The fabricated device demonstrated a linear responsivity
of 0.95 pA/W and a narrow spectral response with a peak
at 760 nm and an FWHM of 40 nm. This response closely
matches the theoretical and experimental EOT spectra of the
plasmonic structure, verifying that the resonant wavelength
of the device was precisely implemented as designed. These
results demonstrate that the detection wavelength can be
freely tuned through geometric design of the plasmonic
structure, enabling narrowband response characteristics
across various wavelength ranges while QD-based systems
offer excellent optical properties, they are often limited by
the complexity of controlling their properties during chemi-
cal synthesis and the challenges in achieving uniform depo-
sition on a sample surface. The plasmonic photodetector

proposed in this study utilizes well-defined nanostructures
on metallic surfaces. This approach enables high repro-
ducibility, tunable optical properties, and scalable fabrica-
tion through methods like nanoimprint lithography (NIL).
Moreover, the device achieves narrowband photoresponse
without external bias voltage, significantly reducing opera-
tional complexity, electrical noise, and power consumption.
These features make it a practical and cost-effective alterna-
tive to QD-based systems and conventional photodetectors.
Consequently, the device developed in this study offers high
applicability in diverse fields, including optical communica-
tions, sensing, and precise spectral analysis.
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