DE GRUYTER

Nanophotonics 2025; 14(16): 2761-2778 a

Research Article

Egor Manuylovich*, Dmitrii Stoliarov, David Saad and Sergei K. Turitsyn

Optical neuromorphic computing via temporal
up-sampling and trainable encoding on a telecom

device platform

https://doi.org/10.1515/nanoph-2024-0614
Received November 7, 2024; accepted May 28, 2025;
published online June 19, 2025

Abstract: Mapping input signals to a high-dimensional
space is a critical concept in various neuromorphic comput-
ing paradigms, including models such as reservoir comput-
ing (RC) and extreme learning machines (ELM). We propose
using commercially available telecom devices and tech-
nologies developed for high-speed optical data transmission
to implement these models through nonlinear mapping of
optical signals into a high-dimensional space where linear
processing can be applied. We manipulate the output fea-
ture dimension by applying temporal up-sampling (at the
speed of commercially available telecom devices) of input
signals and a well-established wave-division-multiplexing
(WDM). Our up-sampling approach utilizes a trainable
encoding mask, where each input symbol is replaced with a
structured sequence of masked symbols, effectively increas-
ing the representational capacity of the feature space. This
gives remarkable flexibility in the dynamical phase masking
of the input signal. We demonstrate this approach in the con-
text of RC and ELM, employing readily available photonic
devices, including a semiconductor optical amplifier and
nonlinear Mach—Zehnder interferometer (MZI). We inves-
tigate how nonlinear mapping provided by these devices
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1 Introduction

There is a growing interest in unconventional approaches
to computing, as traditional digital computing is reach-
ing its fundamental limitations [1], [2], particularly due to
the unsustainable power consumption of machine learn-
ing approaches [3]. Reservoir computing (RC) [4], [5] and
extreme learning machine (ELM) [6] are two popular uncon-
ventional (non-digital) computing concepts implicitly based
on nonlinear mapping of the input into a high dimensional
output where it can be processed using simple and efficient
linear algorithms. For practical implementation purposes,
operating only with a linear readout layer is a substan-
tial advantage, due to the straightforward processing and
low computational complexity required. The main differ-
ence between the two methods is that the RC architectures
exploit recurrent connections, creating memory in the sys-
tem, while ELM is a feed-forward approach that does not use
any memory.

The idea of mapping input signals into a high-
dimensional output for processing is rooted in the founda-
tions of information theory, but also features in machine
learning approaches, such as, support vector machines
(SVM) [7] (with predetermined nonlinear mapping) and
reservoir computing, which uses a recurrent neural net-
work as an uncontrolled nonlinear mapping. Difficult com-
puting tasks are made easier by transforming them nonlin-
early to a higher dimensional space where linear processing
can be applied. In this approach computing is treated as
structuring the nonlinear mapping, instead of processing
of structures as in traditional computing. Note that creat-
ing high-dimensional space available for the mapping is
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not sufficient in itself, since the output signal should be
effectively spread across this feature space, without mak-
ing many dimensions redundant. Therefore, the important
challenge is to ensure a high effective dimensionality of the
output, that is quantified by a set of linearly independent
variables.

Manipulating the effective dimensionality of the fea-
ture space by a nonlinear transformation of the streamed
temporal signal paves the way for a range of non-
conventional computing methods. In particular, it is well
suited for manipulating temporal continuous (analog) sig-
nals that are naturally generated in sensing, imaging and a
number of other applications. Analog information process-
ing is one of the key pillars of unconventional computing.
Analog computing which has a long history, is experienc-
ing a resurgence due to its superior power efficiency and
capability of parallel processing [8]. Analog computing is
well suited for tasks that require continuous inputs and
outputs. The effective dimensionality can be controlled in
different ways (e.g. temporal sampling or frequency filter-
ing) projecting the infinite-dimensional space of the analog
signal after nonlinear transformation onto a well-separated
set of features. Additionally, effective dimensionality can
be controlled by the parameters and characteristics of the
nonlinear transformation.

Analog information processing can be implemented in
a variety of physical systems trained to learn complex fea-
tures. In more general terms, natural, human-engineered
physical, chemical, and biological systems can be used as
substrates to realize computing algorithms (see, e.g. [9]-[13]
and references therein).

Ultra-fast nonlinear photonic systems, in particular, are
attractive for the implementation of unconventional com-
puting approaches due to their relatively low power dissi-
pation and capability of parallel signal processing. Recently,
there has been a great deal of interest in the development
of photonic-based ELMs and RCs (see, e.g., [14]-[23] and ref-
erences therein). Several notable works have demonstrated
the potential of photonic reservoir computing in leverag-
ing existing telecom technologies. A 16-node square mesh
reservoir on a silicon photonics chip was implemented,
capable of executing Boolean operations and header recog-
nition tasks [24]. A parallel photonic reservoir computing
approach using semiconductor optical amplifiers was also
investigated, demonstrating competitive performance in
speech recognition tasks [25]. A unified framework for reser-
voir computing and extreme learning machines was devel-
oped using a single nonlinear neuron with delayed feed-
back, realizable in optoelectronic and all-optical implemen-
tations [26]. Another study experimentally implemented
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reservoir computing with a nonlinear optoelectronic oscil-
lator, achieving high performance on spoken digit recog-
nition and time series prediction tasks [27]. A high-speed
photonic reservoir computing system based on InGaAsP
microring resonators was demonstrated for efficient all-
optical pattern recognition in dispersive Fourier imaging
[28].

Light possesses a rich set of degrees of freedom that
can carry information. In optical communications, param-
eters such as amplitude, phase, wavelength, and polariza-
tion are routinely used to encode signals, with spatial divi-
sion multiplexing emerging as an important technique for
increasing data transmission rates further. Several exam-
ples of optical neuromorphic computing exploiting spectral
signal multiplexing have already been explored, including
implementations based on optical reservoir computing [19],
[29], [30] as well as other optical neuromorphic architec-
tures [20], [31]-[33]. Recent works demonstrated that WDM
enhances photonic reservoir computing by enabling par-
allel processing and increasing computational capacity. A
Fabry—Perot semiconductor laser-based RC leveraged mul-
tiple wavelength channels to improve signal equalization in
optical communications [34]. A microring resonator-based
RC exploited WDM for simultaneous multi-task process-
ing, showing its potential for efficient parallel computing
[35]. A waveguide-based RC demonstrated improved non-
linear signal equalization across multiple WDM channels
[36]. Additionally, WDM has been shown to enhance the
memory capacity of RC without requiring external optical
feedback by using wavelength-multiplexed delayed inputs
in microring-based architectures [37]. In this work, we show
that WDM can also be used to enable a faster encoding
mask, surpassing the speed limitations of single-channel
implementations.

In the temporal domain, up-sampling was used in [38].
However, the advantages of a faster output sampling rate
were not leveraged because of the low bandwidth of the
readout system. In this work, we demonstrate the advan-
tage of up-sampling in enhancing the performance metrics
on different tasks. Also, we would like to point out that
unlike the previously studied delay-based RC implementa-
tions, [38], [39], we propose approach without additional
optical delay, while providing comparable processing capac-
ity. Note that in the majority of the demonstrated optical
reservoir computing and ELMSs, only one of these degrees
of freedom was used.

Photonic ELMs are characterized by their feed-forward
architecture, which features untrained internal connections
and trained output weights. In the optical domain, the
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non-trainable, nonlinear signal transformation characteris-
tic of ELM is performed automatically and cost-effectively
through physical signal propagation and registration, lever-
aging the inherent properties of light and nonlinear optical
components and systems. Photonic ELMs have been demon-
strated in various setups, including a free-space optical
propagation scheme [14] and frequency-multiplexed fiber
framework [21]. The implementation using the array of
microresonators on an integrated silicon chip [23] achieved
notable success in both binary and analog tasks, underscor-
ing the potential of ELMs in photonics for efficient and high-
performance machine learning applications. The efficacy of
photonic ELMs has been further enhanced by employing
feedback alignment for training the input mapping, see, e.g.,
[40].

Recent applications of optical reservoir computing
include: modulation format identification in fiber com-
munications using single dynamical node-based photonic
RC [41], machine learning based on RC with time-delayed
optoelectronic and photonic systems [42], photonic neuro-
morphic technologies in channel equalization [43], analog
optical computing for artificial intelligence [44] and many
others.

In this work, we propose and demonstrate how devices
and technologies developed for optical data transmission
can be used for computing applications. While individual
techniques like high-dimensional mapping, input masking,
WDM, and specific nonlinear elements have been explored
previously, our contribution focuses on a novel combination
of these elements within a flexible framework designed
for effective nonlinear mapping. The combined use of
signal feature-space expansion via temporal up-sampling
and WDM technology for parallel encoding gives a great
degree of flexibility in designing the structure of a high-
dimensional output. A key element of our approach is the
incorporation of a trainable input encoding mask. This
trainable mask provides a crucial advantage, allowing for
task-specific optimization of the input signal representa-
tion before it undergoes nonlinear transformation, thereby
enhancing the overall representational capacity and perfor-
mance of the system. Multiple spectral channels can range
from coarse WDM (systems with fewer than eight active
wavelengths per fiber) to dense WDM (DWDM). DWDM
can offer standard telecom solutions with a number of
channels varying from tens to hundreds with typical (but
also variable) channel spacing of 50 GHz or 100 GHz within
the so-called optical fiber C-band (spectral interval from
1,530 nm to 1,565 nm). Traditional DWDM systems exploit
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wavelength-selective switches designed with fixed 50 GHz
or 100 GHz filters. Using other fiber spectral bands, DWDM
can be extended to thousands of channels. In the tempo-
ral domain, data streams with symbol rates as high as 32,
64 Gbaud (and more) in a single fiber can be produced
with standard components. Thus, commercially available
telecom devices can be utilized to produce a huge dimen-
sional output feature space using only standard conven-
tional technology. Numerous non-linear optical elements,
modulators, devices and systems have been developed in
the context of optical communications. To illustrate our
combined approach featuring this trainable encoding, we
consider here a balanced-arm MZI with non-symmetric
couplers, which is mathematically equivalent to nonlin-
ear optical loop mirror (NOLM), and semiconductor optical
amplifier (SOA) as nonlinear transformers of optical sig-
nal. In what follows, we use balanced-arm MZI with non-
symmetric couplers and NOLM interchangeably.

2 Methods

2.1 Nonlinearity and effective
dimensionality

Many machine learning methods utilize non-linear map-
ping as part of the data manipulation process, for instance,
radial basis functions, most variants of neural networks,
kernel-based methods and boosting [45]. These mappings
can be made in a higher-dimensional space, for instance,
by having hidden layers that include more neurons than
the input, but these are not carried out in a controlled and
structured manner and are not explicitly used as part of the
processing method.

At the heart of our method is the nonlinear mapping of
input vectors to a high-dimensional space, which facilitates
the application of various tasks. While our primary focus
is on time series forecasting and prediction, which serves
as an example of a regression task, we also demonstrate
the versatility of our approach by applying it to a classifi-
cation problem on a sub-sampled MNIST dataset. In spirit,
our methods follow the rationale of SVM [7], where both
classification and regression tasks are made possible by
mapping them to the high dimensional space where linear
separation [46] and approximate regression can be carried
out; but, unlike SVM, where the nonlinear transformation is
replaced by the corresponding kernel and support vectors
should be identified, we rely on the speed of computing
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devices and their ability to carry out fast mapping and sim-
ple regression.

Clearly, the nature of the nonlinear mapping and its
suitability for the data is a crucial but difficult aspect of
the method that should be addressed. Relying on avail-
able optical telecommunication devices limits the nonlinear
mapping we can utilize; nevertheless, one can apply dif-
ferent control parameters that govern the type of mapping
achieved, as detailed in Section 2.2. Developing a principled
approach for determining the optimal mapping parameters
is beyond the scope of the current paper and will be the
subject of future research.

For the more general case of noisy data and mapping
process, it would be natural to assess the impact of the non-
linear mapping of inputs to the higher-dimensional space
using entropic and mutual information measures. However,
in this work, we use deterministic mapping and would
like to ensure that the mapped data makes full use of the
larger space and does not create trivial linear interdepen-
dencies. To do that, we will concentrate on the effective
dimensionality of the mapped inputs. Transformation of the
low-dimensional input signal into high-dimensional feature
space will be suitable for computing only if the output vari-
ables are linearly independent and are not redundant. The
output signal should be spanned by nonlinear transforma-
tion across a large number of available dimensions to make
them linearly separable.

While the mapping employed is complex and includes
both nonlinearities and time-dependent components, one
can employ linear algebra methodology to determine the
effective dimensionality of the feature space. In statisti-
cal data analysis terms, the effective dimensionality of
the mapped inputs is the number of orthogonal dimen-
sions that would produce the same overall co-variation pat-
tern. This can be easily done using singular value analy-
sis, exploratory factor analysis, principal component anal-
ysis and other dimensionality reduction techniques, both
linear and non-linear [47]. One may also consider inde-
pendent component analysis methods to explore the sta-
tistical independence property of mapped data. More suit-
able for measuring the complexity of time series are mea-
sures introduced in [48] and [49]. As the starting point for
this research, we have adopted the singular value analysis,
which is simple and effective. An alternative approach that
could be explored is to enforce lower effective dimensional-
ity through regularization during linear regression training
of the weight matrix, although this on its own cannot be
used to evaluate the feature space dimensionality. In clas-
sification problems, dedicated algorithms to maximize the
distance of data from the separating hyperplane could be
employed [50].
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2.2 The architecture of the considered
photonic ELM and RC systems

The considered photonic ELM/RC computing systems lever-
age the idea of using nonlinear transformation of signal
into high-dimensional space for computational purposes.
There are the following key steps in the computing archi-
tecture considered as schematically depicted in Figure 1.
The first step is the interface between the real-world signal
and an input into the computing system. Second, an input
signal is tuned (modulated, coded) using available degrees
of freedom of the system - parameters that can be used for
tuning. There are two possibilities: In the case of slowly
varying parameters, the signal undergoes a masking pro-
cedure to maximize the effective dimensionality of the sys-
tem after the nonlinear transformation. When parameters
are modulated fast characteristic of the proposed use of
telecom devices), adjusting tuning to the incoming signal
creates a possibility of dynamical, controllable masking.
Third, the nonlinear element/system maps the input sig-
nal onto a high-dimensional feature space. Variables that
cannot be linearly separated in a low-dimensional space
can be successfully processed using linear algorithms in a
high-dimensional space. The final step is signal processing
in the high-dimensional space performed by the readout
layer. Below, we specify each of these steps considering
the implementation of a general computing scheme using
telecom-grade optical devices.

2.2.1 Encoding techniques: dynamical masking

To feed information into the proposed optical ELM/RC for
computing one needs to encode the input data stream in
an electromagnetic field. Consider that the input data has
a form of a vector (s;,S,, ...,Sy). Encoding of the input
messages (symbols) onto the optical waveform can be done
in different ways exploiting the available degrees of free-
dom of light. The advantage of the proposed ELM/RC is that
we can use easily accessible and well-developed telecom
devices. For example, amplitude and/or phase modulation
can be employed to encode input symbols in the ampli-
tude/phase of the optical signal in the time domain. Encod-
ing can be done in different frequency channels using estab-
lished WDM technology. In addition to the symbol encoding,
the effective dimensionality of the input can be increased
via additional signal-invariant modulation, i.e., masking.
Consider a WDM-based encoding scheme with L spectral
channels and an optical pulse train having the form:

L ]
A =P, Y Y ay; glt—j- T exp(—iwt) (1)
I=1 j=1
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Signal input

Figure 1: Scheme of the proposed photonic ELMs/RCs.

where P, is the power scaling parameter, L is a number of
spectral channels (indexed by ) used for coding of the infor-
mation, T, is a symbol rate, oy for j=1,2,... is a symbol
(in general, a complex number) in the spectral channel [ at
the temporal position j that is used for encoding the input
information in the optical domain. It can be sampled from a
discrete set (alphabet) or be continuous.

Function g(¢t) describes the shape of a carrier pulse (or
an encoding mask) having the temporal scale T,,, which can
be, in general, different from T,. Thus, in the considered
case, we need to encode the input data vector (s, Sy, ... , Sy)
into array ;. Evidently, this can be done in different
ways, providing rich opportunities for the manipulation
and optimization of the subsequent nonlinear mapping.For
example, one can encode multiple consecutive symbols s;
into multiple parallel instances of a, ;, effectively paralleliz-
ing processing. Or one can introduce a time shift, when a; ;
contain shifted copies of s; in different spectral channels,
effectively introducing memory. To illustrate the general
concept we consider here only simple intensity modulation
(a,; are real non-negative numbers).

In this work, spectral multiplexing is used differently
depending on the task. For time-series forecasting, we intro-
duce memory across channels by encoding time-delayed
replicas of a base symbol sequence: specifically, we define
Q=014 for I=1,...,L and j >, such that channel
[ contains the (I —1)-symbol delayed copy of the original
sequence on channel 1. For classification tasks, we encode
multiple features or input elements (image pixels) in par-
allel across different WDM channels at the same temporal
index, effectively reducing the sequential processing length.
These encoding schemes are shown in Table 1.

One can introduce asymmetry in the optical signal we
use the skewed Gaussian pulse of the following form:

exp(—7%/2T%)

1+ exp(—az/T,) @

g§) =g(t, Ty, a) =
where « is a skewness parameter, 7 = (t —t,)/t, is the
shifted and rescaled time introduced to align the mean and
variance of the skewed function with those of a standard
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Table 1: WDM-based encoding schemes. (a) Time-series forecasting uses
delayed copies across spectral channels to introduce memory.

(b) Classification encodes features in parallel across channels to reduce
sequential depth.

(a) Time-series forecasting

WDM channel j=1 j=2 j=3 j=4 j=5

w, 5 S, S5 S4 S5

w, S S, S3 Sy

@3 S S S3

@4 51 52

Ws S
(b) Classification

WDM channel j=1 j=2

w, S Se

@, S2 57

@3 53 Sg

@y Sy So

@5 S5 S10

Gaussian (with « = 0, t; = 0, t, = 1), scaling parameters ¢, ,
adjust the shift and scale of the distribution, respectively. In
this work, we always use t parameters optimized to provide
a skewed function that preserves the mean and variance
of the original Gaussian distribution, thus allowing for a
direct comparison while accounting for asymmetry in the
mapping. The use of the asymmetric carrier pulse combined
with up-sampling effectively plays a role in the masking
procedure that assists the following nonlinear distribution
of the same symbol into different parts of an output feature
space.

Finally, the encoding mask can also be trained to opti-
mize the performance of the ELM. In this case, we can tweak
individual parameters of the encoding mask to maximize
the accuracy of the proposed ELM. In this work, we used
GWO [51] for global optimization of the encoding mask
and Nelder-Mead simplex method for refinement. Figure 2
shows an example of an arbitrary encoding mask limited by
the analog bandwidth of the arbitrary waveform generator.
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Figure 2: Arbitrary and trainable encoding mask (digital and analog, limited by the bandwidth of arbitrary waveform generator). This example

features eight trainable weights.

2.3 Nonlinear transformation in optical
domain

NOLM operation can be explained as follows: the input
signal power is divided between the two arms of a waveg-
uide loop (for instance, an optical fiber), the signal phase
in each arm is changed by the nonlinear propagation, and
the resulting signal is formed by coupling the output ports
of the arms (see next subsection for details). NOLM can
produce overall nonlinear response using unequal coupling
ratios, creating asymmetry of the accumulated nonlinear
phase shifts, as in the original proposal [52] or by intro-
ducing imbalance in nonlinear propagation by using ampli-
fiers (nonlinear amplifying loop mirror — NALM). Evidently,
NOLM waveguide device can be realized on different mate-
rial platforms. The same concept can be implemented in
a nonlinear analog of the Mach-Zehnder interferometer,
creating an interferometric phase converter to control the
sign of the nonlinear phase shift [53].

SOA is a well-developed technology with many
attractive characteristics, including compact size, efficient
electrical pumping, cost-effectiveness and wideband gain
[54]-[56]. However, in high-speed optical communication
applications, the nonlinear properties of SOAs, relatively
slow gain recovery time, and comparatively high noise
figures (compared to other optical amplifiers) pose
serious challenges. The carrier dynamics of SOAs have
a characteristic scale of several hundred picoseconds. In
the context of high-speed optical communications, this
produces dependence of an instantaneous SOA gain on
the input optical signal power that results in patterning
effects - nonlinear distortions with memory. However, these
nonlinear and inherent memory features can be attractive
for optical computing applications, as demonstrated below.
We describe the transfer functions for both NOLM and SOA
below. However, for clarity, we primarily present results

based on NOLM-based computing. Examples of optical
computing using SOA-based high-dimensional mapping can
be found in [57].

The output state is obtained by taking the absolute
value squared of the output of the complex transfer func-
tions, i.e. we use intensity-only detection. We assume that
the output signal is measured using photodetectors. Addi-
tionally, we consider the passive fiber losses are negligible
compared to the signal modulation due to nonlinear signal
transform.

2.3.1 Nonlinear optical loop mirror

The transfer function of a nonlinear optical loop mirror with
a coupler having a split ratio x is given by the following
expression [52]:

Aout(t) = \/E : NLSE(\/EAm(t)’ ﬂz» 7/7LNOLM>
+iV1— k- NLSE
X (i V1— kA (0), B, yaLNOLM)

Here the input light field A, (¢) is split into two counter-
propagating waves in the NOLM with the amplitudes
defined by the coupling parameter x [52]. The function
NLSE(A, f,, 7, Lyorm) here represents the solution of the
nonlinear Schrédinger equation for the amplitude A(t, z)
with a given input A;,(¢) after propagating through a fiber
of the length Ly, With a group velocity dispersion f, and
nonlinearity parameter y:

©)]

0A _
0z

B, 0%A

-1 —

BT +iy|AJPA

@

The intensity of the nonlinearly transformed signal can
then be measured at the readout stage. When dispersive
effects are negligible compared to nonlinear ones (e.g., using
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fiber/waveguide near zero-dispersion point or high power
signal), then the transfer function is simplified to the com-
pact form:

|Aout(t)|2 =|A in(t)|2{1 —2k(1—x)
X [1+ cos((1 = 2K)y LyowuAin(OI*)] }

It is seen from this analytical approximation of the
NOLM transfer function that by varying parameters x and
Lyory One can dramatically change the properties of the
nonlinear transformation.

In this work, to calculate the input-output signal trans-
formation in nonlinear MZI (NOLM), we numerically sim-
ulate signal propagation trough fiber by solving Eq. (...)
using the fourth-order Runge—Kutta in the interaction pic-
ture method [58]. We do it for both arms, i.e. with initial
conditions \/EA in(0) and iv1—xA ;,(t). We then com-
bine the solutions at z = Lyq;y as in Eq. (...) and take the
absolute value squared to get the signal as registered by a
photodetector.

2.3.2 Semiconductor optical amplifier

Nonlinear transformation of the input optical signal
A (0) = y/P(8) explih;,(t)) by SOA to the output field

Ayi() = /Py () explig,, () is governed by the
well-established model [54], [55]:

P, (1) = Py (t) explh(t)]

¢out(t) = ¢in(t) - gh(l’) 5)
dh _ _h—hy _ Py(8) _
a=" o T E, oW

Here in/out index denotes the input/output signal, f is
the linewidth enhancement (Henry) factor, h, parameter
is related to the small signal gain G, = exp(hy), 7, is the
gainrecovery time, E, is a characteristic saturation energy.
It is seen that the nonlinear transformation of the input
temporal signal stream by SOA creates an effective device
memory defined by the delayed gain recovery: gain at a cer-
tain point in time h(t) depends on the signal in the previous
moments. In our previous work [57] we demonstrate that
memory capacity associated with this effect to be >3.5. We
demonstrate that this property can be exploited to create a
high-dimensional feature output. Egs. (5) are directly inte-
grated using Runge—Kutta method.

By varying SOA current (linked to h, parameter), we
can dynamically control the nonlinear transformation.
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2.4 Readout approaches to implement
high-dimensional feature space

One of the key advantages of implementing nonlinear map-
ping to high-dimensional signals is the possibility to use
simple processing, well-established telecom technologies
and components at the readout layer. Though signal polar-
ization and spatial modes can also be controlled and manip-
ulated with telecom-grade devices, here we focus on the
frequency and temporal domains at the output.

In the temporal domain, applying the up-sampling tech-
nique, data encoded in the symbol time interval (at the baud
rate) and spread by the nonlinear transformation can be
measured at the sampling rate of the receiver. When data
encoding is implemented on both the amplitude and the
optical phase of the carrier pulses, the standard telecom
coherent receiver can be used to recover both amplitude
and phase information at the sampling rate. Up-sampling
here means the temporal sampling of the nonlinearly trans-
formed signal (intensity in this considered illustration) at
a higher rate than the encoding symbol (baud) rate. The
up-sampling coefficient M describes how many points we
get for a single input pulse. Thus, the output of the consid-
ered ELM/RCis a nonlinearly transformed high-dimensional
representation of the input signal, which is a key component
of the computing. This process for NOLM and M =16 is
illustrated in Figure 3.

Applying a modulator at the sampling rate, we can
adjust the readout weight in the optical domain or, using
high-speed optoelectronics available in telecom, change
weights in the electrical domain. Here, we simulate readout
by multiplying the row-vector of intensities at the output of
the ELM/RC with the regression column-vector, determined
during the training procedure (see Section 2.5).

In this work, we utilize WDM solely for encoding the
input signal across multiple spectral channels. After the
nonlinear transformation, these channels are not separated
at the output stage. Instead, we assume a detection scheme
where the combined optical output, containing all WDM
channels, impinges on a single photodetector. The temporal
up-sampling readout approach is then applied to this aggre-
gated signal.

While this joint detection approach is employed here,
it is worth noting that an alternative readout strat-
egy could involve separating the different spectral chan-
nels using well-developed WDM technology. In such a
scenario, the output optical signal would pass through
a WDM de-multiplexer, and the temporal up-sampling
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Figure 3: Input symbols, their optical encoding, NOLM output, and the samples captured by a photodetector. For readability, 16 samples per symbol

are shown instead of the 32 used in experiments.

readout approach could be applied independently to each
spectral channel in parallel. However, exploring such par-
allel processing via output WDM separation is beyond the
scope of the current study, which focuses on the impact of
WDM encoding combined with joint detection.

2.5 Training and validation

In this work, we show how the proposed approach can
be utilized for the classical machine learning task of time
series forecasting. The general scheme of the proposed
ELM/RC includes: (i) encoding of the input signal/vector onto
the optical field, (ii) a nonlinear element that transforms
the input signal (in this work we consider two examples:
the nonlinear loop mirror [52] and semiconductor optical
amplifier), (iii) trainable readout W that includes detec-
tion with up-sampling. The trainable output layer W is
straightforward and easily implementable linear regres-
sion, enabling the device to be applied in time series fore-
casting. The scheme of the proposed device is shown in
Figure 1.

We would like to stress that the proposed general con-
cept is not limited to the particular choice of the element
that implements nonlinear signal transformation. It can be
implemented with a variety of nonlinear sub-systems.

To train the system, we must provide examples of cor-
rect answers (targets) to given feature vectors. We pass mul-
tiple sections of the sequence to forecast through the system,
collect the feature (row) vectors and assemble a so-called
feature matrix X. Then, we construct a (column) vector Y
of correct answers or targets by putting the correct next
symbol in front of the corresponding row of features.

For example, if one wants to train the system to predict
using N symbols, one can use M symbol sequences to con-
struct the following feature matrix:

$15Sgs -+ s Sy — [Xn X3 le]
525835 -5 SNy [X21 Xz XZK]
S35825 +++ > SN2 [le X3 XBK] ()
Sm>SM+15 <+ > SMAN ™ [XMl Xp2 XMK]

Here, K denotes the dimensionality of the output vector, N
denotes number of symbols fed into RC/ELM to generate
features for next symbol prediction, M denotes number of
training samples and the symbol — denotes the procedure
of encoding the symbols in a waveform, propagating this
waveform through the physical system and detecting it. The
row vectors on the right-hand side of the arrows are the fea-
ture vectors that correspond to the input symbol sequences.

When training to predict the next symbol, the corre-
sponding target vector is:

N SN+1
Y2 SN+2
Y= = )]
M SM+N+1

In front of each (row) vector of features, we place the
next symbol according to the sequence of symbols used
to generate these features. This is what we refer to as the
single-step prediction task. We also evaluated our approach
for autoregressive multi-step prediction, where the single-
step prediction is applied iteratively, updating the time
frame to incorporate newly predicted symbols.

The process of training a model involves identifying
the regression vector 6 that minimizes the mean squared



DE GRUYTER

error (MSE) between the predicted values, represented as
X6, and the actual target values, Y. The dimensionality of
0 corresponds to the number of output features, K. In the
following, we also use the normalized mean squared error
(NMSE), defined as the MSE divided by the variance of Y.
NMSE provides interpretability, as 1 — NMSE = R%, which
represents the proportion of variance explained by our
model. The goalis to find 8 such that the difference between
these predicted and actual values is as small as possible,
which can be expressed as:

min|[Y — X6, ®)

To achieve this, an effective approach is to use the
Moore—Penrose pseudoinverse, denoted by X'. This pseu-
doinverse offers a least-squares solution to the equation
Y = X60. When the matrix X is decomposed using singular
value decomposition (SVD) as X = UXV", the pseudoinverse
can be computed as:

X' =vzly* 9)

In this context, £~ is formed by taking the reciprocal
of each nonzero singular value in X and transposing the
resulting matrix. Using this pseudo-inverse, the optimal 6
is given by:

0=X'Y (10)

However, calculating the pseudo-inverse involves
inverting the singular values, which can amplify even
minor variations in the feature matrix, leading to
significant fluctuations in the regression vector. This
issue is particularly problematic when noise is present
in the data, as it can result in unstable and unreliable
predictions. Regularization techniques are employed to
mitigate this problem.

We use a widely used regularization technique, L, reg-
ularization, which penalizes large coefficients by adding a
term proportional to the square of the coefficient magni-
tudes. This can be implemented by truncating the singu-
lar values in the SVD of X, which reduces the influence
of smaller singular values associated with less important
features.

In truncated SVD, a threshold is set, and singular values
below this threshold are zeroed out, effectively lowering the
rank of X. This approach can be represented as solving the
following regularized problem:

m91n||Y—X9||§ + AregllONl} an

Here, Areg is a regularization parameter that balances
the trade-off between fitting the data well and keeping 6
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small. The adjusted singular values, denoted by X, are
defined as:

X, = diag(oy, 0, ... ,0,,0,...,0) (12)

where ris the number of singular values retained. This leads
to a regularized estimate of 6:
0,=V,X 'U'Y (13)

In this expression, V, and U, correspond to the matrices
associated with the first r singular values.

We carefully adjusted A, to minimize MSE on the
validation subset.

In what follows, we train a simple linear regression
model on this high-dimensional output vector space. To
achieve good performance of the proposed computing
system, the high-dimensional output vector space must
be non-degenerate, providing distinct and linearly
independent vectors for diverse inputs. The feature
matrix in the regression consists of output vectors, where
the number of features, or components of these vectors,
determines the dimensionality. However, this perceived
dimensionality can be misleading due to the potential
degeneracy among the columns, reducing the effective
dimensionality of the output. When some columns are
linear combinations of others, they do not contribute
new information, are useless for regression, and lead to
a low-rank feature matrix. This shows the importance
of characterizing the true dimensionality of the space
represented by the matrix, which can significantly differ
from just the number of columns. We use singular value
decomposition to analyze the effective dimensionality as
it provides insight into the matrix structure by factorizing
it into two unitary matrices and a diagonal one containing
singular values. These singular values, forming the singular
value spectrum, indicate the significance of each dimension
in capturing the matrix’s variability.

To evaluate and demonstrate the depth of the feature
space formed by the optical encoding and nonlinear trans-
formation, we introduce 1000 input symbols x; from 0 to
1 through the PELM and construct a feature matrix using
output row vectors.

We illustrate the dependence of the singular value spec-
trum of the feature matrix on yPyLyq;y and « in Figure 4,
and also present a feature matrix derived from up-sampled
signals that were not processed through the NOLM. One
can see that the feature space for simply encoded and up-
sampled input symbols is highly degenerate, as all feature
variability can be explained with a single singular value: the
second singular value is more than 10 orders of magnitude
lower than the first (see no NOLM line in Figure 4). This

reg
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Figure 4: Improvement in the spectrum of singular values of the feature matrix after applying NOLM. The graph shows a richer singular value

spectrum at NOLM output, indicating higher effective dimensionality.

corresponds to the effective rank 1 feature space. When
NOLM is used for nonlinearly dispersing the signal, the
(non-)degeneracy of the feature space depends on the non-
linear phase shift and symmetry of the encoding function g.
This comparison reveals how the NOLM significantly influ-
ences the inherent dimensionality of the output state. When
applying the WDM technique for the readout procedure,
one can retrieve a full 2D map of features in time-frequency
axes.

Table 2: All hyperparameters used in the simulation.

Category Parameter Value
Encoding Symbol interval T 400 ps
Samples per Symbol 32
Peak power P, 50W
Num WDM channels 5
WDMrequency step Av 50 GHz
Encoding mask size 8
Analog bandwidth 20 GHz
MZI/NOLM  Nonlinearity y 0.8 W~ km™!
GVD B, 26 ps?km™"
Length L 100 m
Coupling ratio k 0.3
SOA Recovery time = 200 ps
Henry factor f 5
Log gain h, 6.91
Saturation energy E, 8p)
Receiver Sampling rate 80 GSa/s
Samples per symbol 32
Learning Training symbols 5,000
Testing symbols 100-5,000
Symbols N 15
Regularization A, (optimized per task 1078 t0 102

and device SOA/NOLM)

2.6 Simulation hyperparameters

To ensure reproducibility and clarity, we summarize
below all hyperparameters used across our numerical
experiments in Table 2. These include system-specific
parameters for the encoding and nonlinear transformation
stages, as well as settings related to the learning process
and readout. The table covers both nonlinear MZI/NOLM-
and SOA-based implementations, along with details of the
receiver and training configuration.

3 Benchmarks

For evaluating the performance, we used three differ-
ent time series with different levels of complexity and
the MNIST classification benchmark. When simulating the
series, we employ typical parameters commonly used for
the evaluation of machine learning models, specifically
using the Mackey-Glass series in the form:

dx _ 0.2x(t—17)

dt 1+ x(t—17)° 0Ix(t)

(14)
And another time series is given by the solution of the
Rossler attractor:

dx/dt=-y—z

dy/dt = x+ 0.2y (15)

dz/dt = 0.2+ z(x — 5.7)

These dynamical systems are known for being chaotic
and are often used for estimating the performance of fore-
casting algorithms [59]. For 3D attractor, we used only the x
component for training and testing the prediction accuracy.
The inherent unpredictability of chaotic systems, character-
ized by their sensitivity to initial conditions, makes them
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ideal benchmarks for testing the limits of predictive models.
In such environments, even the slightest variation in initial
conditions can lead to vastly different outcomes, challeng-
ing the algorithms to capture the complex dynamics at play.

To solve Eq. (14), we used the dde23 MATLAB solver
with an adaptive step size to ensure target relative and abso-
lute tolerances of RelTol = 1e — 6 and AbsTol = 1e — 8.
The solution was then interpolated onto a uniform grid with
a step size of 1, following the approach in Jaeger and Haas
[60]. For the Rossler attractor, we used the ode45 MATLAB
solver with adaptive step to ensure the same relative and
absolute tolerances. We then interpolated the solution onto
a uniform grid with a step size of 0.25. For the Réssler
attractor, the time series was rescaled to lie within the
range [0.1,1.1] to avoid zero or negative values, which are
incompatible with optical power levels in our simulation.
In contrast, the Mackey—Glass time series was used without
normalization, as its amplitude remained within a suitable
range for our modeling.

To characterize the randomness of these systems, we
estimate the Lyapunov time, which measures the rate
at which nearby trajectories in the system’s phase space
diverge. Specifically, the Lyapunov time is inversely related
to the Lyapunov exponent of the system, indicating how
quickly initial uncertainties or errors grow over time. To
estimate the Lyapunov time for each dynamical system, we
numerically integrated them from slightly different initial
conditions and calculated the L, norm of the difference
of these trajectories over time. These trajectories for the
considered systems are shown in Figure 5. The Lyapunov
time was estimated as the inverse slope of the difference
in the logarithmic scale. In what follows, we show how
the increased chaoticity of and reduction in Lyapunov time
leads to reduced prediction ability of the proposed PELM.
Chaoticity increases from the Mackey—-Glass series to the
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Rossler attractor, with a corresponding decrease in Lya-
punov time, indicating faster unpredictability in systems
like Rdssler due to exponential growth of initial differences,
as shown in Figure 5.

To validate our Lyapunov time estimation based on tra-
jectory divergence, we also computed the Lyapunov expo-
nent for the Rassler attractor using the standard variational
method based on linearization of the system equations.
Specifically, we integrated both the original system and
its linearized form (variational equations) and periodically
orthonormalized the perturbation vectors using QR decom-
position to estimate the largest Lyapunov exponent. This
yielded a value for inverse Lyapunov exponent of approx-
imately 13.4, which is consistent with the rate inferred from
the divergence of nearby trajectories shown in Figure 5.
For the Mackey-Glass system, a similar analysis could not
be performed due to its infinite-dimensional nature as a
delay differential equation, which complicates the formu-
lation and integration of variational equations. Therefore,
for Mackey-Glass, we relied solely on the trajectory-based
method to estimate the Lyapunov time.

For the classification task, we took 10,000 samples from
the MNIST dataset and split them 50/50 for training/testing.
Since linear classifiers already achieve around 90 % accu-
racy on the original 784-pixel images, we increased the task
difficulty by downsampling the images to just 15 pixels. We
accomplished this using column-pivoting QR decomposition
to identify and retain the most informative pixels. To do
this, we reshaped the MNIST dataset into a matrix in the
form 10,000 by 784 and applied column-pivoting QR decom-
position, following the data-driven QR sensing paradigm,
which is basically a compressed sensing approach per-
formed on a tailored basis [61]. The pivoting QR factor-
ization seeks to reorder the columns such that the most
“informative” columns are moved to the forefront. The

(b)
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Figure 5: Comparison of Lyapunov times for different dynamical systems, illustrating how increased chaoticity, from the (a) Mackey-Glass series to
(b) Rossler attractor, results in reduced Lyapunov time and increased unpredictability.
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measure of “informativeness” here is rooted in the magni-
tudes of the diagonal entries of the upper triangular matrix
R resulting from the QR factorization. Columns, or, in our
case, pixels, corresponding to larger diagonal entries in R
are deemed more significant. Thus, we select the most infor-
mative columns. To ensure a proper evaluation, this decom-
position was performed exclusively on the training subset to
prevent any information from the testing subset from influ-
encing the pre-processing stage. The identified pixel posi-
tions were subsequently used to downsample images in the
testing subset. We used linear discriminant analysis (LDA)
for multi-class classification using either original selected
pixels (linear classification) or processed by the photonic
ELM. Applying this approach, we observed an accuracy of
42 % on the testing subset using linear classification. The
15 selected pixels were then input into the ELM to achieve
a high-dimensional nonlinear mapping. A linear classifier
was trained on the mapped samples from the training sub-
set within this higher-dimensional feature space. The per-
formance of the classifier was then evaluated using the
mapped samples from the testing subset. When using WDM
for encoding, we simultaneously transmit 5 different pixels
across 5 separate spectral channels, effectively sending the
inputin batches of 5 pixels at a time, with 3 such batches per
image.

4 Results and discussion

To test the ability of the approach to capture the dynamics of
the considered systems, we used regularized linear regres-
sion over the feature space of the output of the PELM. Reg-
ularization parameter was optimized for long-term autore-
gressive prediction by testing the long-term prediction accu-
racy of the model for regularization parameters from 10~
to 1072, and choosing the value that provides the best accu-
racy on the autoregressive prediction. So the value of the
regularization parameter was selected to avoid overfitting
the local prediction while making the model capable of
predicting the long-scale dynamics of the three test dynam-
ical systems. Regularized pseudo-inversion of the feature
matrix was used to learn the regression vector from the
training data: regularization is performed by replacing all
singular values that are below the current regularization
parameter with zeros. Singular values and pseudoinversion
are calculated by using singular value decomposition of
the feature matrix. Then, we segment the validation data
into sequences that the model will use to make predictions.
Each sequence includes a set of input symbols followed by
the symbols to be predicted. The number of sequences is
determined based on the size of the validation data and
the length of the sequences to be predicted. Typically, we
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used 10-15 validation sequences. For each input sequence,
we predict the sequence of symbols that follow by taking
an input sequence and, in a loop, making a prediction for
the next symbol in the sequence. After each prediction, the
input sequence is updated by removing its first symbol and
appending the predicted one. This updated sequence is then
used for the next iteration. This process is repeated for the
length of the pre-defined autoregressive prediction length.
We used different autoregressive prediction lengths for dif-
ferent dynamical systems: from 1,000 for the Mackey—Glass
system to 250 for the Rossler attractor.

The simulation parameters that we used for training
and testing the proposed system, are given below. We set
the receiver sampling rate of 80 GSa/s, with 32 samples
recorded per symbol to provide the up-sampling of the
encoded signal.

We used symbol-to-pulse train encoding with Gaussian,
skewed Gaussian, or a trainable mask. The input pulse
had a peak power of 50 W. Once more, we would like to
stress that this power corresponds to NOLM based on SMF
and can be substantially scaled down by using highly non-
linear fiber, or integrated MZI/NOLM with other material
platform. When employing the trainable mask, it was first
set digitally with ideal (infinitely steep) transitions, then
simulated for encoding by an electro-optical modulator with
a 20 GHz analog bandwidth. For WDM multi-channel spec-
tral encoding, we used a frequency step of Av =50 GHz
between channels, with 5 channels corresponding to fre-
quency shifts of 0, —Av, +Av, —2Av, and +2Av. For time
series forecasting, we encoded time-shifted copies of the
same symbol sequences in other spectral channels so that
channel 2 contains a 1-symbol delayed copy of the channel
1 sequence, channel 3 contains a 2-symbol delayed copy of
the channel 1 sequence, etc. A similar approach was used for
memory enhancement in RC in microresonators [37]. How-
ever, unlike the approach in [37], our scheme additionally
employs trainable encoding. Theoretical studies [62] have
also explored memory enhancement via input-stage mod-
ifications, particularly in SOAs and microring resonators.
Our work extends these insights by demonstrating an imple-
mentation in a WDM-based framework, offering flexible
spectral encoding, trainable masking for dynamic input
modulation, and a scalable approach using commercially
available telecom components. We did not demultiplex the
WDM channels at the output and instead simulated the
readout as being measured directly from the nonlinear
transform’s output using a single photodiode. Using WDM
for the classification task, we simply encoded different pix-
els into different WDM channels in parallel, thus reduc-
ing the number of sequential symbols to be fed into the
ELM.



DE GRUYTER E. Manuylovich et al.: Optical neuromorphic computing via temporal up-sampling = 2773
1 I .
(@) O input symbols
A /\ ~ * predicted values /\-
0.5 ot \\ ,/1'/~ \.:. % s e actual values | Y
AV \v v X
0 ! ! 1 1 1 e
0 50 100 150 200 250 300
T \ T T, T T
1 H(b) X . -
0.5_ 0‘ " ..‘..... .-... ¢ ‘.. n
O 1 1 | 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100

Symbol number

Figure 6: Performance, for comparison, of the linear model on time-series prediction tasks. Poor prediction accuracy is achieved for all the
Mackey-Glass (a) and Rossler (b) time series, which indicates the inability of the linear model to capture the complex dynamics of these systems.

The NOLM was characterized using parameters of
a single mode fiber: a nonlinear coefficient y = 0.8 X
102 W=t m™1, group velocity dispersion coefficient g, =
26 x 1073 ps? m~%, fiber length Lyo;, = 100 m, and the cou-
pling ratio k¥ = 0.3. Evidently, employing highly nonlinear
fibers or other material platforms, all resulting optical pulse
parameters can be easily scaled.

For the time series forecasting task, the model was
trained using 4000 symbols and tested on 100-1,000 sym-
bols depending on the chaoticity of the time series. We
used batches of N = 15 symbols to predict the next one. To
make a multi-step prediction, we utilized the autoregres-
sive approach, when the newly predicted symbols are used
to predict the next ones. A regularization amplitude was
optimized for performance and to prevent overfitting. For
the classification task, the model was trained using 5000
images from the training set, which were sub-sampled using
column-pivoting QR decomposition. The pixel locations cho-
sen for the training subset were then applied to the testing
subset during the testing phase, which also included 5000
sample images.

We began by applying simple linear regression and
linear classification to the upsampled raw data to estab-
lish a reference performance baseline. This initial approach
served as a benchmark for evaluating the improvements
offered by the nonlinear systems used. As expected, the
linear regression model exhibited poor performance across
both chaotic time-series prediction tasks and the sub-
sampled MNIST classification task. Specifically, the tasks

included autoregressive predictions on the Mackey—Glass
(MG) and Rossler (R) time series, with results illustrated in
Figure 6.

Although the single-step prediction NMSE appeared rel-
atively low, at NMSE,;; ~ 5x 1075, NMSE; ~ 2 X 107*, the
model failed at long-term prediction. This failure was due
to the linear system’s inability to capture and replicate the
underlying dynamics of these complex systems.

For the classification task on the sub-sampled MNIST
dataset, the linear model’s performance was similarly lim-
ited. The model struggled to separate the digit classes, which

0 N 30 | 24 31 | 18 | 7 4 1 29
1| 37 ‘8 35 26 | 37 | 43 | 41 6 | 11
2| 88 | 47 | 211 25 14 | 20 | 69 | 11 | 18
w3 17 | 24 | 46 | 98 | 68 | 54 | 21 | 74 | 75 | 40
§ 4117 | 7 | 36 | 10 [ 2& 30 | 35 | 22 | 30 | 41
85/ 9 |30 |46 | 17 | 36 220 | 41 | 14 | 28 | 53
= 630 | 62 | 33 |27 | 48 | 76 | 138 | 17 | 41 | 29
7031 |49 | 89 | 5 | 39| 23 | 13 |28 2 4
8152 |20 | 22 | 44 | 38 | 26 | 71 | 20 | 154 | 52
9| 18 | 43 12 | 15 | 49 | 37 | 43 | 44 | 15 | 218
0 1 2 3 4 5 6 7 8 9

Predicted Class

Figure 7: Confusion matrix for the linear model on the sub-sampled
MNIST classification task. The high number of off-diagonal entries
indicates frequent misclassification.
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Figure 8: Example of autoregressive prediction of Mackey-Glass series for

1,000 symbols using PELM.
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Figure 9: Trained encoding mask (a) and corresponding singular spectrum

change (b) in the feature matrix of the PELM model. The model

performance was enhanced by using an 8-slot trainable encoding mask, allowing each symbol to be encoded with 8 independently optimized

amplitudes.

led to high misclassification rates. This shortfall is evident
when examining the confusion matrix in Figure 7, where
off-diagonal elements are prominent, showing a high mis-
classification rate.

The overall accuracy on the test subset for the sub-
sampled MNIST is only 42 %.

Now we determined the baseline accuracy of the linear
models on the chosen tasks, and we can compare the accu-
racy achieved using PELM with the parameters described
above. Figure 8 shows an example of the increased predic-
tive ability of the model when high-dimensional nonlinear
mapping is enabled via passing the encoded signal through
the PELM.

NMSE averaged over multiple predicted sequences,
similar to shown in Figure 8 but taken from different parts
of the Mackey-Glass sequence, is equal to NMSE = 0.097 for
the autoregressive prediction depth of 1,000 symbols, which
is a significant improvement compared to the purely linear
model, shown in Figure 6a.

The performance of the PELM can be improved further
by employing a trainable encoding mask instead of using
a simple Gaussian shape for the optical encoding of the

input symbols. We employed an 8-slot trainable encoding
mask, such that each symbol is encoded with 8 independent
amplitudes. The waveform of each corresponding pulse is
then described as a convolution of this arbitrary-shaped
vector of length 8 with a finite-bandwidth response function
of the modulator. We used the raised cosine function as
the response function, and the analog bandwidth of the
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Figure 10: NMSE as a function of autoregressive prediction depth

for different encoding techniques: (a) single-channel Gaussian pulse
encoding, (b) 5-channel WDM with Gaussian pulse encoding, and

(c) single-channel trained encoding mask. Errors for individual predicted
sequences are shown in gray, and the average error across all predicted
sequences is highlighted in red.
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Figure 11: Example of autoregressive forecasting of the Rdssler time series using a single-channel Gaussian-shaped encoding.

modulator was set to 20 GHz. The encoding mask was
trained by a combination of global and local optimization
techniques. We used GWO [51] for global optimization and
Nelder—-Mead simplex method for local optimization. The
trained mask and the corresponding change in the singular
spectrum of the feature matrix are shown in Figure 9. The
corresponding improvement in performance for autore-
gressive prediction depth of 1,000 symbols is reduced to
NMSE = 0.036, a 2.7 times improvement compared to simple
Gaussian encoding mask.

When using another telecom technology, WDM, for
encoding (i.e., combining multiple signals within a single
optical channel before passing them through the PELM),
performance can also be improved compared to the simpler
single-channel encoding approach. When using 5 channels
with 50 GHz separation and employing single-symbol shift,
as described above, we managed to achieve NMSE = 0.054
for simple Gaussian encoding and NMSE = 0.024 for trained
encoding mask. The encoding mask used was the same
for all spectral channels. The performance can be further
optimized by using individual trainable encoding masks for
each WDM channel, but this requires further research and
training via higher-order parameter optimization, which is
beyond the scope of this work.

Figure 10 shows how NMSE depends on autoregres-
sive prediction depths for different encoding techniques:
single channel with Gaussian pulse encoding (a), 5-channel
WDM with Gaussian pulse encoding (b), and single chan-
nel with trained encoding mask (c). The errors for indi-
vidual predicted sequences are depicted in gray, while the
average error across all predicted sequences is highlighted
inred.

Compared to other photonic RC approaches for
Mackey-Glass prediction, our method outperforms [63],
achieving an NMSE of 0.01 for predicting 300 symbols (six
quasi-periods), whereas [63] reports an NMSE of 0.1. In

comparison to the delay-based RC in [26], our approach
achieves similar accuracy for single-step prediction;
however, a direct comparison of multi-step prediction
performance is not possible due to the lack of reported
error metrics in [26].

When testing on the Rdssler attractor data, we sim-
ilarly can get boost in prediction accuracy when utiliz-
ing multiple WDM channels and trainable encoding mask.
Figure 11 shows an example of autoregressive forecasting of
the Rossler time series using single channel Gaussian-shape
encoding.

Using 3 WDM channels for encoding or a trainable
encoding mask reduces NMSE across autoregressive predic-
tion depths, as shown in Figure 12.

The overall accuracy for Rdssler time series prediction
using NOLM again can be improved from NMSE, = 1.16 X
107! to NMSE; = 5.7 X 10~ when using WMD encoding and
to NMSE; = 9.79 X 10~ when using trained encoding mask
even with a single encoding channel.

We also tested the proposed approach on SOA as a non-
linear mapping device. All system parameters are kept the
same except the peak power P, = 0.7 W. SOA parameters

0f 0 0
) 7 () Olte) |
B 2 2 2
=
=2
5 4| -4 -4
E |
k=)
-6 6 -6 J
50 150 250 50 150 250 50 150 250

autoregressive prediction depth, steps

Figure 12: NMSE versus autoregressive prediction depth for the Rossler
time series (a); the results demonstrate reduced prediction error when
using 3 WDM channels (b) or a trainable encoding mask (c), compared to
single-channel encoding.
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Figure 13: NMSE versus autoregressive prediction depth when using
SOA as a nonlinear mapping device, for the Réssler time series (a);
the results demonstrate reduced prediction error when using 3 WDM
channels (b) or a trainable encoding mask (c), compared to
single-channel encoding.

used for simulation (see eq. (5)) are the following: f =5,
small signal gain 30 dB, 7. = 200 ps, E,;; = 8 pJ. All time
series and computing parameters are identical to those in
Figure 12, except that the nonlinear transform is now per-
formed using an SOA. Figure 13 shows how applying WDM
encoding (b) and trainable encoding mask (c) outperform
the standard Gaussian encoding mask (a) for Rdssler attrac-
tor prediction task.

Finally, In the classification task, the proposed
approach (see Figure 14 for the improved confusion matrix)
demonstrates a substantial performance improvement
over the baseline linear model on the sub-sampled MNIST
classification task. With WDM encoding, we achieve
comparable performance, with the added advantage of
encoding multiple symbols simultaneously across different
spectral channels.

] 432 3 6 | 7 | 1 |14

1 12 /19| 1 | 3

2 5 | 46 | 6 | 17
o3 24 | 11 | 35 | 24
(‘—J“4 15| 6 | 17 | 14
o5 27 | 8
Fel16| 14| 8 | 13| 13

7/ 11 | 29 | 50 | 10

8/ 8 | 4| 6 |40 16

9/ 9 | 4| 9 |21 15| 16 | 19

0 1 2 3 4 5 6 7 8 9
Predicted Class

Figure 14: Confusion matrix for the NOLM-based Extreme Learning
Machine (ELM) model on the sub-sampled MNIST classification task.
The model shows significantly improved performance compared to the
linear model, with a reduced number of off-diagonal misclassifications.

DE GRUYTER

Testing on the sub-sampled MNIST classification task
shows an overall test accuracy of 77 % for the NOLM-based
ELM model, a significant increase from the linear model’s
42 % accuracy.

5 Conclusions

We proposed and demonstrated through numerical mod-
eling photonic ELM and RC designs based on the well-
developed telecommunication technology and component
platform. The important advantage of this approach is the
combination of low-cost, high-speed characteristics of lin-
ear and nonlinear elements with the frequency parallelism
techniques well-established in wave-division-multiplexing
optical communication systems. High-capacity and high-
speed optical communication are utilized to create a large
number of degrees of freedom in the time-frequency
domain for controllable encoding and relatively low-power
parallel nonlinear mapping of the input signal into high-
dimensionality output for linear processing. The use of mul-
tiple frequency channels for encoding input information is
important for the efficiency of nonlinear mapping. Indeed,
in linear time-invariant optical systems, the frequency com-
ponents in the output and input signals are the same. The
nonlinear optical transformation leads to frequency com-
ponent mixing and generation of new harmonics provid-
ing conditions for efficient mapping to higher-dimensional
space.

It is important to point out that while we focused here
on the forecasting of time series and a classical classification
task, a similar projection to the high-dimensional case is
also highly relevant and can be employed for various other
tasks following the methodology of SVM [7]. The difference,
however, is that the proposed approach does not require the
use of kernel-based methods. Key to improving the success
of the non-linear projection used is adjusting the mapping
parameters in a way that will provide an easier separation
of features. This is an aspect of the research that is still
ongoing.
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