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Abstract: Mapping input signals to a high-dimensional

space is a critical concept in various neuromorphic comput-

ing paradigms, including models such as reservoir comput-

ing (RC) and extreme learning machines (ELM). We propose

using commercially available telecom devices and tech-

nologies developed for high-speed optical data transmission

to implement these models through nonlinear mapping of

optical signals into a high-dimensional space where linear

processing can be applied. We manipulate the output fea-

ture dimension by applying temporal up-sampling (at the

speed of commercially available telecom devices) of input

signals and a well-established wave-division-multiplexing

(WDM). Our up-sampling approach utilizes a trainable

encoding mask, where each input symbol is replaced with a

structured sequence ofmasked symbols, effectively increas-

ing the representational capacity of the feature space. This

gives remarkable flexibility in the dynamical phasemasking

of the input signal.Wedemonstrate this approach in the con-

text of RC and ELM, employing readily available photonic

devices, including a semiconductor optical amplifier and

nonlinear Mach–Zehnder interferometer (MZI). We inves-

tigate how nonlinear mapping provided by these devices
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1 Introduction

There is a growing interest in unconventional approaches

to computing, as traditional digital computing is reach-

ing its fundamental limitations [1], [2], particularly due to

the unsustainable power consumption of machine learn-

ing approaches [3]. Reservoir computing (RC) [4], [5] and

extreme learningmachine (ELM) [6] are two popular uncon-

ventional (non-digital) computing concepts implicitly based

on nonlinear mapping of the input into a high dimensional

output where it can be processed using simple and efficient

linear algorithms. For practical implementation purposes,

operating only with a linear readout layer is a substan-

tial advantage, due to the straightforward processing and

low computational complexity required. The main differ-

ence between the two methods is that the RC architectures

exploit recurrent connections, creating memory in the sys-

tem,while ELM is a feed-forward approach that does not use

any memory.

The idea of mapping input signals into a high-

dimensional output for processing is rooted in the founda-

tions of information theory, but also features in machine

learning approaches, such as, support vector machines

(SVM) [7] (with predetermined nonlinear mapping) and

reservoir computing, which uses a recurrent neural net-

work as an uncontrolled nonlinear mapping. Difficult com-

puting tasks are made easier by transforming them nonlin-

early to a higher dimensional spacewhere linear processing

can be applied. In this approach computing is treated as

structuring the nonlinear mapping, instead of processing

of structures as in traditional computing. Note that creat-

ing high-dimensional space available for the mapping is
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not sufficient in itself, since the output signal should be

effectively spread across this feature space, without mak-

ing many dimensions redundant. Therefore, the important

challenge is to ensure a high effective dimensionality of the

output, that is quantified by a set of linearly independent

variables.

Manipulating the effective dimensionality of the fea-

ture space by a nonlinear transformation of the streamed

temporal signal paves the way for a range of non-

conventional computing methods. In particular, it is well

suited for manipulating temporal continuous (analog) sig-

nals that are naturally generated in sensing, imaging and a

number of other applications. Analog information process-

ing is one of the key pillars of unconventional computing.

Analog computing which has a long history, is experienc-

ing a resurgence due to its superior power efficiency and

capability of parallel processing [8]. Analog computing is

well suited for tasks that require continuous inputs and

outputs. The effective dimensionality can be controlled in

different ways (e.g. temporal sampling or frequency filter-

ing) projecting the infinite-dimensional space of the analog

signal after nonlinear transformation onto a well-separated

set of features. Additionally, effective dimensionality can

be controlled by the parameters and characteristics of the

nonlinear transformation.

Analog information processing can be implemented in

a variety of physical systems trained to learn complex fea-

tures. In more general terms, natural, human-engineered

physical, chemical, and biological systems can be used as

substrates to realize computing algorithms (see, e.g. [9]–[13]

and references therein).

Ultra-fast nonlinear photonic systems, in particular, are

attractive for the implementation of unconventional com-

puting approaches due to their relatively low power dissi-

pation and capability of parallel signal processing. Recently,

there has been a great deal of interest in the development

of photonic-based ELMs and RCs (see, e.g., [14]–[23] and ref-

erences therein). Several notable works have demonstrated

the potential of photonic reservoir computing in leverag-

ing existing telecom technologies. A 16-node square mesh

reservoir on a silicon photonics chip was implemented,

capable of executing Boolean operations and header recog-

nition tasks [24]. A parallel photonic reservoir computing

approach using semiconductor optical amplifiers was also

investigated, demonstrating competitive performance in

speech recognition tasks [25]. A unified framework for reser-

voir computing and extreme learning machines was devel-

oped using a single nonlinear neuron with delayed feed-

back, realizable in optoelectronic and all-optical implemen-

tations [26]. Another study experimentally implemented

reservoir computing with a nonlinear optoelectronic oscil-

lator, achieving high performance on spoken digit recog-

nition and time series prediction tasks [27]. A high-speed

photonic reservoir computing system based on InGaAsP

microring resonators was demonstrated for efficient all-

optical pattern recognition in dispersive Fourier imaging

[28].

Light possesses a rich set of degrees of freedom that

can carry information. In optical communications, param-

eters such as amplitude, phase, wavelength, and polariza-

tion are routinely used to encode signals, with spatial divi-

sion multiplexing emerging as an important technique for

increasing data transmission rates further. Several exam-

ples of optical neuromorphic computing exploiting spectral

signal multiplexing have already been explored, including

implementations based on optical reservoir computing [19],

[29], [30] as well as other optical neuromorphic architec-

tures [20], [31]–[33]. Recent works demonstrated that WDM

enhances photonic reservoir computing by enabling par-

allel processing and increasing computational capacity. A

Fabry–Perot semiconductor laser-based RC leveraged mul-

tiple wavelength channels to improve signal equalization in

optical communications [34]. A microring resonator-based

RC exploited WDM for simultaneous multi-task process-

ing, showing its potential for efficient parallel computing

[35]. A waveguide-based RC demonstrated improved non-

linear signal equalization across multiple WDM channels

[36]. Additionally, WDM has been shown to enhance the

memory capacity of RC without requiring external optical

feedback by using wavelength-multiplexed delayed inputs

inmicroring-based architectures [37]. In this work, we show

that WDM can also be used to enable a faster encoding

mask, surpassing the speed limitations of single-channel

implementations.

In the temporal domain, up-sampling was used in [38].

However, the advantages of a faster output sampling rate

were not leveraged because of the low bandwidth of the

readout system. In this work, we demonstrate the advan-

tage of up-sampling in enhancing the performance metrics

on different tasks. Also, we would like to point out that

unlike the previously studied delay-based RC implementa-

tions, [38], [39], we propose approach without additional

optical delay,while providing comparable processing capac-

ity. Note that in the majority of the demonstrated optical

reservoir computing and ELMs, only one of these degrees

of freedom was used.

Photonic ELMs are characterized by their feed-forward

architecture,which features untrained internal connections

and trained output weights. In the optical domain, the
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non-trainable, nonlinear signal transformation characteris-

tic of ELM is performed automatically and cost-effectively

through physical signal propagation and registration, lever-

aging the inherent properties of light and nonlinear optical

components and systems. Photonic ELMs have been demon-

strated in various setups, including a free-space optical

propagation scheme [14] and frequency-multiplexed fiber

framework [21]. The implementation using the array of

microresonators on an integrated silicon chip [23] achieved

notable success in both binary and analog tasks, underscor-

ing the potential of ELMs in photonics for efficient and high-

performance machine learning applications. The efficacy of

photonic ELMs has been further enhanced by employing

feedback alignment for training the inputmapping, see, e.g.,

[40].

Recent applications of optical reservoir computing

include: modulation format identification in fiber com-

munications using single dynamical node-based photonic

RC [41], machine learning based on RC with time-delayed

optoelectronic and photonic systems [42], photonic neuro-

morphic technologies in channel equalization [43], analog

optical computing for artificial intelligence [44] and many

others.

In this work, we propose and demonstrate how devices

and technologies developed for optical data transmission

can be used for computing applications. While individual

techniques like high-dimensional mapping, input masking,

WDM, and specific nonlinear elements have been explored

previously, our contribution focuses on a novel combination

of these elements within a flexible framework designed

for effective nonlinear mapping. The combined use of

signal feature-space expansion via temporal up-sampling

and WDM technology for parallel encoding gives a great

degree of flexibility in designing the structure of a high-

dimensional output. A key element of our approach is the

incorporation of a trainable input encoding mask. This

trainable mask provides a crucial advantage, allowing for

task-specific optimization of the input signal representa-

tion before it undergoes nonlinear transformation, thereby

enhancing the overall representational capacity and perfor-

mance of the system. Multiple spectral channels can range

from coarse WDM (systems with fewer than eight active

wavelengths per fiber) to dense WDM (DWDM). DWDM

can offer standard telecom solutions with a number of

channels varying from tens to hundreds with typical (but

also variable) channel spacing of 50 GHz or 100 GHz within

the so-called optical fiber C-band (spectral interval from

1,530 nm to 1,565 nm). Traditional DWDM systems exploit

wavelength-selective switches designed with fixed 50 GHz

or 100 GHz filters. Using other fiber spectral bands, DWDM

can be extended to thousands of channels. In the tempo-

ral domain, data streams with symbol rates as high as 32,

64 Gbaud (and more) in a single fiber can be produced

with standard components. Thus, commercially available

telecom devices can be utilized to produce a huge dimen-

sional output feature space using only standard conven-

tional technology. Numerous non-linear optical elements,

modulators, devices and systems have been developed in

the context of optical communications. To illustrate our

combined approach featuring this trainable encoding, we

consider here a balanced-arm MZI with non-symmetric

couplers, which is mathematically equivalent to nonlin-

ear optical loop mirror (NOLM), and semiconductor optical

amplifier (SOA) as nonlinear transformers of optical sig-

nal. In what follows, we use balanced-arm MZI with non-

symmetric couplers and NOLM interchangeably.

2 Methods

2.1 Nonlinearity and effective
dimensionality

Many machine learning methods utilize non-linear map-

ping as part of the data manipulation process, for instance,

radial basis functions, most variants of neural networks,

kernel-based methods and boosting [45]. These mappings

can be made in a higher-dimensional space, for instance,

by having hidden layers that include more neurons than

the input, but these are not carried out in a controlled and

structured manner and are not explicitly used as part of the

processing method.

At the heart of our method is the nonlinear mapping of

input vectors to a high-dimensional space, which facilitates

the application of various tasks. While our primary focus

is on time series forecasting and prediction, which serves

as an example of a regression task, we also demonstrate

the versatility of our approach by applying it to a classifi-

cation problem on a sub-sampled MNIST dataset. In spirit,

our methods follow the rationale of SVM [7], where both

classification and regression tasks are made possible by

mapping them to the high dimensional space where linear

separation [46] and approximate regression can be carried

out; but, unlike SVM, where the nonlinear transformation is

replaced by the corresponding kernel and support vectors

should be identified, we rely on the speed of computing
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devices and their ability to carry out fast mapping and sim-

ple regression.

Clearly, the nature of the nonlinear mapping and its

suitability for the data is a crucial but difficult aspect of

the method that should be addressed. Relying on avail-

able optical telecommunication devices limits the nonlinear

mapping we can utilize; nevertheless, one can apply dif-

ferent control parameters that govern the type of mapping

achieved, as detailed in Section 2.2. Developing a principled

approach for determining the optimal mapping parameters

is beyond the scope of the current paper and will be the

subject of future research.

For the more general case of noisy data and mapping

process, it would be natural to assess the impact of the non-

linear mapping of inputs to the higher-dimensional space

using entropic andmutual informationmeasures. However,

in this work, we use deterministic mapping and would

like to ensure that the mapped data makes full use of the

larger space and does not create trivial linear interdepen-

dencies. To do that, we will concentrate on the effective

dimensionality of themapped inputs. Transformation of the

low-dimensional input signal into high-dimensional feature

space will be suitable for computing only if the output vari-

ables are linearly independent and are not redundant. The

output signal should be spanned by nonlinear transforma-

tion across a large number of available dimensions to make

them linearly separable.

While the mapping employed is complex and includes

both nonlinearities and time-dependent components, one

can employ linear algebra methodology to determine the

effective dimensionality of the feature space. In statisti-

cal data analysis terms, the effective dimensionality of

the mapped inputs is the number of orthogonal dimen-

sions that would produce the same overall co-variation pat-

tern. This can be easily done using singular value analy-

sis, exploratory factor analysis, principal component anal-

ysis and other dimensionality reduction techniques, both

linear and non-linear [47]. One may also consider inde-

pendent component analysis methods to explore the sta-

tistical independence property of mapped data. More suit-

able for measuring the complexity of time series are mea-

sures introduced in [48] and [49]. As the starting point for

this research, we have adopted the singular value analysis,

which is simple and effective. An alternative approach that

could be explored is to enforce lower effective dimensional-

ity through regularization during linear regression training

of the weight matrix, although this on its own cannot be

used to evaluate the feature space dimensionality. In clas-

sification problems, dedicated algorithms to maximize the

distance of data from the separating hyperplane could be

employed [50].

2.2 The architecture of the considered
photonic ELM and RC systems

The considered photonic ELM/RC computing systems lever-

age the idea of using nonlinear transformation of signal

into high-dimensional space for computational purposes.

There are the following key steps in the computing archi-

tecture considered as schematically depicted in Figure 1.

The first step is the interface between the real-world signal

and an input into the computing system. Second, an input

signal is tuned (modulated, coded) using available degrees

of freedom of the system - parameters that can be used for

tuning. There are two possibilities: In the case of slowly

varying parameters, the signal undergoes a masking pro-

cedure to maximize the effective dimensionality of the sys-

tem after the nonlinear transformation. When parameters

are modulated fast characteristic of the proposed use of

telecom devices), adjusting tuning to the incoming signal

creates a possibility of dynamical, controllable masking.

Third, the nonlinear element/system maps the input sig-

nal onto a high-dimensional feature space. Variables that

cannot be linearly separated in a low-dimensional space

can be successfully processed using linear algorithms in a

high-dimensional space. The final step is signal processing

in the high-dimensional space performed by the readout

layer. Below, we specify each of these steps considering

the implementation of a general computing scheme using

telecom-grade optical devices.

2.2.1 Encoding techniques: dynamical masking

To feed information into the proposed optical ELM/RC for

computing one needs to encode the input data stream in

an electromagnetic field. Consider that the input data has

a form of a vector (s1, s2,… , sN ). Encoding of the input

messages (symbols) onto the optical waveform can be done

in different ways exploiting the available degrees of free-

dom of light. The advantage of the proposed ELM/RC is that

we can use easily accessible and well-developed telecom

devices. For example, amplitude and/or phase modulation

can be employed to encode input symbols in the ampli-

tude/phase of the optical signal in the time domain. Encod-

ing can be done in different frequency channels using estab-

lishedWDM technology. In addition to the symbol encoding,

the effective dimensionality of the input can be increased

via additional signal-invariant modulation, i.e., masking.

Consider a WDM-based encoding scheme with L spectral

channels and an optical pulse train having the form:

A(t) =
√
P0

L∑
l=1

J∑
j=1

al, j g(t − j ⋅ Ts ) exp
(
−i𝜔lt

)
(1)
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Figure 1: Scheme of the proposed photonic ELMs/RCs.

where P0 is the power scaling parameter, L is a number of

spectral channels (indexed by l) used for coding of the infor-

mation, Ts is a symbol rate, al, j for j = 1, 2,… is a symbol

(in general, a complex number) in the spectral channel l at

the temporal position j that is used for encoding the input

information in the optical domain. It can be sampled from a

discrete set (alphabet) or be continuous.

Function g(t) describes the shape of a carrier pulse (or

an encoding mask) having the temporal scale T0, which can

be, in general, different from Ts. Thus, in the considered

case, we need to encode the input data vector (s1, s2,… , sN )

into array al, j. Evidently, this can be done in different

ways, providing rich opportunities for the manipulation

and optimization of the subsequent nonlinear mapping.For

example, one can encode multiple consecutive symbols si
into multiple parallel instances of al, j, effectively paralleliz-

ing processing. Or one can introduce a time shift, when al, j
contain shifted copies of si in different spectral channels,

effectively introducing memory. To illustrate the general

concept we consider here only simple intensity modulation

(al, j are real non-negative numbers).

In this work, spectral multiplexing is used differently

depending on the task. For time-series forecasting, we intro-

duce memory across channels by encoding time-delayed

replicas of a base symbol sequence: specifically, we define

al, j = a1, j−l+1 for l = 1, . . . , L and j ≥ l, such that channel

l contains the (l − 1)-symbol delayed copy of the original

sequence on channel 1. For classification tasks, we encode

multiple features or input elements (image pixels) in par-

allel across different WDM channels at the same temporal

index, effectively reducing the sequential processing length.

These encoding schemes are shown in Table 1.

One can introduce asymmetry in the optical signal we

use the skewed Gaussian pulse of the following form:

g(t) = g(t, T0, 𝛼 ) =
exp

(
−𝜏2∕2T2

0

)
1+ exp(−𝛼𝜏∕T0 )

(2)

where 𝛼 is a skewness parameter, 𝜏 = (t − t1)∕t2 is the

shifted and rescaled time introduced to align the mean and

variance of the skewed function with those of a standard

Table 1:WDM-based encoding schemes. (a) Time-series forecasting uses

delayed copies across spectral channels to introduce memory.

(b) Classification encodes features in parallel across channels to reduce

sequential depth.

(a) Time-series forecasting

WDM channel j = 1 j = 2 j = 3 j = 4 j = 5 . . .

𝜔1 s1 s2 s3 s4 s5 . . .

𝜔2 s1 s2 s3 s4 . . .

𝜔3 s1 s2 s3 . . .

𝜔4 s1 s2 . . .

𝜔5 s1 . . .

(b) Classification

WDM channel j = 1 j = 2 . . .

𝜔1 s1 s6 . . .

𝜔2 s2 s7 . . .

𝜔3 s3 s8 . . .

𝜔4 s4 s9 . . .

𝜔5 s5 s10 . . .

Gaussian (with 𝛼 = 0, t1 = 0, t2 = 1), scaling parameters t1,2
adjust the shift and scale of the distribution, respectively. In

this work, we always use t parameters optimized to provide

a skewed function that preserves the mean and variance

of the original Gaussian distribution, thus allowing for a

direct comparison while accounting for asymmetry in the

mapping. The use of the asymmetric carrier pulse combined

with up-sampling effectively plays a role in the masking

procedure that assists the following nonlinear distribution

of the same symbol into different parts of an output feature

space.

Finally, the encoding mask can also be trained to opti-

mize the performance of the ELM. In this case, we can tweak

individual parameters of the encoding mask to maximize

the accuracy of the proposed ELM. In this work, we used

GWO [51] for global optimization of the encoding mask

and Nelder-Mead simplex method for refinement. Figure 2

shows an example of an arbitrary encodingmask limited by

the analog bandwidth of the arbitrary waveform generator.
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Figure 2: Arbitrary and trainable encoding mask (digital and analog, limited by the bandwidth of arbitrary waveform generator). This example

features eight trainable weights.

2.3 Nonlinear transformation in optical
domain

NOLM operation can be explained as follows: the input

signal power is divided between the two arms of a waveg-

uide loop (for instance, an optical fiber), the signal phase

in each arm is changed by the nonlinear propagation, and

the resulting signal is formed by coupling the output ports

of the arms (see next subsection for details). NOLM can

produce overall nonlinear response using unequal coupling

ratios, creating asymmetry of the accumulated nonlinear

phase shifts, as in the original proposal [52] or by intro-

ducing imbalance in nonlinear propagation by using ampli-

fiers (nonlinear amplifying loopmirror – NALM). Evidently,

NOLM waveguide device can be realized on different mate-

rial platforms. The same concept can be implemented in

a nonlinear analog of the Mach–Zehnder interferometer,

creating an interferometric phase converter to control the

sign of the nonlinear phase shift [53].

SOA is a well-developed technology with many

attractive characteristics, including compact size, efficient

electrical pumping, cost-effectiveness and wideband gain

[54]–[56]. However, in high-speed optical communication

applications, the nonlinear properties of SOAs, relatively

slow gain recovery time, and comparatively high noise

figures (compared to other optical amplifiers) pose

serious challenges. The carrier dynamics of SOAs have

a characteristic scale of several hundred picoseconds. In

the context of high-speed optical communications, this

produces dependence of an instantaneous SOA gain on

the input optical signal power that results in patterning

effects - nonlinear distortions with memory. However, these

nonlinear and inherent memory features can be attractive

for optical computing applications, as demonstrated below.

We describe the transfer functions for both NOLM and SOA

below. However, for clarity, we primarily present results

based on NOLM-based computing. Examples of optical

computing using SOA-based high-dimensional mapping can

be found in [57].

The output state is obtained by taking the absolute

value squared of the output of the complex transfer func-

tions, i.e. we use intensity-only detection. We assume that

the output signal is measured using photodetectors. Addi-

tionally, we consider the passive fiber losses are negligible

compared to the signal modulation due to nonlinear signal

transform.

2.3.1 Nonlinear optical loop mirror

The transfer function of a nonlinear optical loopmirrorwith

a coupler having a split ratio 𝜅 is given by the following

expression [52]:

Aout(t) =
√
𝜅 ⋅ NLSE

(√
𝜅Ain(t), 𝛽2, 𝛾, LNOLM

)

+ i
√
1− 𝜅 ⋅ NLSE

×
(
i
√
1− 𝜅Ain(t), 𝛽2, 𝛾, LNOLM

)
(3)

Here the input light field Ain(t) is split into two counter-

propagating waves in the NOLM with the amplitudes

defined by the coupling parameter 𝜅 [52]. The function

NLSE(A, 𝛽2, 𝛾, LNOLM) here represents the solution of the

nonlinear Schrödinger equation for the amplitude A(t, z)

with a given input Ain(t) after propagating through a fiber

of the length LNOLM, with a group velocity dispersion 𝛽2 and

nonlinearity parameter 𝛾 :

𝜕A

𝜕z
= −i𝛽2

2

𝜕
2A

𝜕t2
+ i𝛾|A|2A (4)

The intensity of the nonlinearly transformed signal can

then be measured at the readout stage. When dispersive

effects are negligible compared to nonlinear ones (e.g., using
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fiber/waveguide near zero-dispersion point or high power

signal), then the transfer function is simplified to the com-

pact form:

|Aout(t)|2 = |A in(t)|2{1− 2𝜅(1− 𝜅 )

×
[
1+ cos

(
(1− 2𝜅 )𝛾LNOLM|Ain(t)|2

)]}

It is seen from this analytical approximation of the

NOLM transfer function that by varying parameters 𝜅 and

LNOLM one can dramatically change the properties of the

nonlinear transformation.

In this work, to calculate the input-output signal trans-

formation in nonlinear MZI (NOLM), we numerically sim-

ulate signal propagation trough fiber by solving Eq. (. . . )

using the fourth-order Runge–Kutta in the interaction pic-

ture method [58]. We do it for both arms, i.e. with initial

conditions
√
𝜅A in(t) and i

√
1− 𝜅A in(t). We then com-

bine the solutions at z = LNOLM as in Eq. (. . . ) and take the

absolute value squared to get the signal as registered by a

photodetector.

2.3.2 Semiconductor optical amplifier

Nonlinear transformation of the input optical signal

Ain(t) =
√
Pin(t) exp(i𝜙in(t)) by SOA to the output field

Aout(t) =
√
Pout(t) exp(i𝜙out(t)) is governed by the

well-established model [54], [55]:

Pout(t) = Pin(t) exp[h(t)]

𝜙out(t) = 𝜙in(t)−
𝛽

2
h(t)

dh

dt
= −h− h0

𝜏c

− Pin(t)

Esat

[
exp(h)− 1

]
(5)

Here in/out index denotes the input/output signal, 𝛽 is

the linewidth enhancement (Henry) factor, h0 parameter

is related to the small signal gain G0 = exp(h0), 𝜏c is the

gain recovery time, Esat is a characteristic saturation energy.

It is seen that the nonlinear transformation of the input

temporal signal stream by SOA creates an effective device

memory defined by the delayed gain recovery: gain at a cer-

tain point in time h(t) depends on the signal in the previous

moments. In our previous work [57] we demonstrate that

memory capacity associated with this effect to be ≥3.5. We

demonstrate that this property can be exploited to create a

high-dimensional feature output. Eqs. (5) are directly inte-

grated using Runge–Kutta method.

By varying SOA current (linked to h0 parameter), we

can dynamically control the nonlinear transformation.

2.4 Readout approaches to implement
high-dimensional feature space

One of the key advantages of implementing nonlinear map-

ping to high-dimensional signals is the possibility to use

simple processing, well-established telecom technologies

and components at the readout layer. Though signal polar-

ization and spatial modes can also be controlled andmanip-

ulated with telecom-grade devices, here we focus on the

frequency and temporal domains at the output.

In the temporal domain, applying the up-sampling tech-

nique, data encoded in the symbol time interval (at the baud

rate) and spread by the nonlinear transformation can be

measured at the sampling rate of the receiver. When data

encoding is implemented on both the amplitude and the

optical phase of the carrier pulses, the standard telecom

coherent receiver can be used to recover both amplitude

and phase information at the sampling rate. Up-sampling

here means the temporal sampling of the nonlinearly trans-

formed signal (intensity in this considered illustration) at

a higher rate than the encoding symbol (baud) rate. The

up-sampling coefficient M describes how many points we

get for a single input pulse. Thus, the output of the consid-

eredELM/RC is a nonlinearly transformedhigh-dimensional

representation of the input signal, which is a key component

of the computing. This process for NOLM and M = 16 is

illustrated in Figure 3.

Applying a modulator at the sampling rate, we can

adjust the readout weight in the optical domain or, using

high-speed optoelectronics available in telecom, change

weights in the electrical domain. Here, we simulate readout

by multiplying the row-vector of intensities at the output of

the ELM/RC with the regression column-vector, determined

during the training procedure (see Section 2.5).

In this work, we utilize WDM solely for encoding the

input signal across multiple spectral channels. After the

nonlinear transformation, these channels are not separated

at the output stage. Instead, we assume a detection scheme

where the combined optical output, containing all WDM

channels, impinges on a single photodetector. The temporal

up-sampling readout approach is then applied to this aggre-

gated signal.

While this joint detection approach is employed here,

it is worth noting that an alternative readout strat-

egy could involve separating the different spectral chan-

nels using well-developed WDM technology. In such a

scenario, the output optical signal would pass through

a WDM de-multiplexer, and the temporal up-sampling
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Figure 3: Input symbols, their optical encoding, NOLM output, and the samples captured by a photodetector. For readability, 16 samples per symbol

are shown instead of the 32 used in experiments.

readout approach could be applied independently to each

spectral channel in parallel. However, exploring such par-

allel processing via output WDM separation is beyond the

scope of the current study, which focuses on the impact of

WDM encoding combined with joint detection.

2.5 Training and validation

In this work, we show how the proposed approach can

be utilized for the classical machine learning task of time

series forecasting. The general scheme of the proposed

ELM/RC includes: (i) encoding of the input signal/vector onto

the optical field, (ii) a nonlinear element that transforms

the input signal (in this work we consider two examples:

the nonlinear loop mirror [52] and semiconductor optical

amplifier), (iii) trainable readout W that includes detec-

tion with up-sampling. The trainable output layer W is

straightforward and easily implementable linear regres-

sion, enabling the device to be applied in time series fore-

casting. The scheme of the proposed device is shown in

Figure 1.

We would like to stress that the proposed general con-

cept is not limited to the particular choice of the element

that implements nonlinear signal transformation. It can be

implemented with a variety of nonlinear sub-systems.

To train the system, we must provide examples of cor-

rect answers (targets) to given feature vectors.We passmul-

tiple sections of the sequence to forecast through the system,

collect the feature (row) vectors and assemble a so-called

feature matrix X. Then, we construct a (column) vector Y

of correct answers or targets by putting the correct next

symbol in front of the corresponding row of features.

For example, if one wants to train the system to predict

using N symbols, one can use M symbol sequences to con-

struct the following feature matrix:

s1, s2,… , sN →
[
x11 x12 … x1K

]

s2, s3,… , sN+1 →
[
x21 x22 … x2K

]

s3, s2,… , sN+2 →
[
x31 x32 … x3K

]

...

sM , sM+1,… , sM+N →
[
xM1 xM2 … xMK

]

(6)

Here, K denotes the dimensionality of the output vector, N

denotes number of symbols fed into RC/ELM to generate

features for next symbol prediction, M denotes number of

training samples and the symbol→ denotes the procedure

of encoding the symbols in a waveform, propagating this

waveform through the physical system and detecting it. The

row vectors on the right-hand side of the arrows are the fea-

ture vectors that correspond to the input symbol sequences.

When training to predict the next symbol, the corre-

sponding target vector is:

Y ≡

⎡
⎢⎢⎢⎢⎢⎣

y1

y2

...

yM

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

sN+1

sN+2
...

sM+N+1

⎤
⎥⎥⎥⎥⎥⎦

(7)

In front of each (row) vector of features, we place the

next symbol according to the sequence of symbols used

to generate these features. This is what we refer to as the

single-step prediction task. We also evaluated our approach

for autoregressive multi-step prediction, where the single-

step prediction is applied iteratively, updating the time

frame to incorporate newly predicted symbols.

The process of training a model involves identifying

the regression vector 𝜃 that minimizes the mean squared
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error (MSE) between the predicted values, represented as

X𝜃, and the actual target values, Y. The dimensionality of

𝜃 corresponds to the number of output features, K. In the

following, we also use the normalized mean squared error

(NMSE), defined as the MSE divided by the variance of Y.

NMSE provides interpretability, as 1− NMSE = R2, which

represents the proportion of variance explained by our

model. The goal is to find 𝜃 such that the difference between

these predicted and actual values is as small as possible,

which can be expressed as:

min
𝜃

‖Y− X𝜃‖2
2

(8)

To achieve this, an effective approach is to use the

Moore–Penrose pseudoinverse, denoted by X†. This pseu-

doinverse offers a least-squares solution to the equation

Y = X𝜃. When the matrix X is decomposed using singular

value decomposition (SVD) asX = U𝚺V∗
, the pseudoinverse

can be computed as:

X
† = V𝚺−1

U
∗ (9)

In this context, 𝚺−1
is formed by taking the reciprocal

of each nonzero singular value in 𝚺 and transposing the

resulting matrix. Using this pseudo-inverse, the optimal 𝜃

is given by:

𝜃 = X
†
Y (10)

However, calculating the pseudo-inverse involves

inverting the singular values, which can amplify even

minor variations in the feature matrix, leading to

significant fluctuations in the regression vector. This

issue is particularly problematic when noise is present

in the data, as it can result in unstable and unreliable

predictions. Regularization techniques are employed to

mitigate this problem.

We use a widely used regularization technique, L2 reg-

ularization, which penalizes large coefficients by adding a

term proportional to the square of the coefficient magni-

tudes. This can be implemented by truncating the singu-

lar values in the SVD of X, which reduces the influence

of smaller singular values associated with less important

features.

In truncated SVD, a threshold is set, and singular values

below this threshold are zeroed out, effectively lowering the

rank of 𝚺. This approach can be represented as solving the
following regularized problem:

min
𝜃

‖Y− X𝜃‖2
2
+ 𝜆reg‖𝜃‖22 (11)

Here, 𝜆reg is a regularization parameter that balances

the trade-off between fitting the data well and keeping 𝜃

small. The adjusted singular values, denoted by 𝚺r, are

defined as:

𝚺r = diag(𝜎1, 𝜎2,… , 𝜎r, 0,… , 0) (12)

where r is the number of singular values retained. This leads

to a regularized estimate of 𝜃:

𝜃r = Vr𝚺−1
r
U
∗
r
Y (13)

In this expression,Vr andUr correspond to thematrices

associated with the first r singular values.

We carefully adjusted 𝜆reg to minimize MSE on the

validation subset.

In what follows, we train a simple linear regression

model on this high-dimensional output vector space. To

achieve good performance of the proposed computing

system, the high-dimensional output vector space must

be non-degenerate, providing distinct and linearly

independent vectors for diverse inputs. The feature

matrix in the regression consists of output vectors, where

the number of features, or components of these vectors,

determines the dimensionality. However, this perceived

dimensionality can be misleading due to the potential

degeneracy among the columns, reducing the effective

dimensionality of the output. When some columns are

linear combinations of others, they do not contribute

new information, are useless for regression, and lead to

a low-rank feature matrix. This shows the importance

of characterizing the true dimensionality of the space

represented by the matrix, which can significantly differ

from just the number of columns. We use singular value

decomposition to analyze the effective dimensionality as

it provides insight into the matrix structure by factorizing

it into two unitary matrices and a diagonal one containing

singular values. These singular values, forming the singular

value spectrum, indicate the significance of each dimension

in capturing the matrix’s variability.

To evaluate and demonstrate the depth of the feature

space formed by the optical encoding and nonlinear trans-

formation, we introduce 1000 input symbols xk from 0 to

1 through the PELM and construct a feature matrix using

output row vectors.

We illustrate the dependence of the singular value spec-

trum of the feature matrix on 𝛾P0LNOLM and 𝛼 in Figure 4,

and also present a feature matrix derived from up-sampled

signals that were not processed through the NOLM. One

can see that the feature space for simply encoded and up-

sampled input symbols is highly degenerate, as all feature

variability can be explainedwith a single singular value: the

second singular value is more than 10 orders of magnitude

lower than the first (see no NOLM line in Figure 4). This
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Figure 4: Improvement in the spectrum of singular values of the feature matrix after applying NOLM. The graph shows a richer singular value

spectrum at NOLM output, indicating higher effective dimensionality.

corresponds to the effective rank 1 feature space. When

NOLM is used for nonlinearly dispersing the signal, the

(non-)degeneracy of the feature space depends on the non-

linear phase shift and symmetry of the encoding function g.

This comparison reveals how the NOLM significantly influ-

ences the inherent dimensionality of the output state. When

applying the WDM technique for the readout procedure,

one can retrieve a full 2Dmap of features in time-frequency

axes.

Table 2: All hyperparameters used in the simulation.

Category Parameter Value

Encoding Symbol interval Ts 400 ps

Samples per Symbol 32

Peak power P0 50 W

NumWDM channels 5

WDMrequency stepΔ𝜈 50 GHz

Encoding mask size 8

Analog bandwidth 20 GHz

MZI/NOLM Nonlinearity 𝛾 0.8 W−1km−1

GVD 𝛽2 26 ps2km−1

Length L 100 m

Coupling ratio 𝜅 0.3

SOA Recovery time 𝜏 200 ps

Henry factor 𝛽 5

Log gain h0 6.91

Saturation energy Esat 8 pJ

Receiver Sampling rate 80 GSa/s

Samples per symbol 32

Learning Training symbols 5,000

Testing symbols 100–5,000

Symbols N 15

Regularization 𝜆reg (optimized per task

and device SOA/NOLM)

10−8 to 10−2

2.6 Simulation hyperparameters

To ensure reproducibility and clarity, we summarize

below all hyperparameters used across our numerical

experiments in Table 2. These include system-specific

parameters for the encoding and nonlinear transformation

stages, as well as settings related to the learning process

and readout. The table covers both nonlinear MZI/NOLM-

and SOA-based implementations, along with details of the

receiver and training configuration.

3 Benchmarks

For evaluating the performance, we used three differ-

ent time series with different levels of complexity and

the MNIST classification benchmark. When simulating the

series, we employ typical parameters commonly used for

the evaluation of machine learning models, specifically

using the Mackey–Glass series in the form:

dx

dt
= 0.2x(t − 17)

1+ x(t − 17)10
− 0.1x(t) (14)

And another time series is given by the solution of the

Rossler attractor:

dx∕dt = −y− z

dy∕dt = x + 0.2y

dz∕dt = 0.2+ z(x − 5.7)

(15)

These dynamical systems are known for being chaotic

and are often used for estimating the performance of fore-

casting algorithms [59]. For 3D attractor, we used only the x

component for training and testing the prediction accuracy.

The inherent unpredictability of chaotic systems, character-

ized by their sensitivity to initial conditions, makes them
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ideal benchmarks for testing the limits of predictivemodels.

In such environments, even the slightest variation in initial

conditions can lead to vastly different outcomes, challeng-

ing the algorithms to capture the complex dynamics at play.

To solve Eq. (14), we used the dde23 MATLAB solver

with an adaptive step size to ensure target relative and abso-

lute tolerances of RelTol = 1e− 6 and AbsTol = 1e− 8.
The solutionwas then interpolated onto a uniform gridwith

a step size of 1, following the approach in Jaeger and Haas

[60]. For the Rössler attractor, we used the ode45 MATLAB
solver with adaptive step to ensure the same relative and

absolute tolerances. We then interpolated the solution onto

a uniform grid with a step size of 0.25. For the Rössler

attractor, the time series was rescaled to lie within the

range [0.1, 1.1] to avoid zero or negative values, which are

incompatible with optical power levels in our simulation.

In contrast, the Mackey–Glass time series was used without

normalization, as its amplitude remained within a suitable

range for our modeling.

To characterize the randomness of these systems, we

estimate the Lyapunov time, which measures the rate

at which nearby trajectories in the system’s phase space

diverge. Specifically, the Lyapunov time is inversely related

to the Lyapunov exponent of the system, indicating how

quickly initial uncertainties or errors grow over time. To

estimate the Lyapunov time for each dynamical system, we

numerically integrated them from slightly different initial

conditions and calculated the L2 norm of the difference

of these trajectories over time. These trajectories for the

considered systems are shown in Figure 5. The Lyapunov

time was estimated as the inverse slope of the difference

in the logarithmic scale. In what follows, we show how

the increased chaoticity of and reduction in Lyapunov time

leads to reduced prediction ability of the proposed PELM.

Chaoticity increases from the Mackey–Glass series to the

Rössler attractor, with a corresponding decrease in Lya-

punov time, indicating faster unpredictability in systems

like Rössler due to exponential growth of initial differences,

as shown in Figure 5.

To validate our Lyapunov time estimation based on tra-

jectory divergence, we also computed the Lyapunov expo-

nent for the Rössler attractor using the standard variational

method based on linearization of the system equations.

Specifically, we integrated both the original system and

its linearized form (variational equations) and periodically

orthonormalized the perturbation vectors using QR decom-

position to estimate the largest Lyapunov exponent. This

yielded a value for inverse Lyapunov exponent of approx-

imately 13.4, which is consistent with the rate inferred from

the divergence of nearby trajectories shown in Figure 5.

For the Mackey–Glass system, a similar analysis could not

be performed due to its infinite-dimensional nature as a

delay differential equation, which complicates the formu-

lation and integration of variational equations. Therefore,

for Mackey–Glass, we relied solely on the trajectory-based

method to estimate the Lyapunov time.

For the classification task, we took 10,000 samples from

the MNIST dataset and split them 50/50 for training/testing.

Since linear classifiers already achieve around 90 % accu-

racy on the original 784-pixel images, we increased the task

difficulty by downsampling the images to just 15 pixels. We

accomplished this using column-pivoting QR decomposition

to identify and retain the most informative pixels. To do

this, we reshaped the MNIST dataset into a matrix in the

form 10,000 by 784 and applied column-pivoting QR decom-

position, following the data-driven QR sensing paradigm,

which is basically a compressed sensing approach per-

formed on a tailored basis [61]. The pivoting QR factor-

ization seeks to reorder the columns such that the most

“informative” columns are moved to the forefront. The

Figure 5: Comparison of Lyapunov times for different dynamical systems, illustrating how increased chaoticity, from the (a) Mackey–Glass series to

(b) Rossler attractor, results in reduced Lyapunov time and increased unpredictability.
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measure of “informativeness” here is rooted in the magni-

tudes of the diagonal entries of the upper triangular matrix

R resulting from the QR factorization. Columns, or, in our

case, pixels, corresponding to larger diagonal entries in R

are deemedmore significant. Thus, we select themost infor-

mative columns. To ensure a proper evaluation, this decom-

positionwas performed exclusively on the training subset to

prevent any information from the testing subset from influ-

encing the pre-processing stage. The identified pixel posi-

tions were subsequently used to downsample images in the

testing subset. We used linear discriminant analysis (LDA)

for multi-class classification using either original selected

pixels (linear classification) or processed by the photonic

ELM. Applying this approach, we observed an accuracy of

42 % on the testing subset using linear classification. The

15 selected pixels were then input into the ELM to achieve

a high-dimensional nonlinear mapping. A linear classifier

was trained on the mapped samples from the training sub-

set within this higher-dimensional feature space. The per-

formance of the classifier was then evaluated using the

mapped samples from the testing subset. When using WDM

for encoding, we simultaneously transmit 5 different pixels

across 5 separate spectral channels, effectively sending the

input in batches of 5 pixels at a time, with 3 such batches per

image.

4 Results and discussion

To test the ability of the approach to capture the dynamics of

the considered systems, we used regularized linear regres-

sion over the feature space of the output of the PELM. Reg-

ularization parameter was optimized for long-term autore-

gressive prediction by testing the long-termprediction accu-

racy of the model for regularization parameters from 10−10

to 10−2, and choosing the value that provides the best accu-

racy on the autoregressive prediction. So the value of the

regularization parameter was selected to avoid overfitting

the local prediction while making the model capable of

predicting the long-scale dynamics of the three test dynam-

ical systems. Regularized pseudo-inversion of the feature

matrix was used to learn the regression vector from the

training data: regularization is performed by replacing all

singular values that are below the current regularization

parameter with zeros. Singular values and pseudoinversion

are calculated by using singular value decomposition of

the feature matrix. Then, we segment the validation data

into sequences that the model will use to make predictions.

Each sequence includes a set of input symbols followed by

the symbols to be predicted. The number of sequences is

determined based on the size of the validation data and

the length of the sequences to be predicted. Typically, we

used 10–15 validation sequences. For each input sequence,

we predict the sequence of symbols that follow by taking

an input sequence and, in a loop, making a prediction for

the next symbol in the sequence. After each prediction, the

input sequence is updated by removing its first symbol and

appending the predicted one. This updated sequence is then

used for the next iteration. This process is repeated for the

length of the pre-defined autoregressive prediction length.

We used different autoregressive prediction lengths for dif-

ferent dynamical systems: from 1,000 for the Mackey–Glass

system to 250 for the Rössler attractor.

The simulation parameters that we used for training

and testing the proposed system, are given below. We set

the receiver sampling rate of 80 GSa/s, with 32 samples

recorded per symbol to provide the up-sampling of the

encoded signal.

We used symbol-to-pulse train encoding with Gaussian,

skewed Gaussian, or a trainable mask. The input pulse

had a peak power of 50 W. Once more, we would like to

stress that this power corresponds to NOLM based on SMF

and can be substantially scaled down by using highly non-

linear fiber, or integrated MZI/NOLM with other material

platform. When employing the trainable mask, it was first

set digitally with ideal (infinitely steep) transitions, then

simulated for encoding by an electro-opticalmodulatorwith

a 20 GHz analog bandwidth. For WDM multi-channel spec-

tral encoding, we used a frequency step of Δ𝜈 = 50 GHz

between channels, with 5 channels corresponding to fre-

quency shifts of 0, −Δ𝜈, +Δ𝜈, −2Δ𝜈, and +2Δ𝜈. For time
series forecasting, we encoded time-shifted copies of the

same symbol sequences in other spectral channels so that

channel 2 contains a 1-symbol delayed copy of the channel

1 sequence, channel 3 contains a 2-symbol delayed copy of

the channel 1 sequence, etc. A similar approachwas used for

memory enhancement in RC in microresonators [37]. How-

ever, unlike the approach in [37], our scheme additionally

employs trainable encoding. Theoretical studies [62] have

also explored memory enhancement via input-stage mod-

ifications, particularly in SOAs and microring resonators.

Ourwork extends these insights by demonstrating an imple-

mentation in a WDM-based framework, offering flexible

spectral encoding, trainable masking for dynamic input

modulation, and a scalable approach using commercially

available telecom components. We did not demultiplex the

WDM channels at the output and instead simulated the

readout as being measured directly from the nonlinear

transform’s output using a single photodiode. Using WDM

for the classification task, we simply encoded different pix-

els into different WDM channels in parallel, thus reduc-

ing the number of sequential symbols to be fed into the

ELM.
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Figure 6: Performance, for comparison, of the linear model on time-series prediction tasks. Poor prediction accuracy is achieved for all the

Mackey–Glass (a) and Rössler (b) time series, which indicates the inability of the linear model to capture the complex dynamics of these systems.

The NOLM was characterized using parameters of

a single mode fiber: a nonlinear coefficient 𝛾 = 0.8 ×
10−3 W−1 m−1, group velocity dispersion coefficient 𝛽2 =
26 × 10−3 ps2 m−1, fiber length LNOLM = 100 m, and the cou-

pling ratio 𝜅 = 0.3. Evidently, employing highly nonlinear

fibers or othermaterial platforms, all resulting optical pulse

parameters can be easily scaled.

For the time series forecasting task, the model was

trained using 4000 symbols and tested on 100–1,000 sym-

bols depending on the chaoticity of the time series. We

used batches of N = 15 symbols to predict the next one. To

make a multi-step prediction, we utilized the autoregres-

sive approach, when the newly predicted symbols are used

to predict the next ones. A regularization amplitude was

optimized for performance and to prevent overfitting. For

the classification task, the model was trained using 5000

images from the training set, whichwere sub-sampled using

column-pivoting QR decomposition. The pixel locations cho-

sen for the training subset were then applied to the testing

subset during the testing phase, which also included 5000

sample images.

We began by applying simple linear regression and

linear classification to the upsampled raw data to estab-

lish a reference performance baseline. This initial approach

served as a benchmark for evaluating the improvements

offered by the nonlinear systems used. As expected, the

linear regression model exhibited poor performance across

both chaotic time-series prediction tasks and the sub-

sampled MNIST classification task. Specifically, the tasks

included autoregressive predictions on the Mackey–Glass

(MG) and Rössler (R) time series, with results illustrated in

Figure 6.

Although the single-step predictionNMSE appeared rel-

atively low, at NMSEMG ≈ 5 × 10−6, NMSER ≈ 2 × 10−4, the

model failed at long-term prediction. This failure was due

to the linear system’s inability to capture and replicate the

underlying dynamics of these complex systems.

For the classification task on the sub-sampled MNIST

dataset, the linear model’s performance was similarly lim-

ited. Themodel struggled to separate the digit classes, which

Figure 7: Confusion matrix for the linear model on the sub-sampled

MNIST classification task. The high number of off-diagonal entries

indicates frequent misclassification.



2774 — E. Manuylovich et al.: Optical neuromorphic computing via temporal up-sampling

Figure 8: Example of autoregressive prediction of Mackey–Glass series for 1,000 symbols using PELM.

Figure 9: Trained encoding mask (a) and corresponding singular spectrum change (b) in the feature matrix of the PELM model. The model

performance was enhanced by using an 8-slot trainable encoding mask, allowing each symbol to be encoded with 8 independently optimized

amplitudes.

led to high misclassification rates. This shortfall is evident

when examining the confusion matrix in Figure 7, where

off-diagonal elements are prominent, showing a high mis-

classification rate.

The overall accuracy on the test subset for the sub-

sampled MNIST is only 42 %.

Nowwe determined the baseline accuracy of the linear

models on the chosen tasks, and we can compare the accu-

racy achieved using PELM with the parameters described

above. Figure 8 shows an example of the increased predic-

tive ability of the model when high-dimensional nonlinear

mapping is enabled via passing the encoded signal through

the PELM.

NMSE averaged over multiple predicted sequences,

similar to shown in Figure 8 but taken from different parts

of theMackey–Glass sequence, is equal to NMSE = 0.097 for

the autoregressive prediction depth of 1,000 symbols, which

is a significant improvement compared to the purely linear

model, shown in Figure 6a.

The performance of the PELM can be improved further

by employing a trainable encoding mask instead of using

a simple Gaussian shape for the optical encoding of the

input symbols. We employed an 8-slot trainable encoding

mask, such that each symbol is encoded with 8 independent

amplitudes. The waveform of each corresponding pulse is

then described as a convolution of this arbitrary-shaped

vector of length 8with a finite-bandwidth response function

of the modulator. We used the raised cosine function as

the response function, and the analog bandwidth of the

(a) (b) (c)

Figure 10: NMSE as a function of autoregressive prediction depth

for different encoding techniques: (a) single-channel Gaussian pulse

encoding, (b) 5-channel WDM with Gaussian pulse encoding, and

(c) single-channel trained encoding mask. Errors for individual predicted

sequences are shown in gray, and the average error across all predicted

sequences is highlighted in red.
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Figure 11: Example of autoregressive forecasting of the Rössler time series using a single-channel Gaussian-shaped encoding.

modulator was set to 20 GHz. The encoding mask was

trained by a combination of global and local optimization

techniques. We used GWO [51] for global optimization and

Nelder–Mead simplex method for local optimization. The

trained mask and the corresponding change in the singular

spectrum of the feature matrix are shown in Figure 9. The

corresponding improvement in performance for autore-

gressive prediction depth of 1,000 symbols is reduced to

NMSE = 0.036, a 2.7 times improvement compared to simple

Gaussian encoding mask.

When using another telecom technology, WDM, for

encoding (i.e., combining multiple signals within a single

optical channel before passing them through the PELM),

performance can also be improved compared to the simpler

single-channel encoding approach. When using 5 channels

with 50 GHz separation and employing single-symbol shift,

as described above, we managed to achieve NMSE = 0.054

for simple Gaussian encoding andNMSE = 0.024 for trained

encoding mask. The encoding mask used was the same

for all spectral channels. The performance can be further

optimized by using individual trainable encoding masks for

each WDM channel, but this requires further research and

training via higher-order parameter optimization, which is

beyond the scope of this work.

Figure 10 shows how NMSE depends on autoregres-

sive prediction depths for different encoding techniques:

single channel with Gaussian pulse encoding (a), 5-channel

WDM with Gaussian pulse encoding (b), and single chan-

nel with trained encoding mask (c). The errors for indi-

vidual predicted sequences are depicted in gray, while the

average error across all predicted sequences is highlighted

in red.

Compared to other photonic RC approaches for

Mackey–Glass prediction, our method outperforms [63],

achieving an NMSE of 0.01 for predicting 300 symbols (six

quasi-periods), whereas [63] reports an NMSE of 0.1. In

comparison to the delay-based RC in [26], our approach

achieves similar accuracy for single-step prediction;

however, a direct comparison of multi-step prediction

performance is not possible due to the lack of reported

error metrics in [26].

When testing on the Rössler attractor data, we sim-

ilarly can get boost in prediction accuracy when utiliz-

ing multiple WDM channels and trainable encoding mask.

Figure 11 shows an example of autoregressive forecasting of

the Rossler time series using single channel Gaussian-shape

encoding.

Using 3 WDM channels for encoding or a trainable

encodingmask reduces NMSE across autoregressive predic-

tion depths, as shown in Figure 12.

The overall accuracy for Rössler time series prediction

using NOLM again can be improved from NMSER = 1.16 ×
10−1 to NMSER = 5.7 × 10−2 when usingWMD encoding and

to NMSER = 9.79 × 10−3 when using trained encoding mask

even with a single encoding channel.

We also tested the proposed approach on SOA as a non-

linear mapping device. All system parameters are kept the

same except the peak power P0 = 0.7 W. SOA parameters

(a) (b) (c)

Figure 12: NMSE versus autoregressive prediction depth for the Rössler

time series (a); the results demonstrate reduced prediction error when

using 3 WDM channels (b) or a trainable encoding mask (c), compared to

single-channel encoding.
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(a) (b) (c)

Figure 13: NMSE versus autoregressive prediction depth when using

SOA as a nonlinear mapping device, for the Rössler time series (a);

the results demonstrate reduced prediction error when using 3 WDM

channels (b) or a trainable encoding mask (c), compared to

single-channel encoding.

used for simulation (see eq. (5)) are the following: 𝛽 = 5,

small signal gain 30 dB, 𝜏c = 200 ps, Esat = 8 pJ. All time

series and computing parameters are identical to those in

Figure 12, except that the nonlinear transform is now per-

formed using an SOA. Figure 13 shows how applying WDM

encoding (b) and trainable encoding mask (c) outperform

the standard Gaussian encoding mask (a) for Rössler attrac-

tor prediction task.

Finally, In the classification task, the proposed

approach (see Figure 14 for the improved confusionmatrix)

demonstrates a substantial performance improvement

over the baseline linear model on the sub-sampled MNIST

classification task. With WDM encoding, we achieve

comparable performance, with the added advantage of

encoding multiple symbols simultaneously across different

spectral channels.

Figure 14: Confusion matrix for the NOLM-based Extreme Learning

Machine (ELM) model on the sub-sampled MNIST classification task.

The model shows significantly improved performance compared to the

linear model, with a reduced number of off-diagonal misclassifications.

Testing on the sub-sampled MNIST classification task

shows an overall test accuracy of 77 % for the NOLM-based

ELM model, a significant increase from the linear model’s

42 % accuracy.

5 Conclusions

We proposed and demonstrated through numerical mod-

eling photonic ELM and RC designs based on the well-

developed telecommunication technology and component

platform. The important advantage of this approach is the

combination of low-cost, high-speed characteristics of lin-

ear and nonlinear elements with the frequency parallelism

techniques well-established in wave-division-multiplexing

optical communication systems. High-capacity and high-

speed optical communication are utilized to create a large

number of degrees of freedom in the time-frequency

domain for controllable encoding and relatively low-power

parallel nonlinear mapping of the input signal into high-

dimensionality output for linear processing. The use of mul-

tiple frequency channels for encoding input information is

important for the efficiency of nonlinear mapping. Indeed,

in linear time-invariant optical systems, the frequency com-

ponents in the output and input signals are the same. The

nonlinear optical transformation leads to frequency com-

ponent mixing and generation of new harmonics provid-

ing conditions for efficient mapping to higher-dimensional

space.

It is important to point out that while we focused here

on the forecasting of time series and a classical classification

task, a similar projection to the high-dimensional case is

also highly relevant and can be employed for various other

tasks following the methodology of SVM [7]. The difference,

however, is that the proposed approach does not require the

use of kernel-based methods. Key to improving the success

of the non-linear projection used is adjusting the mapping

parameters in a way that will provide an easier separation

of features. This is an aspect of the research that is still

ongoing.
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