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Abstract: Complex power, also known as alternating cur-

rent (AC) power, is a well-established concept in an electric

circuit composed of resistive and reactive elements. On the

other hand, the role of complex power in optics has been

elusive. In this work, we reveal that the complex energy

and momentum determine the resonance frequency and

the decay rate of open cavity resonance, the so-called quasi-

normal modes (QNMs), respectively. We also demonstrate

the role of the complex energy and momentum in typical

open cavities analytically and numerically: the Fabry–Perot

cavity, the surface plasmon polaritons (SPPs), the plasmonic

nanorod, the nanosphere, and the dielectric supercavity.

Keywords: conservation laws; energy; momentum; quasi-

normal modes; open cavity; resonance

1 Introduction

Light–matter interaction is mediated by the transfer of

conserved quantities; for example, the momentum of light

transports electromagnetic energy to excite an object,

resulting in many optical phenomena such as optical

force, optical torque, absorption, scattering, fluorescence,

and circular dichroism [1]–[3]. Conserved quantities such

as energy, and their mediator, i.e. momentum, are of

fundamental importance in understanding light–matter

interaction.
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Energy conservation also plays an important role in the

resonance characteristics of the optical cavity. The response

of an optical system to arbitrary excitation is composed

of its building blocks, namely normal modes, a free elec-

tromagnetic motion in the absence of the excitation. For

isolated optical cavities that have no energy loss from radi-

ation and Ohmic dissipation, the normal modes are defined

by the energy stored by the cavity. In formal words, the

electromagnetic wave equation for the isolated system can

be understood as the Hermitian eigenvalue problem [4], [5].

Its eigenvalues, i.e. the resonance frequencies of the normal

modes, are real values, while its eigenfunctions, i.e. the

electromagnetic fields, are normalizable by the conserved

energy.

Realistic optical cavities, however, are open cavities

that have energy loss from radiation to free space in addi-

tion to Ohmic dissipation in lossy materials. Since energy

is not conserved, the normal modes are not well-defined.

Instead, solutions of the non-Hermitian eigenvalue prob-

lems of the open cavities exist, and they are called the

quasinormal modes (QNMs) [6]–[11]. Again, a set of QNMs

describes the response of an open cavity to arbitrary excita-

tion. Interestingly, QNMhas a complex resonance frequency

𝜔̃0 = 𝜔0 − i𝛾0, whose real and imaginary part describe the

real resonance frequency and the temporal decay rate of

QNM, respectively.

Although energy is not conserved in QNMs, it is pos-

sible to write the energy conservation law taking loss into

account. The energy conservation law also characterizes the

decay rate, one of the fundamental measures of QNM. It

has been suggested that the ratio of energy stored to the

external transfer of momentum defines the decay rate (or

the quality factor Q) of resonant cavities [6], [7]. However,

there has been no complete picture of the relation between

conserved quantities and the characteristics of open-cavity

resonances.

On the other hand, it also has been known that elec-

tromagnetic fields have an infinite number of conserved

quantities [12], but only a few of them have physical mean-

ings, e.g. the optical chirality [13] and some of the Lipkin

zilches [14]. One of the interesting conservation laws is the

complex-valued energy/momentum. In the electrical circuit
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with the complex impedance Z̃, the energy rate transferred

to the electrical elements becomes the complex power,while

its real (imaginary) part, i.e. the active (reactive) power,

is related to the resistive (reactive) element [15]. However,

in general electrodynamics, how the complex energy is

defined and what carries the complex energy have been

elusive, especially in terms of the electromagnetic fields,

although some classic textbooks attempted to relate the

complex impedance with the energy conservation law (i.e.

the Poynting’s theorem) [16], [17].

In this work, we find the conservation law of the com-

plex energy and its physical meanings in open cavity sys-

tems. The real energy/momentum gives the well-known

energy balance; the real energy, the so-called active energy,

is conserved, while it is transported by the active momen-

tum. Its ratio defines the decay rate of the optical cavity. On

the other hand, the imaginary energy/momentum, namely

the reactive energy/momentum, also forms the conserva-

tion law, while they define the resonance frequency of

the optical cavity. We also provide analytic and numerical

examples of the optical cavity, e.g. the Fabry–Perot cavity,

the surface plasmon polaritons, the gold nanorod, the gold

nanosphere, and the dielectric supercavity to show the roles

of the active/reactive energy/momentum in the open cavity

resonance.

2 Conservation laws of open-cavity

resonances

2.1 Complex energy conservation law

Resonators in the real world suffer from radiative and

Ohmic energy loss. Once the lossy resonator, namely the

open-cavity resonator, is excited by the external field, it

decays over time with the finite quality factor Q, while

oscillating with the characteristic resonance frequency 𝜔0.

To take into account the damped oscillation of the open-

cavity resonance, the resonance frequency becomes the

complex values, 𝜔̃0 = 𝜔0 − i𝛾0, whose real (𝜔0) and imag-

inary part (𝛾0 = 𝜔0∕2Q) describe the real resonance fre-

quency and the temporal decay rate, respectively. Note that

the tilde denotes the complex quantities throughout the

paper. Formally, the temporally damped oscillation behav-

iors of the open-cavity resonance can be described by the

concept of the quasinormal modes (QNMs), solutions of the

non-Hermitian source-free electromagnetic wave equation

with the complex-valued eigenfrequency. A direct result of

the temporal decay of the QNM fields, i.e. exp
(
−i𝜔̃0t

)
=

exp
(
−i𝜔0t

)
exp

(
−𝛾0t

)
, is the spatial amplification of the

field, i.e. exp
(
ik̃0 ⋅ r

)
= exp

(
ik0 ⋅ r

)
exp

(
𝛋0 ⋅ r

)
with the

complex momentum k̃ = k− i𝛋, as depicted in Figure 1(a).
This temporal decay-spatial amplification makes QNMs sta-

tionery in spacetime.

One of the interesting, but physically vague conserved

quantities is the complex momentum density of light, p̃ =
p+ ip =

(
Ẽ × H̃∗)∕2c2; its real part corresponds to thewell-

known momentum density p = Re
(
Ẽ × H̃∗)∕2c2 that deliv-

ers the electromagnetic energy, but the physical role of

its imaginary part, the so-called reactive momentum den-

sity [17], p = Im
(
Ẽ × H̃∗)∕2c2 is relatively unfamiliar in

Figure 1: A schematic drawing of (a) the spatial amplification and

the temporal decay of the quasinormal mode, (b) the active energy and

momentum and (c) their reactive counterparts of the dipolar quasinormal

mode of the plasmonic nanoparticle whose complex frequency is

𝜔̃0 = 𝜔0 − i𝛾0. In (b) & (c), the red and blue regions show the positive

and negative regions of the active/reactive energy density (u and u),

respectively. The black arrows depict the active/reactive momentum

density (p and p). The active energy/momentum extends to the far field

due to the radiation, defining decay rate 𝛾0 of the nanoparticle.

On the other hand, the reactive energy/momentum is strongly localized

near the surface, defining the resonance frequency𝜔0. The numerically

calculated profiles of the active/reactive energy/momentum near the

nanoparticle are shown in Figure S1 (see Supplementary Information).
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general electromagnetics. On the other hand, it has been

recently reported that the imaginary part p has physical

significance in the three specific cases: (i) p determines the

electric-magnetic interaction component of the optical force

on small particles with the electric and magnetic dipole

moment [18]–[23]. (ii) The diagonally polarized evanescent

waves can deliver p and it is related to the transverse

spin momentum density [19], [21], [22]. (iii) The azimuthally

polarized beam can form the vortex of p [23].

Here, we reveal that a pair of twomomentum densities

defines the complex resonance frequency in open-cavity

resonance. Suppose we have a single-mode open-cavity

with a complex resonance frequency 𝜔̃0. We can show

that the following pair of two continuity equations in the

nondispersive lossless dielectric medium can be obtained

directly by Maxwell’s equations for QNMs (see Supplemen-

tary Material for the derivation):

c2∇ ⋅ p+ 2Re
(
−i𝜔̃0

)
u = 0, (1)

c2∇ ⋅ p+ 2 Im
(
−i𝜔̃0

)
u = 0. (2)

Here, the active and reactive energy densities are

defined respectively by

u = 1

4

(
𝜀
|||Ẽ|||2 + 𝜇

|||H̃|||2
)
, (3)

u = 1

4

(
𝜀
|||Ẽ|||2 − 𝜇

|||H̃|||2
)
, (4)

where
{
Ẽ, H̃

}
is a set of the electric and auxiliary magnetic

fields. Eq. (1) corresponds to the energy conservation law (or

the Poynting theorem) for QNMs, describing the transport

of themomentum density p and the resulting changes in the

energy densityu. On the other hand, the physicalmeaning of

Eq. (2), the imaginary part of the complex Poynting theorem,

is elusive although there have been tries to interpret Eq. (2)

using the lumped circuit concepts [16].

2.2 Physical meaning of complex energy
and momentum

To find the physical meaning of Eq. (2) and the reactive

energy/momentum, we can write its corresponding integral

expression. Since Eqs. (1) and (2) are well defined in all

spaces, we can convert them into the integral form for the

arbitrary volume 𝜏 enclosed by the surface Σ in free space

outside the open-cavity resonator. Eqs. (1) and (2) yield

𝛾0 =
c2

2

∫
Σ
p(r) ⋅ da

∫
𝜏

u(r)dV
= c2

2

∇ ⋅ p(r)
u(r)

, (5)

𝜔0 = −c2

2

∫
Σ
p(r) ⋅ da

∫
𝜏

u(r)dV
= −c2

2

∇ ⋅ p(r)
u(r)

, (6)

respectively. We emphasize that both integral and differen-

tial forms are valid. This implies the electromagnetic fields

of QNM over the whole space include temporal information

of the QNM. Again, Eq. (5) reads two ways: (i) the energy

balance between the energy flux leaving through the closed

surface Σ and the stored energy in the volume 𝜏 [6], [7]

and (ii) the energy-momentum ratio. In the same way, we

can understand Eq. (6) as (i) the balance between the reac-

tive energy flux and the reactive energy or (ii) the reac-

tive energy-reactivemomentum ratio. Interestingly, the left-

hand sides of Eqs. (5) and (6) are the temporal quantities, but

the right-hand sides are the spatial quantities. This means

that the electromagnetic fields of QNMs encode temporal

information in every space.

To demonstrate physical meaning of complex energy

and momentum, Figure 1 illustrates the active/reactive

energy and momentum near the plasmonic nanoparticle at

the dipolar QNM with the complex frequency 𝜔̃0 = 𝜔0 −
i𝛾0. The dipolar character of the resonance radiates the

energy u confined by the nanoparticle, and thus themomen-

tum p, i.e. the energy carrier, survive outside the nanoparti-

cle (Figure 1(b)). Therefore, their ratio defines the imaginary

part of the complex frequency Im
(
𝜔̃0

)
= 𝛾0, i.e. the decay

rate as shown in Eq. (5). It is straightforward to understand

the role of the active energy/momentum in the open cavity

resonance by Eq. (5). In a similar manner, we can under-

stand that of the reactive energy/momentum using Eq. (6).

The real part of the complex frequency Re
(
𝜔̃0

)
= 𝜔0, i.e. the

resonance frequency, and its relation with u and p explain

how the electromagnetic field is strongly confined to the

open cavity. In Figure 1(c), the reactive momentum p do not

survive far from the nanoparticle, but it is strongly localized

near the surface. The reactive energy u also explains where

p directs and how it is localized in the near-field zone. Van-

ishing u and p in the far-field zone of the nanostructure can

be understood by the definition of the reactive energy u; u is

defined by the difference in the electric and magnetic parts

of the energy density as shown in Eq. (4). In the far-field

zone away from the nanostructure, the electromagnetic

field becomes the plane wave-like. The plane wave stores

the energy in the electric and themagnetic parts at the same

amount. Therefore, u is always zero in the far-field, while

it is meaningful only in the near-field. In the next section,

we demonstrate physical meaning of complex energy and

momentum using the actual examples of the open cavity

nanostructures.
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3 Complex energy and momentum

in the open cavity nanostructures

3.1 One-dimensional (1D) Fabry–Perot cavity

The simplest example in optics is the 1D Fabry–Perot cavity

(Figure 2(a)). Each region has the purely real-valued refrac-

tive index ni (i= 1, 2, and 3) for sake of the simplicity. Length

of the cavity, i.e. the medium 2, is d. The electric fields are

written as

Ẽ(z) = Ẽ1e
−ik̃1ze−i𝜔̃0tx̂ (z ≤ 0)

= Ẽ2

(
r21e

ik̃2z + e−ik̃2z
)
e−i𝜔̃0tx̂ (0 ≤ z ≤ d)

= Ẽ3e
ik̃3(z−d)e−i𝜔̃0tx̂ (z ≥ d)

, (7)

Figure 2: The active/reactive energy/momentum of (a) the 1D dielectric

Fabry–Perot cavity (n2 = 4) in air (n1 = n3 = 1). Left and right columns

correspond to the resonance order of q= 1 and 2, respectively.

The yellow arrows indicate the directions of the electric fields, Eq. (7).

(b, e) The active (black) and reactive (red) energy densities.

(c, f) The active (black) and reactive (red) momentum densities.

(d, g) The electric (black) and magnetic (red) field intensities. The active/

reactive energy densities and momentum densities are normalized

by the factors 𝜀2
|||Ẽ2|||2 and n2|||Ẽ2|||2∕c2𝜂0, respectively.

where Ẽi is the field amplitude in the i-th medium. k̃i =
nik̃0 and k̃0 are the wavenumber in the i-th medium and

the free space, respectively. The Fresnel equation provides

ri j =
(
ni − nj

)
∕
(
ni + nj

)
, i.e. the reflection coefficient at the

interface between the medium i and j. The corresponding

magnetic fields can be obtained by one of the Maxwell’s

equations, H̃ = (∇× E)∕i𝜔̃𝜇0. The condition for the bound

solution, r12r23e
2in2 k̃0d + 1 = 0, gives the resonance condition

of the Fabry–Perot cavity,

k̃0 = q
𝜋

n2d
− i

1

2n2d
ln

(
1

r21r23

) (
q = 1, 2, 3,…

)
. (8)

Here, the complex frequency is given by the dispersion

of light, 𝜔̃0 = ck̃0. We can find that finite reflectivity gives

the imaginary part of k̃0 and 𝜔̃0 although the material loss

is absent, i.e. the vanishing imaginary part of the refractive

index. From Eq. (7), we can obtain the active and reactive

energy densities inside the cavity (0 ≤ z ≤ d),

u = 1

2
𝜀2
|||Ẽ2|||2

[||r21||2e−2 Im(k̃2)z + e+2 Im(k̃2)z
]
e−2𝛾0t, (9)

u = 𝜀2
|||Ẽ2|||2r21 cos[2Re(k̃2)z]e−2𝛾0t, (10)

respectively. The active and reactive momentum densities

inside the cavity are given by

p = n2
2c2𝜂0

|||Ẽ2|||2
[||r21||2e−2 Im(k̃2)z − e+2 Im(k̃2)z

]
e−2𝛾0tẑ, (11)

p = − n2
c2𝜂0

|||Ẽ2|||2r21 sin[2Re(k̃2)z]e−2𝛾0tẑ, (12)

respectively. We can find that Eqs. (9)–(12) satisfy Eqs. (5)

and (6). On the other hand, the reactive energy density (u)

and momentum density (p) vanish outside the cavity (z ≤ 0

or z ≥ d), and thus they cannot provide 𝜔0 by Eq. (6).

Figure 2(b)–(g) show the active/reactive energy density

and the momentum density inside the cavity (0 ≤ z ≤ d) at

the two lowest orders (q = 1 and 2). In Figure 2(a), cavity is

composed of high-index material (n2 = 4), while two semi-

infinite half spaces are filled with air (n1 = n3 = 1).

Since the definition of u, Eq. (3), guarantees its positive-

definiteness, the energy density u is positive over the

whole cavity space (the black line in Figure 2(b)). On the

other hand, the reactive energy density u (the red line in

Figure 2(b)) is positive near the walls (z/d = 0 and 1) and

negative near the cavity center (z/d= 0.5) at the lowest order

(q = 1). Positive (negative) reactive energy density umeans

dominance of the electric field energy density uE = 𝜀
|||Ẽ|||2∕4

(the black line in Figure 2(d)) is larger (smaller) than the

magnetic field energy density uM = 𝜇
|||H̃|||2∕4 (the red line

in Figure 2(d)). On the other hand, the electromagnetic field

outside the cavity diverges approaching to the infinity (z→
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±∞) (see Supplementary Information), while the reactive

energy and the divergence of reactive momentum vanish (u

= 0 and∇ ⋅ p= 0). We can conclude that u and∇ ⋅ p reflect
the confinement characteristic of the electromagnetic fields

because unconfined, but propagatingwaves outside the cav-

ity do not deliver the reactive quantities.

In Figure 2(c), the momentum density p points to the

outside from the cavity center (i.e.p= 0 at z/d= 0.5) because

QNM is a bound mode that loses its energy by the radiation

to the outside (z→±∞). Also p shows linear behavior at

both q= 1 and 2 because the exponential growth and decay

terms can be expanded to the linear function (i.e. ex ≈ 1+
x), making Eq. (11) linear. In contrast, the reactive momen-

tum density p shows sinusoidal behavior (Figure 2(c) and

(f)), while it vanishes at the walls (z/d= 0 and 1) and outside

(z/d < 0 and >1). Also, the reactive momentum density p

and the reactive energy density u are independent from

the cavity loss (Im
(
k̃2
)
= n2 Im

(
k̃0
)
in Eq. (8)), but they are

determined solely by the resonance characteristics q (the

order) and d (the cavity length) by the term Re
(
k̃2
)
= q𝜋∕d.

This implies the reactive momentum density reflects the

confinement of the electromagnetic fields inside the cavity.

To sum up this section, the active energy and momen-

tum densities arewell-defined for all electromagnetic fields,

but the reactive energy and the divergence of the reac-

tive momentum do not vanish only for the confined fields,

as shown in the 1D Fabry–Perot cavity. This can also

be understood by Eqs. (5) and (6). In Eq. (5), the decay

rate 𝛾0 is solely determined by the active quantities; it is

always determined by the ratio of the energy flux to the

outside to the stored energy density. However, in Eq. (6),

the reactive momentum and energy determines the reso-

nance frequency 𝜔0; the resonance occurs only when the

energy is confined to the finite object. Therefore, the uncon-

fined fields cannot have the reactive momentum flux and

energy.

3.2 Surface plasmon polaritons (SPPs)
at the metal/dielectric interface

We revisit SPPs at the metal/dielectric interface using the

QNM formalism that has the complex frequency 𝜔̃0 and the

complex wave vectors k̃0. The semi-infinite half space (z >

0) is filled with the medium 1, dielectric with the permit-

tivity 𝜀1, while the opposite half-space (z < 0) is filled with

the medium 2, metal with the complex permittivity 𝜀̃2. The

x-axis at the interface z = 0 defines the SPP propagation

direction. The p-polarized electric field in the i-th medium

(i = 1 and 2 for the dielectric and the metal, respectively) is

given by

Ẽi = Ẽi,x

⎛⎜⎜⎜⎝
1

0

−k̃x∕k̃i,z

⎞⎟⎟⎟⎠
ei(k̃xx+k̃i,zz−𝜔̃0t), (13)

satisfying ∇ ⋅ Ẽi = 0. By the bound solution condition

𝜀1k̃2,z − 𝜀̃2k̃1,z = 0, the wave numbers are given by

k̃2
x
= 1

𝜀0

𝜀1𝜀̃2
𝜀1 + 𝜀̃2

k̃2
0
, (14)

k̃2
i,z
= 1

𝜀0

𝜀2
i

𝜀1 + 𝜀2
k̃2
0
, (15)

while they are the same as the usual SPPs as follows [24], but

all of them become complex values in the QNM formalism,

while k̃0 is linked to the complex resonance frequencyby the

relation k̃2
0
= 𝜔̃2

0
∕c2. The active energy density, the active

momentum density, and the reactive momentum density in

the nondispersive dielectric medium 1 are given by

u =
𝜀2
1

|||k̃0|||2
2𝜀0

|||k̃1,z|||2
|||Ẽ1,x|||2e−2[Im(k̃x)x+Im(k̃1,z)z]e−2𝛾0t, (16)

p = 1

2c2𝜂0

𝜀1
𝜀0

⎛⎜⎜⎜⎜⎝

Re
(
k̃∗
0
k̃x
)
∕|||k̃1,z|||2

0

Re
(
k̃∗
0
k̃1,z

)
∕|||k̃1,z|||2

⎞⎟⎟⎟⎟⎠
|||Ẽ1,x|||2

× e−2[Im(k̃x)x+Im(k̃1,z)z]e−2𝛾0t,

p = 1

2c2𝜂0

𝜀1
𝜀0

⎛⎜⎜⎜⎜⎝

Im
(
k̃∗
0
k̃x
)
∕|||k̃1,z|||2

0

Im
(
k̃∗
0
k̃1,z

)
∕|||k̃1,z|||2

⎞⎟⎟⎟⎟⎠
|||Ẽ1,x|||2

× e−2[Im(k̃x)x+Im(k̃ j,z)z]e−2𝛾0t,

respectively. We can find that Eqs. (16) and (17) satisfy

Eq. (5). In the SPP QNM, the reactive energy and the diver-

gence of the reactive momentum vanish (u = 0 and ∇ ⋅
p = 0), making Eq. (6) indeterminate. Figure 3 shows the

active/reactive energy/momentum density at the air-gold

interface. To plot Figure 3, we use the electromagnetic fields

of the SPP QNM, and The complex permittivity of gold at the

SPP frequency is taken as 𝜀̃2 = −11.8 + 1.15i. The complex

SPP frequency is given by 𝜔̃0∕2𝜋 = (466.8 + 38.32i) THz.

The real SPPs (not in the QNM formalism) requires

𝜀1 + 𝜀2 < 0 and 𝜀1𝜀2 < 0 to make the plasmon momentum

k̃x and the decay wavenumber k̃i,z pure real and pure imag-
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Figure 3: The active/reactive energy/momentum of the SPP QNM

at the air-gold interface. (a) The active energy (color) and momentum

densities (gray arrows). (b) The reactive energy (color) and momentum

densities (gray arrows).

inary values by Eqs. (14) and (15), respectively, if we neglect

metallic loss (i.e. 𝜀̃2 = 𝜀2 by Im
(
𝜀̃2
)
= 0). The purely imag-

inary k̃i,z makes the direction of the momentum density p,

Eq. (17), the x-direction along the surface (i.e. px ≠ 0 and pz=
0). Contrarily, SPPs in the QNM formalism, the momentum

density component normal to the surface pz does not vanish,

and thus the SPP QNM deliver some energy to the normal

direction (the ±z-direction) as shown in Figure 3(a).
One of important feature in the SPP QNM is the van-

ishing reactive energy density and the divergence of the

momentum density (u = 0 and ∇ ⋅ p = 0). This can be

understoodby the fact that the SPPQNM is not fully confined

because it is bound to the surface (z = 0), but it propagates

along the surface (i.e. the x-axis). This unbound character

of the SPP QNM results in u = 0 and ∇ ⋅ p = 0. The same

was also shown in the 1D Fabry–Perot cavity in the previous

section; outside the cavity, there are the unbounded, but

propagating waves to the infinity, and they have u = 0

and ∇ ⋅ p = 0. Note that the Fresnel equation for the SPPs

have been derived analytically [25]. It can be shown that

the reactive quantities start to appear when the SPPs are

confined laterally on the interface to form the Fabry–Perot

cavity as in the previous section.

To make the QNM of the metal structure have the reac-

tive momentum and energy, the SPP should be confined by

the optical cavity, resulting in the localized surface plas-

mon resonance (LSPR). For example, gold nanorods and

nanospheres can localize SPPs within the finite structures

and their very vicinity. In the next section, we numerically

demonstrate that their reactive quantities do not vanish, but

they survive near the structure surface.

3.3 Gold nanorod

Wehave analysed the open cavity systems using the analytic

expressions of theQNMs in the previous sections. Numerical

techniques allow us to analyse the optical cavities that do

not have analytic solutions in the closed form. Here, we

calculate the QNM of a gold nanorod and its active/reactive

energy and momentum in its vicinity in Figure 4. QNM was

calculated by the MAN (Modal Analysis of Nanoresonators)

package implemented by COMSOL Multiphysics [26]. The

gold nanorod has a cylindrical shape with the length of

100 nm and the radius of 15 nm. The permittivity of gold

wasmodelled by the Drude–Lorentzmodel [26]. MAN yields

the dipolar resonance of the gold nanorod at the complex

resonance frequency 𝜔̃0∕2𝜋 = (318.1 + 11.66i) THz. The

corresponding resonancewavelength and the quality factor

are given by 𝜆0 = 942.5 nm and Q = 27.28, respectively.

In Figure 4(a) and (b), the color profile shows the active

energy density u (the reactive energy density u), while the

arrows show the active momentum density p (the reactive

momentum density p). Both the active and reactive energy

densities are concentrated near the gold nanorod surface

because of the localized surface plasmon resonance (LSPR).

However, the gold nanorod loses its energy by the radiation,

and thus the active momentum density p extends to the

far-field in Figure 4(a). In contrast, the reactive momentum

density p is strongly localized only near the surface. This

is consistent with the 1D Fabry–Perot cavity and SPP in

the previous section. The reactive momentum and energy

reflect the confinement character of the optical system, and

thus they vanish outside the cavity. On the other hand, p

can survive in the very vicinity of the gold surface, but

it rapidly vanishes outside the nanorod (Figure 4(b)); the

gold nanorod does not have physical walls of the cavity.

Therefore, the free space near the nanorod is also part of

the cavity.

In addition to the plasmonic structures we have stud-

ied in Figures 1, 3, 4 and S1, we also numerically analyze
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Figure 4: The active/reactive energy/momentum of the lowest QNM

resonance of the cylindrical-shaped gold nanorod (the radius of 15 nm

and the length of 100 nm) in air. (a) The active energy (color) and

momentum densities (red arrows). (b) The reactive energy (color) and

momentum densities (red arrows).

the active/reactive energy/momentum of a dielectric open-

cavity that can have the high Q factor [27]–[30]. In the

Supplementary Material, we calculate the QNM of a high-

index dielectric nanodisk. One of its QNMs (Figure S2) cor-

responds to the so-called supercavity mode at the high-Q

bound states in the continuum [28]. We find Eqs. (5) and (6)

also works well for the dielectric supercavity.

We also emphasize that the temporal information of the

QNM,𝜔0 and 𝛾0, can be obtained by the spatial information

of Ẽ(r) and H̃(r) by Eqs. (5) and (6). These relations are

valid everywhere in the simulation domain, except for the

singular point of Eqs. (5) and (6), i.e. the points where the

active or reactive energy density vanish. It is also notewor-

thy that Eqs. (5) and (6) are valid in the usual eigenfrequency

calculation in COMSOL Multiphysics even though the MAN

package is not used.

4 Conclusions

We reveal that the complex energy/momentum provide

complete description of the open cavity resonance, i.e. QNM;

the active energy/momentumdescribes how the optical cav-

ity stores and loses the actual (real-valued) energy. It is

related to the decay rate of the cavity (Eq. (5)). The reactive

energy/momentum describes how the optical cavity con-

fines the electromagnetic fields inside and in the vicinity

of the cavity structure. It defines the resonance frequency

(Eq. (6)). This finding can expand our understanding of the

open cavity resonance, and it can be helpful to design the

resonant optical cavity.

Before concluding, the following three points are

noteworthy; (i) Eqs. (5) and (6) can be extended to the

lossy medium and the dispersive medium (see Supplemen-

tary Information for details). These expressions are useful

when the energy and the momentum densities are eval-

uated inside the nanostructures. (ii) We are also able to

derive the active/reactive pair of the optical helicity and

its carrier, i.e. the spin angular momentum of light (see

Supplementary Information for details). Their ratios also

give the similar expression to Eqs. (5) and (6). This can be

useful to analyze QNMs of the chiral nanostructure. (iii) It

is also noteworthy that the complex resonance frequency,

Eqs. (5) and (6), is normalized by the field intensities,
|||Ẽ|||2 =

Ẽ ⋅ Ẽ∗ and |||H̃|||2 = H̃ ⋅ H̃∗. In QNMs, the fields F̃ ∈
{
Ẽ, H̃

}
are

normalized by F̃ ⋅ F̃ rather than |||F̃|||2 = F̃ ⋅ F̃∗ because of the

broken energy conservation in the open cavities [7], [8], [31],

[32]. The QNM formalism guarantees the normalization of

the open cavities, but it is hard to interpret quantities phys-

ically. However, as shown in Eqs. (5) and (6), it is possible

to define physical quantities using physically meaningful

expressions based on
|||F̃|||2 in the QNM formalism.
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