
Nanophotonics 2025; 14(11): 1837–1855

Perspective

Nicholas Rivera*

New opportunities for creating quantum states
of light and matter with intense laser fields

https://doi.org/10.1515/nanoph-2024-0605

Received November 4, 2024; accepted February 4, 2025;

published online March 31, 2025

Abstract: Nonlinear dynamics provide an indispensable

resource for creating quantum states of light, as well

as other bosonic systems. Seminal work using second-

and third-order nonlinear optical crystals, cavity quan-

tum electrodynamics, and superconducting circuits, have

enabled generating squeezed states, as well as various non-

Gaussian quantum states (e.g., single photons, cat states)

at both infrared and microwave frequencies. Nevertheless,

it remains challenging to generate quantum states of light

in broad portions of the electromagnetic spectrum: for

example, at terahertz frequencies and at ultraviolet and

X-ray frequencies. In this Perspective, I discuss a variety

of emerging material platforms, as well as emerging the-

oretical and experimental tools, which enable overcoming

these challenges. The main argument of this Perspective is

that advances in driving nonlinear dynamics of material

excitations, will enable generating quantum states of these

material excitations as well as quantum states of light at

new frequency ranges. I will further argue that in order

to realize much of the promise of this nascent field, there

is a need for innovation in the laser systems used to drive

these nonlinear dynamics: specifically, innovations in real-

izing high-power laser sources that have very low noise,

having quantum statistics similar to coherent states of light

which describe lower intensity laser systems. Iwill highlight

some experimental and theoretical work, in understanding

quantum noise dynamics in complex laser systems, that can

address these challenges.
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1 Introduction

In the physical world, nonlinear systems offer an enor-

mous range of rich and complex effects, many with wide-

ranging implications in fundamental science and technol-

ogy. The vast majority of the work on nonlinear systems

is based on their description according to the laws of clas-

sical physics. At the same time, it has become increas-

ingly important to understand the fundamental description

of nonlinear systems according to the laws of quantum

mechanics.

In part, this is because nonlinear dynamics leads to use-

ful transformations of quantumfluctuations, the fundamen-

tal randomness of system states imposed by Heisenberg’s

uncertainty principle. For example, nonlinearity generi-

cally enables generating states with non-classical fluctua-

tion properties, such as squeezed states and entangled states

[1], which may enable overcoming noise-related limits on

a wide variety of important systems (e.g., interferometers

[2], [3] imaging systems [4], [5], communication systems

[6], [7], light sources such as lasers and frequency combs

[8]–[11], atomic clocks [12]–[14], magnetometers [15], and

other emerging sensors [16], [17]).

Historically, the interplay between classical nonlinear-

ity and quantum noise was first experimentally explored

in the field of nonlinear optics [18]–[20], in nonlinear crys-

tals and in optical fibers. While this interplay is still very

actively explored in optics, it is now consequential for a

muchwider variety of physical platforms including optome-

chanics [21], spins [22], phonons [23]–[31], excitons [32]–[34],

and Josephson junctions [35]. In each of these platforms, it is

not quantum states of light that are created by nonlinearity,

but quantum states ofmatter.

Realizing nonlinearities in new regimes will provide us

with many new opportunities to generate quantum states

of both light and matter with unique properties. That is the

main argument of this Perspective. I will start by review-

ing a universal theoretical connection between classical

nonlinear dynamics and quantum effects such as squeez-

ing and entanglement. This theory shows that the poten-

tial of a system to generate squeezing and entanglement is
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completely dictated by the classical nonlinear equations of

motion describing the system.

Then, I will present a few new emerging platforms for

realizing nonlinearities: optical phonons in polar insulators

and semiconductors, spin waves in ferro- and antiferro-

magnets, and gases/solids irradiated by non-perturbative

infrared drivingfields. Iwill review the progress in realizing

classical nonlinearities in these systems. In cases where

efforts have been made to generate quantum states using

these nonlinearities, I will discuss that prior art, and outline

a few important remaining directions of inquiry. Other-

wise, I will provide a plausibility argument for why quan-

tum states should be realizable in a given driven material

platform. In all cases, nonlinearities in these systems are

accessed by driving these material platforms with strong

laser fields.

I will argue that to realize many of the goals described

above, there will be new required developments in

laser physics itself: specifically in producing light sources

that are simultaneously very intense, while having noise

which is as low as possible – and sometimes even

quantum levels of noise. I will outline some recent

work in understanding quantum noise dynamics in com-

plex laser systems, and highlight some of the major

open theoretical and experimental questions that remain

there.

It is important to mention that in a short Perspective

such as this one, important topics will surely be left out.

Examples of important concepts that I will not discuss here

include nonlinearities in excitonic systems, superconduct-

ing circuits, optomechanics, integrated quantum photon-

ics, and many others. Additionally, while I will focus a lot

on squeezed states, the discussion applies equally well to

the creation of entangled pairs of quanta and other mul-

timode entangled states. I will not go in depth into the

much richer (albeit harder to create and maintain) family

of non-Gaussian quantum states important for quantum

information science, such as single and multi-photon Fock

states, Schrodinger cat and GKP states, and so on. Although

Iwill not discuss these non-Gaussian states in depth, the cre-

ation of squeezed and entangled states by nonlinearities is a

necessary and important precursor to these more complex

nonclassical states. In particular, in many cases, the same

interactions that lead to Gaussian squeezed and entangled

states, when made stronger, produce useful non-Gaussian

states (see e.g., [1]).

2 A general connection between

nonlinear dynamics and quantum

state generation

In this section, we elucidate a general connection between

classical nonlinear dynamics and quantum squeezing

effects. We start by briefly reviewing some of the simplest

and arguably best-known models of squeezing effects. We

then present a general framework for analyzing squeezing

in more complex driven nonlinear systems. In particular

we consider multimode nonlinear systems driven by light,

where the driving light is not necessarily with light in coher-

ent states, which we shall argue is crucial (in the Section 5).

We start by defining two concepts which are critical

to this Perspective: nonlinearity, and modes. We start by

defining nonlinearity for a generic wave. Suppose that we

have a generic wave system described by a single classical

wave field𝜓 (x), with x denoting spatial position (vector and

tensor indices are suppressed for simplicity). This wave-

field could represent light waves, lattice distortions in a

solid (acoustic or optical), spin waves, water waves, etc.

The discussion below is essentially unaltered by consider-

ing quantum field operators instead of classical fields. In

a conservative system (i.e., without damping), the dynam-

ics of the system are described by a Hamiltonian. A lin-

ear system corresponds to a quadratic Hamiltonian, i.e.,

one in which 𝜓 appears at only linear or quadratic order

(overall constants are unimportant). An example of a linear

Hamiltonian would be ∫ dx
1

2
𝛼(∇𝜓 )2 + 1

2
𝛽𝜓 2 − F(x)𝜓 , with

𝛼, 𝛽 being constants and F(x) being a force. To connect this

definition of linearity to the concept of linear response, we

need only construct an equation of motion for 𝜓 , which

in this case would be: 𝜕2
t
𝜓 − 𝛼∇2𝜓 + 𝛽𝜓 = F(x) (obtained

by constructing the associated Lagrangian and using the

Euler–Lagrange equations). In this case, the dependence of

𝜓 on the force F is linear in F, since the homogeneous part of

this differential equation is linear in 𝜓 . Terms of cubic and

higher-order in 𝜓 would correspond to nonlinear terms in

the equation. An example of a nonlinearHamiltonianwould

be

HNL = ∫ dx
1

2
𝛼(∇𝜓 )2 + 1

2
𝛽𝜓 2 − F(x)𝜓 + VNL(𝜓 ), (1)

with VNL(𝜓 ) = 1

3
c3𝜓

3 + 1

4
c4𝜓

4 +… being the nonlinear

potential, where the ellipses denote higher-order terms.
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In the discussion so far, we have considered a single

field. Formultiple fields,
(
𝜓1, 𝜓2,…

)
, the linearity condition

is that the Hamiltonian is again a degree-two polynomial

at most (so no cubic terms like 𝜓 2
1
𝜓2 or higher-order). A

single nonlinear term (cubic or above) renders the entire

system behavior nonlinear, even if one of the fields appears

in at-most-quadratic-order in the Hamiltonian. In the litera-

ture, nonlinearities are occasionally divided into perturba-

tive and non-perturbative nonlinearities. In the perturba-

tive case, the nonlinear potential VNL(𝜓 ) can be truncated

at some order in 𝜓 (e.g., third or fourth). We will visit

an example of perturbative nonlinearities for phonons in

Section 3 on phonons andmagnons. In the non-perturbative

case, relevant to high-harmonic generation to be discussed

in Section 4, the nonlinear potential is a more general func-

tion of𝜓 where the physics cannot be described in terms of

a low-order truncation of the nonlinear potential.

Another key concept to describe is that of amode.While

this concept has some subtlety, especially in nonlinear as

well as open (dissipative) systems, we will keep the discus-

sion simple by confining ourselves to two important and

highly relevant limits. In particular, we consider the case in

which damping is not so large such that we can refer to a

complete set of orthonormal modes. Further, we consider

the case in which nonlinearity is not so large that themodes

of the underlying linear system are a useful way to describe

the systemdynamics. Therefore, we canwrite ourwavefield

as a sum over orthonormal modes. For a real wave field

𝜓 , we can write 𝜓 (x) =
∑

m𝛼mum(x)+ 𝛼∗mu∗m(x), where the
um(x) are eigenfunctions of the linear wave equation, and

the 𝛼m are expansion coefficients similar to Fourier coeffi-

cients. In the case of quantized bosonic fields, the 𝛼m, 𝛼
∗
m
are

“promoted” to annihilation and creation operators am, a
†
m,

satisfying canonical commutation relations
[
am, a

†
n

]
= 𝛿mn.

Going back to the discussion on nonlinearity in the previous

paragraphs, nonlinearity in the language of creation and

annihilation operator corresponds to the presence of terms

which are higher-than-quadratic order in the a and a† oper-

ators (for example, the term a†a2 is a nonlinear term in the

Hamiltonian while a2 is not). The physics of squeezing and

quantum noise more broadly is enriched by the presence

of multiple modes. For example, quantum states such as

single-mode squeezed states are states with reduced noise

of some observable in a singlemode, while entangled states

are those with non-classical correlations between multiple

modes. Squeezing versus entanglement will be elucidated

later in this section.

We now review a few of the best-known models of

squeezing in optics. In nonlinear optics, there are a variety

of platforms for generating squeezed light. Squeezed light

can roughly be categorized into squeezed vacuum (with

zero average electric field), and displaced-squeezed vacuum

(with non-zero average field). Examples of platforms for

generating squeezed light include second-order nonlinear

media, atomic gases, and third-order nonlinearmedia (most

famously optical fibers, but recently also integrated waveg-

uides and cavities). Despite the variety of platforms, the

most successful squeezing platform in terms of applications

is second-order nonlinear media – in part due to the lower

optical powers at which nonlinear squeezing effects can

become efficient. Let us consider a simple case in which

there is a strong coherent pump laser at frequency 2𝜔 and a

mode at frequency 𝜔 which is initially dark (no photons in

it). In this case, where the pump can be treated classically,

the effective Hamiltonian for the lower-frequency mode,

reduces from cubic to quadratic, and is given in the inter-

action picture as:

V∕ℏ = ig
(
a2 − a†2

)
, (2)

with g being a constant and a being a harmonic oscillator

annihilation operator [36]. The quantum state of this mode,

|𝜓 (t)⟩, with t being time, is then given from Eq. (2) via

|𝜓 (t)⟩= er(a
2e−2i𝜔t−a†2e2i𝜔t)|0⟩, (3)

with r = 2gt, with t the interaction time. Equivalently to the

state transformation of Eq. (3), we can express the squeezing

in terms of transformations of the creation and annihilation

operators. The annihilation operator at the output, denoted

aout = 𝜇(t)ain + 𝜈(t)a†in, (4)

with 𝜇(t) = e−i𝜔t cosh r, 𝜈(t) = −e−i𝜔t sinh r. From this

transformation, we may compute the variance of the

“position” quadrature X = aout + a†
out
, (ΔX)2 = ⟨X2⟩− ⟨X⟩2

and well as the variance of the “momentum” quadrature

P = i
(
a†
out

− aout

)
, defined similarly. We consider the posi-

tion quadrature for concreteness. From these transforma-

tions, we can see the variance of the position oscillates as:

(ΔX)2 = 1

2

(
e2r(1− cos 2𝜔t)+ e−2r(1+ cos 2𝜔t)

)
, (5)

while the mean remains zero in time if the initial state is

the vacuum state. Once the parametric interaction ends, the

variance of the freely evolving mode oscillates at twice the

frequency of the parametrically generated mode frequency,

and oscillates between amaximum of e2r and aminimum of

e−2r [36] (ignoring the time-dependence of r itself, which is

valid since typically 𝜔 ≫ 2g). The state repesented equiva-

lently by Eqs. (3) and (4), known as squeezed vacuum, can

be produced by this interaction in optical parametric ampli-

fiers and oscillators. Although the mean amplitude of the
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field is zero, the number of photons is not, going as ⟨n(t)⟩ =
sinh2 r.

It is important to point out that the model of squeez-

ing presented above is an idealized one. In practice, when

realizing squeezed states in experiments, there are several

requirements that need to be met. One such requirement

is phase-matching: in propagating-wave parametric ampli-

fiers, one not only needs a field at half the frequency of

the drive, but the wavevectors of the generated photons

also need to be consistent with momentum conservation.

When energy-momentum conservation (phase-matching) is

satisfied, the parametrically generated field can resonantly

build up. In practice, a powerful technique for aiding phase-

matching is poling, which involves creating a spatial mod-

ulation of the optical properties (e.g., periodic along the

propagationdirection of light); this additional spatial depen-

dence can strongly enhance the efficiency of the nonlin-

ear interaction [37], establishing a so-called quasi-phase

matching. Beyond having resonance, one also needs a suf-

ficient length of interaction; in bulk second-order nonlinear

media, this is not too stringent a requirement, but it can be

enhanced for example by use of a cavity (creating a para-

metric oscillator instead). Beyond generating the squeezing,

it is also important to preserve and detect the squeezing.

Importantly, dissipation (e.g., attenuation, scattering, ineffi-

cient detection, etc.) “spoils” squeezing, because the dissipa-

tion mixes in uncorrelated vacuum fluctuations. In particu-

lar, suppose one has a squeezed state of light with n photons,

and suppose it is attenuated such that after attenuation, the

state has 𝓁n photons. Then the quadrature variance (ΔX)2
becomes

(ΔX)2 → 𝓁(ΔX)2 + (1− 𝓁). (6)

As 𝓁 → 0, (ΔX)2 → 1 corresponding to the vacuum level

[38], and obscuring any squeezing which may have been

present. Thus, in experiments where one wishes to detect

squeezing, it is important to avoid large degrees of loss.

This point is of major importance in the sections that fol-

low, on generating squeezed states in condensed matter

systems. The last important experimental point I mention

here is that typically, squeezing is detected by interfering

the squeezed light with a coherent state of much higher

intensity, called the local oscillator [38]. In particular, what

is common is a type of balanced homodyne detection, in

which the local oscillator and squeezed light are combined

on a 50/50 beamsplitter, and then sent to two photodiodes,

whose photocurrents are then subtracted. The signal is then

proportional to the product of the local oscillator field and

the squeezed light field (the latter of which has zero mean

and fluctuates). The presence of the strong coherent state

amplifies the quantum fluctuations of the squeezed state

to a point at which it is readily discernable in the Fourier

transform of the electric current produced by a photodiode

(yielding a noise power spectral density). In order for this

procedure towork, the local oscillator has to be able to inter-

fere effectively with the squeezed state, which happens for

example if the two are in the same mode. This is especially

relevant for pulsed squeezed states and other multimode

squeezed states [39]. We mention that while we have dis-

cussed much of these ideas in the photonics context, similar

ideas apply in other bosonic systems where squeezing has

been generated such as optomechanics and excitonics (see

Section 1 for relevant references).

We should also discuss the case of squeezing via third-

order nonlinearities and the Kerr effect, which while long-

studied, has been less explored than the second-order non-

linear case. In part, this is because accessing nonlinear-

ities via the Kerr effect has traditionally required much

higher optical powers, being efficient only for pulsed light

or cavities. Further the often-high powers needed to achieve

Kerr-squeezing can cause other deleterious processes to

be efficient (e.g., multiphoton absorption, harmonic gen-

eration, coupling to material degrees of freedom a la the

Raman effect, etc.). Nevertheless, the major advantage of

Kerr-squeezing approaches is that they are realizable in any

material (all materials have third-order nonlinearity, unlike

the second-order case, which requires centro-symmetry

breaking). Further, phasematching is un-necessary inmany

cases phase matching is easy to satisfy in many cases due to

similar frequencies of the interacting modes. And, in high-

power laser systems, Kerr effects can be efficiently accessed.

As in the second-order nonlinear case, we consider

the simplest model possible: a single-mode undergoing self-

phase modulation (the Kerr effect). The relevant interaction

Hamiltonian is [36]

H∕ℏ = 𝜔a†a+ K

2
a†2a2. (7)

Although the Hamiltonian of Eq. (7) can be exactly

exponentiated, it will be instructive to make an approxima-

tion. Since any nonlinear effect needs a strong driving field

to become efficient, we can say that

a(t) = 𝛼(t)+ 𝛿a(t), (8)

where 𝛼(t) = ⟨𝜓 |a(t)|𝜓⟩ is the mean c-number amplitude

(with |𝜓⟩ the initial system state), and 𝛿a(t) is a fluctuation

operator. The statistical properties of a are encoded in 𝛿a.

In essentially all cases where nonlinearities are triggered

by many photons, the fluctuation operators can be taken as

small compared to themean, leading to Eq. (8) being a useful

separation. In this approximation, the operator equations of

motion (Heisenberg equations) reduce to linear equations
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for the fluctuation operators, which will imply Gaussian

statistics for the output light. The equations of motion for

the fluctuation operators are then

(
d∕dt

)
𝛿a = −i𝜔𝛿a− iK

(
2|𝛼(t)|2𝛿a+ 𝛼(t)2𝛿a†), (9)

where 𝛼(t) = e−i(𝜔+K|𝛼(0)|2)t𝛼(0), and the equation for 𝛿a†

follows by Hermitian conjugation. While we won’t give the

exact analytical solution here (see [1]), the important thing is

that we can write the solution as a Bogoliubov transforma-

tion of the form aout = 𝜇K (t)ain + 𝜈K (t)a†in, similar to Eq. (4).
This transformation automatically entails squeezing, and

also enforces that the Wigner distribution of the output

light, which is a phase-space distribution, is Gaussian. This is

the sense inwhich the linearization approximation enforces

Gaussian statistics.

Before moving on to a more general treatment of

squeezing, we point out that the discussion of squeezing

above has primarily been focused on single-mode squeez-

ing, defined by a Bogoliubov transformation of the form:

a′ = 𝛼 + 𝜇a+ 𝜈a† (where 𝛼 is a c-number corresponding

to a displacement). More generally, nonlinearities can cause

quantum correlations between two or more modes, leading

to a multimode squeezed state. There, the relevant Bogoli-

ubov transformation is of the form:

ai = 𝛼i +
∑
j

𝜇i ja j + 𝜈i ja†j , (10)

where the index i labels different modes (which for light

could be frequency bins of a pulse, cavity modes of a multi-

mode resonator, spatial modes in a light beam, polarization

modes, etc.). In the case of two-mode squeezing, nonclas-

sicality manifests through a reduced variance relative to

multimode coherent states, in observables such as sums and

differences of quadratures of the two modes of interest. In

the multimode case, these quantum correlations between

different modes can be seen also as multimode entangle-

ment.

From the examples above, we see that squeezing gener-

ically occurs when creation and annihilation operators are

coupled together. In what follows, I’ll show that this cou-

pling occurs in essentially any classical nonlinear system

(when quantized). To do that, I will review a powerful and

general connection between classical nonlinear dynamics

and squeezing effects. The connection was first introduced

by us in earlier work, see e.g., Refs. [40], [41], and a self-

contained derivation of the theory is given in the Supple-

mentary Information (SI) of this work.

Consider a general nonlinear physical system, which

can have both electromagnetic field and matter degrees of

freedom. Electromagnetic degrees of freedom can refer to

any type of solution to Maxwell’s equation: plane waves

modes, cavity modes, temporal modes, etc. Matter degrees

of freedom are also broadly defined: these can include a

collection of inverted two-level systems (determining a gain

medium), phonons in a fiber or waveguide, or particles

described by position and momenta.

Defining the collection of independent degrees of free-

dom (and their conjugates) as 𝜶,𝜶∗
,we define the classical

theory of the system as an input–output relation, relating

the degrees of freedom at the final time, 𝜶out,𝜶
∗
out
, to those

at the initial time 𝜶in,𝜶
∗
in
. In particular, we write 𝜶out =

F
[
𝜶in,𝜶

∗

in

]
, where F is some arbitrary function of the light

and matter variables. We will also refer to the components

of the vector 𝜶out as 𝛼i.

In what follows, we consider the quantum noise

dynamics of this system.We consider themost common case

in which the quantum fluctuations are small compared to

the mean values of the quantities (as we did in the case of

the Kerr effect, described previously), permitting an expan-

sion of the quantum dynamics in powers of the fluctuations

𝛿ai, 𝛿a
†
i
, such that ai ≡ 𝛼i + 𝛿ai, where𝛼i = ⟨ai⟩. This is true

in nearly all cases where nonlinearities are triggered by

a number of photons (or other excitations) which is much

larger than one. In this limit, we claim the following rule for

determining the final quantum state of the system: associate

the classical degrees of freedom 𝛼i, 𝛼
∗
i
with bosonic annihi-

lation and creation operators ai, a
†
i
. This can also be done

for most matter degrees of freedom, in the limit where the

number of matter particles is large in some characteristic

spatial scale of variation of the system – in that case, the

matter can be described in terms of bosonic fields.1 Then,

the output operators ai,out, a
†
i,out

can be written in terms of

the input operators ai,in, a
†
i,in

in the form of a multimode

Bogoliubov transformation, like Eq. (10). In particular (see

discussion around Eqs. S7–9 of the SI for description):

ai,out = 𝛼i,out +
∑
j

𝜇i j𝛿a j,in + 𝜈i j𝛿a†j,in, with

𝜇i j =
(
𝜕𝛼i,out
𝜕𝛼 j,in

)
𝜶in,𝜶

∗
in

, 𝜈i j =
(
𝜕𝛼i,out
𝜕𝛼∗

j,in

)
𝜶in,𝜶

∗
in

. (11)

The term 𝛼i,out is found by solving the classical non-

linear problem. The Bogoliubov coefficients 𝜇ij and 𝜈ij are

the Jacobianmatrix (or gradients) of the classical dynamics:

they are the sensitivities of the classical final state: 𝜶out =
F
[
𝜶in,𝜶

∗

in

]
, to changes in the classical initial conditions. We

should mention that although it looks like this formalism

1 This is the essence of what is today called macroscopic quantum

electrodynamics. See reviews such as Refs. [96], [97] for more details.
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only works for systems described by bosonic operators, that

is not the case: for systems described by a position and

velocity (like a particle in a potential), the quantities 𝛼, 𝛼∗

get replaced by x, p (the position andmomentum), andnoise

is found by differentiating various observables with respect

to the initial positions andmomenta. Because of the connec-

tion of quantum noise and sensitivity to initial conditions,

we refer to this framework as quantum sensitivity analysis.

As a quick example, let us evaluate the Bogoliubov

transformation in the case of the Kerr effect. The clas-

sical equation of motion describing self-phase modula-

tion of a single-cavity mode was given above as 𝛼out =
e−i(𝜔t+𝜃𝛼

∗
in
𝛼in)𝛼in. Here we have made the replacements:

𝛼(0), 𝛼(t)→ 𝛼in, 𝛼out, and Kt→ 𝜃. From the rule above, we

immediately find: 𝜇 = e
−i

(
𝜔t+𝜃|𝛼in|2) × (

1− i𝜃||𝛼in||2
)
and

𝜈 = e
−i

(
𝜔t+𝜃|𝛼in|2) × (

−i𝜃𝛼2
in

)
. To see this, we need to com-

pute 𝜇 = 𝜕𝛼out
𝜕𝛼in

and 𝜈 = 𝜕𝛼out
𝜕𝛼∗

in

(since there is only a single

mode, the mode labels i, j are omitted). Note further that

𝛼in and 𝛼
∗
in
are independent variables. The resulting expres-

sions for 𝜇, 𝜈 are in perfect agreement with the standard

approach based on the linearization of the operator Heisen-

berg equations [1]. Notice of course that in the absence

of nonlinearity, 𝜇 = 1, 𝜈 = 0 as expected. The transforma-

tion also respects |𝜇|2 − |𝜈|2 = 1 as expected (the latter is

needed to preserve the commutation relations of the output

operators).

The same quantum sensitivity analysis framework also

prescribes the variance (noise) of arbitrary observables. For

example, let us consider the variance (or noise) of an arbi-

trary quantity X. X could be intensity in one ormoremodes,

phase, quadrature, etc. Classically, X is a function of the

initial conditions of the system, i.e., the initial amplitudes

of different light modes and the initial values of degrees

of freedom of different matter excitations. Denoting the

collection of all initial amplitudes as 𝜶in,𝜶
∗
in
, we can say

Xout = Xout
(
𝜶in,𝜶

∗
in

)
. The theory developed inRefs. [40], [41]

then prescribes the variance of X as:

(
ΔXout

)2 = (
𝜕Xout∕𝜕𝜶in𝜕Xout∕𝜕𝜶 ∗

in

)

×
( ⟨𝛿a𝛿a⟩ ⟨

𝛿a𝛿a†
⟩

⟨
𝛿a†𝛿a

⟩ ⟨
𝛿a†𝛿a†

⟩
)

in

(
𝜕Xout∕𝜕𝜶in

𝜕Xout∕𝜕𝜶 ∗

in

)
.

(12)

The correlation matrix (with entries such as ⟨𝛿a𝛿a⟩)
contains the quantum statistics of the initial fields (e.g.,

coherent, squeezed, thermal, multimode entangled). The

new insight developed in [40], [41] lies in the derivatives

𝜕Xout∕𝜕𝜶in: they are the change in X due to changing the

classical initial conditions. Therefore, the dynamics of quan-

tum fluctuations are completely prescribed by the classical

dynamics and the statistics of the input light. In the case

where the initial state is a multimode coherent state, and

Eq. (12) simplifies to:

(
ΔXout

)2 = ∑
k

|||||
𝜕Xout
𝜕𝛼in,k(0)

|||||
2

= |||∇𝛼in
Xout

|||
2
. (13)

It is worth pointing out that from these expressions

above (Eqs. (12) and (13)), it is not obvious “what” quantities

are squeezed for a given nonlinear interaction: in other

words, which quantities X have a smaller variance than one

would expect for a coherent state output. This however can

be solved via the Bloch–Messiah decomposition known in

the field of quantum information science, which expresses

a given multimode quantum state in terms of a set of inde-

pendent squeezing modes. In particular, due to the fact

that 𝜇𝜇† − 𝜈𝜈† = 1, where 𝜇, 𝜈 are matrices of Bogoliubov

coefficients, it is possible to perform a joint singular value

decomposition on the 𝜇 and 𝜈 matrices: 𝜇 = FΣ𝜇G, 𝜈 =
FΣ𝜈G∗, where F(G) define the output (input) “Schmidt

modes”, which are certain linear combinations of the input

operators in the original basis chosen [42]. Meanwhile,

the diagonal matrices Σ𝜇 = diag
(
cosh r1 · · · cosh rN

)
,Σ𝜈 =

diag(sinh r1 · · · sinh rN ) encode the squeezing levels of the
different principal modes (the squeezing level of mode i is

e2ri ). This decomposition can be seen as taking the input

modes, performing a linear operation on them (G) which

mixes the input modes, applying single-mode squeezing

transformations to the different modes independently, and

then applying another linear-mixing operation (F). Further,

from these Bogoliubov matrices, we can also evaluate the

entanglement of different modes, in analogy with the case

of two-mode squeezing.

I stress that this framework is exactly equivalent in

physical content to the main approach used to describe

squeezing dynamics: linearization of the Heisenberg

operator equations (as we did in the single-mode

Kerr effect), followed by solution of these linearized

equations [1], [43]. In the limit where quantum fluctuations

are small compared to the mean classical fields, the

framework presented here is also equivalent to a

“stochastic equations” framework, where the classical

equations are solved for an ensemble of initial conditions.

The ensemble of initial conditions is often “drawn” from

a multivariate Gaussian distribution whose mean and

variance are prescribed by quantum mechanics [44] and

accurately emulate the effect of quantum fluctuations.

Despite the equivalence of these different approaches,

the framework I present here, which is the newest,
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comes with important theoretical and computational

advantages.2

The major new insight which is manifest from the

framework reviewed here [45] here is that the quantum

noise dynamics of a system can be completely predicted

from its underlying classical model: by taking derivatives of

the classical dynamics. In this sense, the quantumsensitivity

analysis framework reveals a “hidden” quantum dimension

to classical systems: I mean this colloquially, in the sense

that the classical theory “knows” about certain quantum

statistical effects. Further, we see, from the Bogoliubov coef-

ficients 𝜇ij, 𝜈ij introduced above, that squeezing in some

observables should be anticipated for a generic nonlinear-

ity, since essentially any conceivable nonlinear term can

couple a complex field to its conjugate.

It is important to emphasize at this stage that although

we are predicting quantum statistics from “classical

dynamics”, this does not limit the treatment to only

2 Theoretically, the quantum sensitivity analysis approach reveals a

powerful design rule for minimizing quantum noise: minimize the

sensitivity of some system observable to all possible changes in ini-

tial conditions, even sensitivities to modes which are not populated

(but which still contribute vacuum fluctuations). It also reveals right

away that a wide variety of nonlinear systems which have a tendency

towards chaos will strongly amplify quantum noise. One of the most

powerful theoretical and computational advantages of this framework

comes from the analytical separation of the sensitivities and the ini-

tial correlations of the input. This means if the quantum statistics

of the input changes, the noise can be immediately determined once

one knows the relevant sensitivities. The role of the input quantum

statistics is important when understanding how a system responds to

squeezed light (which is important in sensing and interferometry) and

also in understanding how excess noise in the input of a nonlinear

systemaffects squeezing. This computational simplicity is in contrast to

the other approaches (linearization and stochastic simulations), where

a new simulation must be done to take into account a new noise distri-

bution. In the case of linearization, it is in principle possible to capture

a change in the noise distribution without doing a new simulation

(i.e., without numerically solving a set of differential equation), if one

computes a Green’s function for the linearized equations. However,

computing a Green’s function in a highlymultimode system (which can

have thousands of degrees of freedom), is very computationally inten-

sive, requiring essentially 2N simulations of the linearized equations,

where N is the number of degrees of freedom. For quantum sensitivity

analysis, if we have a specific observable we want to compute, then

computational adjoint methods allow the noise to be computed using

two simulations. Changing the input noise distribution requires no new

simulations. By simulation, we mean numerically solving a set of N

differential equations, where for many systems N ≫ 1. Importantly,

because of the rise of computational adjoint methods in computational

design and optimization, it is possible to compute the gradient ∇𝛼(0)X

using only two simulations (effectively a forward solve and a backward

solve of the differential equation) [98], [99]. Similarly, for calculating

the noise of specific observables, this approach outperforms stochas-

tic simulations, where a large number of simulations needs to be

done for an ensemble of initial conditions until statistical convergence

is achieved (this can require thousands of simulations for sufficient

convergence).

predicting quantum statistics of light. Matter systems,

and their quantum statistics, are also accessible from this

framework, as many matter systems have a corresponding

classical description as well. For example,3 we show

how this framework predicts one of the most basic

phenomena in quantum mechanics, the spreading of

the wavefunction of a free particle. In the SI, we show

how our theory also describes the quantum noise added

by a gain medium (which corresponds to an excited

matter reservoir). While our framework cannot address

situations where fluctuations diverge, such as the onset

of phase transitions (such as Bose–Einstein condensation,

superconductivity, etc.), our framework would correctly

describe the excitations of such systems, which can be

understood as fluctuations on top of an ordered state.

For example, the dynamics of Bogoliubov excitations of

a Bose condensate should be accurately described based

on a quantum sensitivity analysis of the Gross–Pitaevskii

equation [46].

This observation informs the “thesis” of this Perspec-

tive: that emerging platforms for accessing nonlinear dynam-

ics in materials should enable new sources of quantum light,

even if the underlying nonlinearities are different in form

from those that have been long-studied in optics (namely

non-resonant second- and third-order nonlinearities). This

program, of identifying quantum effects in new classical

nonlinear systems, can bemade algorithmic from the stand-

point of quantum sensitivity analysis. In particular: (1) take

some nonlinear system, potentially with many degrees of

freedom, for which we have a classical description, (2) ana-

lytically compute, or simulate, the dynamics along with

their gradients, (3) compute noise/correlations for any input

statistics, and (4) then use tools like Bloch-Messiah to find

the degrees of freedom which are most strongly squeezed.

This new framework should allow one to very efficiently

3 Let us consider the dynamics of a quantum particle (such as an elec-

tron) propagating in free space. A particle prepared in a wavepacket

with some initial position and momentum spread 𝜎x(0), 𝜎 p(0) will

spread spatially (but not in momentum, since momentum is con-

served). We now show that the rate of spreading is perfectly pre-

dicted by the quantum sensitivity analysis approach. The classical

equations of motion are ẋ = p∕m and ṗ = 0, with x being position,

p being momentum, and m being the particle mass. The solution is

x(t) = x(0)+ p(0)t∕m, and p(t) = p(0). Assuming an initial condition

where x and p are uncorrelated (so that ⟨xp+ px⟩− 2⟨x⟩⟨p⟩ = 0),

quantum sensitivity analysis yields for the final position uncertainty:

𝜎2
x(t) =

(
𝜕x(t)

𝜕x(0)

)2
𝜎2
x(0)+

(
𝜕x(t)

𝜕 p(0)

)2
𝜎2
p(0) = 𝜎2x(0)+ 𝜎2p(0)t2∕m2. This fol-

lows from Eq. (S14) of the Supplementary Information. The momen-

tum uncertainty also follows from Eq. (S14) as: 𝜎2
p(t) =

(
𝜕 p(t)

𝜕x(0)

)2
𝜎2
x(0)+(

𝜕 p(t)

𝜕 p(0)

)2
𝜎2
p(0) = 𝜎2p(0). Both of these are the correct result (see e.g.,

[100], and note that for a particle in a pure state, 𝜎 p(0) = ℏ∕2𝜎x(0)).
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find so-far hidden quantum effects (in potentially very com-

plex) systems which haven’t been studied this way. We will

give an example of this in the next section.

3 Quantum optics at terahertz

frequencies based on driven

collective excitations

In this section, we introduce two emerging platforms for

nonlinearity that should enable generating quantum light at

terahertz frequencies, a frequency range in which squeez-

ing and entanglement has not yet been realized. We should

note that in using theword terahertz, we are broadly includ-

ing light of frequencies ranging from 1 THz to a few tens

of THz; the upper part of this range is often referred to as

mid-infrared. The importance of realizing squeezing and

other quantum effects at these frequencies, while being of

intrinsic fundamental interest, may also lead to important

improvements in applications which make use of terahertz

sources. For example, squeezing at terahertz frequencies

could open up opportunities in molecular spectroscopy and

terahertz communications. Recently, the response of mate-

rials to intense pulses of mid-infrared and terahertz light is

coming into focus. In part, this is due to steady technological

advancements in the efficiency of sources in this spectral

range, which are typically realized based on difference-

frequency generation processes that convert nearby fre-

quencies of an IR-vis pulse into a broad spectrum of much

lower-frequency radiation. Light fields at these frequencies

can resonantly drive motion of the lattice (phonons) of a

material, as well as motion of spins (magnons).

Let us start with the case of phonons. Phonons can

be categorized as acoustic or optical. At zero wavevector

(a good approximation for the wavevector of the driving

light, due to the fact that the wavevector of light is much

smaller than a reciprocal lattice vector of the underly-

ing crystal), optical phonons have a finite frequency while

the acoustic phonons are at zero frequency. Hence, light

drives optical phonons, provided that they have a finite

electric dipolemotion associatedwith their oscillation. Such

dipole-carrying optical phonons are called infrared-active,

as opposed to Raman-active phonons, which can still be

excited by light, albeit much less efficiently.

The response of an infrared-optical phonon to light can

be understood most simply in terms of a simple classical

model of a driven anharmonic oscillator. For a particular

optical phonon mode, we can define a mode amplitude

for the i phonon mode, denoted Qi with dimensions of

(mass)1∕2 × length – as is customary in the field of coherent

phononics – which satisfies an equation of motion of the

form [45], [47] :

d2

dt2
Qi + 𝛾

d

dt
Qi +𝜔2

0
Qi + V ′

NL

(
{Q}

)
= Z∗

i
Ei(t). (14)

Here, 𝛾 is a damping rate (measured or computed by

ab initio techniques), 𝜔0 is the natural frequency, Z∗ is

an effective charge called the mode-effective charge, and

Ei(t) is the time-dependent electric field (projected onto

the direction of the dipole of the i phonon mode). The

term V ′
NL

(
{Q}

)
= 𝜕VNL∕𝜕Q is a nonlinear force which can

depend on other phonon modes. For example, in a down-

conversion process, there could be a term in the potential

VNL of the form QiQ
2
j
which generates lower frequency

phonons in mode j. Ignoring the nonlinear term for the

time being, we may immediately see from Eq. (14) that in

response to a time-harmonic drive of the (complex) form

Ei = Ei,0e
−i𝜔t, the phonon mode will also undergo a coher-

ent sinusoidal oscillation of complex amplitude

Q0 = Z∗
i
Ei,0∕

(
𝜔2
0
−𝜔2 − i𝜔𝛾

)
, (15)

which increases with the strength of the drive. As the drive

strength increases, one can see from Eqs. (14) and (15) that

the nonlinear terms become increasingly comparable to the

linear terms, since they grow faster with the drive strength

(for weak driving).

The electric fields needed to reach the nonlinear regime

depend on material (which impacts the phonon dispersion

and modes), as well as driving frequency and pulse dura-

tion. For infrared-active phonons in perovskite materials

(e.g., LiNbO3, SrTiO3, KTaO3), the typical field scale needed

to access nonlinearities with 100 fs pulses is on the order

of 1 MV/cm. For longer pulses, the needed fields drop due

to the mechanics of resonance, but also may lead to dele-

terious heating dynamics. A variety of nonlinear effects

have been probed, arising from different terms in the non-

linear potential. The effects of these nonlinearities can be

described in terms very familiar to those who have studied

nonlinear optics. For example, a term of the form Q2
1
Q2

can generate a second-harmonic mode Q2 (at frequency

2𝜔) when the material is driven by a field resonant with

mode Q1 at frequency 𝜔. Such effects have been demon-

strated now in a variety of material platforms [48] and are

promising as a form of creating controlled deformations of

material lattices to induce control of functional properties of

materials (electronic, optical, and magnetic properties, for

example [49]). Although the distortions described thus far

apply to every irradiated unit cell, being in essence uniform

throughout the crystal, it is possible to engineer spatial vari-

ations in light-induced deformations, such as line-defects
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[50] and localized deformations that propagate through a

structure [51].

Advances in generating strong fields at mid-infrared

frequencies have made it possible to access even higher-

order terms in the nonlinear potential of the lattice. For

example, analogues of high-harmonic generation have been

demonstrated, generating third-, fourth-, and even fifth-

harmonics of optical phonons in lithium niobate [52], as

illustrated in Figure 1a and b. Such higher-order polariza-

tion is readily detected optically.

The same nonlinear term (Q2
1
Q2) can also generate

low-frequency phonons and even static rectification. For

example, driving the mode Q1 with a pulse can lead to driv-

ing terms with a frequency equal to the difference between

two frequency components of the original pulse (difference-

frequency generation): such phonons generated can of

course be at very low frequencies [55], [45], [56], [57]. It is

similarly possible to generate zero-frequency components

based on this approach, leading to a DC force on the mode

Q2. It is possible for example to generate acoustic phonons

through this coupling scheme. In another approach, if one

drives the mode Q2 at a frequency defined as 2𝜔, it is

possible to generate a mode Q1 at frequency 𝜔. This pro-

cess, which is the inverse of second-harmonic generation, is

exactly analogous to parametric down-conversion in optics,

and it (and analogues) has been observed in a variety

of platforms including phonon polaritons in thin films of

silicon carbide [53] cuprates [25], and excitonic insulator

Figure 1: Terahertz nonlinearities in driven phonon and magnon systems. (a) Strong non-perturbative nonlinearities can be realized in polar

insulators (such as lithium niobate, whose unit cell is pictured here), driven by intense terahertz pulses (the yellow MIR field denoted on the figure).

The underlying material dynamics can be detected by a probe pulse (red). Nonlinear processes such as harmonic generation can be measured either

by polarization rotation or second-harmonic generation of a probe pulse. (b) For strong driving fields, the driven phonon mode can oscillate at high

harmonics of the driving field (here, as many as five). The black curves show the total spectrum. (c) In other polar systems, such as silicon carbide

(whose lattice is shown by red and blue atoms), parametric down-conversion can be realized, converting a drive at frequency 2𝜔 to a signal at𝜔 (E, Q),

which is manifested as amplification of a probe signal at frequency𝜔. Observing this amplification via reflection of the probe from the crystal entails

measuring a reflectivity larger than one, which is seen in (d) for sufficiently strong driving fields that parametric down-conversion becomes efficient.

The different curves represent the probe reflectivity for different driving fields. (e) Similarly to the case of phonons, strong terahertz drives can also

excite nonlinear dynamics of magnons, as illustrated in the canted antiferromagnet YFeO3 (unit cell depected in (e)) which features quasi-ferro-

magnetic (q-FM) and quasi-antiferromagnetic (q-AFM) modes at different frequencies. The q-FM mode corresponds to precession of the net unit cell

magnetization (purple arrow in upper right inset), while the q-AFM mode corresponds to a longitudinal modulation of the magnetization (lower right

inset). (f) By driving this antiferromagnet with a magnetic field at an angle to the net magnetization, both modes can be excited, and if the drive is

strong, they can nonlinearly mix, leading to sum and difference frequency generation (SHG, DFG) as well as second-harmonic generation (SHG) which

can be observed via 2D terahertz spectroscopy as in (g). Figures (a, b) were adapted from Ref. [52] with permission from Springer Nature, while

(c, d) were adapted from Ref. [53], and (e–g) were adapted from Ref. [54] with permission from Springer Nature.
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candidates [58]. In the latter case, the drivenphonon couples

to pairs of Josephson plasmons.

Based on the discussion in Section 2 on the relation-

ship between squeezing and nonlinearity, one expects that

these various forms of nonlinear dynamics should be capa-

ble of generating squeezing of different phonon modes. As

a point of terminology, when we refer to squeezing of a

particular phonon mode i, we mean that the variance of

some particular quadrature goes below one in standard

units (for the position quadrature, this means the posi-

tion variance
(
ΔQi

)2
< ℏ∕2𝜔i, while for the momentum

quadrature, this means
(
ΔPi

)2
< ℏ𝜔i∕2. The dimension-

less quadratures would then be defined as Qi∕
√
ℏ∕2𝜔i and

Pi∕
√
ℏ𝜔i∕2). Previously, the term squeezing has also been

used interchangeably with having a variance that oscillates

at twice the frequency of the phonon mode. Although such

a 2𝜔 oscillation is required by squeezing (as discussed in

Section 2), it does not necessarily entail a variance which

goes below unity.

Borrowing from the deep knowledge of quantum light

generation that has been accumulated in optics, the most

obvious candidate to realizing squeezing in phononic plat-

forms is in non-centrosymmetric materials (e.g., materials

in their ferroelectric phase), where the nonlinear poten-

tial can contain cubic terms of the form described above.

However, squeezing effects are not generic, requiring a

phonon band which is at half the frequency of the driven

band. Unlike in photonics, where phase matching can be

engineered by material geometry, the phononic dispersion

properties are much less straightforward to tune. While by

nomeans prohibitive to achieving squeezing, it is important

to findmore generic approaches to squeezing that can apply

in principle to any material. For example, approaches that

require only a single phonon band, as we will consider in

Figure 2.

In Figure 2, we argue that squeezing can be real-

ized generically in driven phononic systems that have a

strong enough driving field to realize nonlinear effects,

within the decay time of the phonons – even with a single

band – where second-order nonlinearity is not particularly

important. As an example, we take the system considered

in Figure 1a and b: we consider a material (here, LiNbO3)

in the presence of a strong mid-IR drive which excites an

optical phonon (of frequency 15 THz). The optical phonon

corresponds to a displacement of the 𝜅 atom of each unit

cell, which is typically parameterized byQ𝜂𝜅 , where 𝜂𝜅 is an

atom-dependent vector of eigendisplacements. The modal

displacementQ is defined as previously discussed, such that

potential energy is given by

Figure 2: Squeezing and correlations in nonlinear dynamics of light-

driven optical phonons. (a) A few-cycle terahertz pulse incident in

a material can resonantly excite a phonon mode, causing displacement

of the atoms in the lattice. The material considered in this example is

LiNbO3. (b) Potential energy as a function of modal displacement Q.

The analytical form of the potential is given in Eq. (16) below. For large

displacements, the potential deviates strongly from the harmonic

approximation typically used to describe phonon dynamics. (c) Dynamics

of the modal displacement and the conjugate modal momentum

(P = dQ∕dt), with𝜔0 being the phonon frequency in the harmonic

approximation. Black line indicates mean trajectory. Red dots represent

a cluster of initial conditions, and dots of different colors represent how

those initial conditions evolve over time (letters have the same meaning

in (c) and (d)), showing the spread of (quantum) fluctuations in the initial

conditions. (d) Variance of modal displacement (blue) and momentum

(red), calculated using quantum sensitivity analysis, showing large

degrees of squeezing of the modal displacement (above 10 dB), resulting

from a strong insensitivity of the displacement to the initial conditions for

certain times. The driving pulse is taken to be E(t) = E0 sin(𝜔t)e
−t2∕𝜏2 ,

with E0 = 100 MV/cm,𝜔d = 2𝜋 × 17.5 THz, and 𝜏 = 150 fs.

Data generated for this figure is simulated using the quantum

sensitivity analysis framework discussed in Section 2 and derived

in the Supplementary Information. Code which generates and plots

the data is provided in: https://github.com/nrivera494/Phonon-

squeezing-by-ultrafast-driving.

V(Q) = 1

2
𝜔2
0
Q2 + 1

3
a3Q

3 + 1

4
a4Q

4 + 1

5
a5Q

5 (16)

(all parameters are taken from Ref. [52]). We note that while

there is a cubic term here, corresponding to second-order

nonlinearity, the effect we will show persists at a similar

magnitude even when the cubic term is removed.

The classical trajectories associated with various initial

conditions are shown in Figure 2c, and show the existence

of certain times for which the variance of Q or P can be well

below the standard quantum limit. Examining the mean

trajectory (in black), it is clear why this can happen. The

https://github.com/nrivera494/Phonon-squeezing-by-ultrafast-driving
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mean trajectory has a quasi-rectangular shape. In the rel-

atively flat regions, either Q or P hardly changes over time.

For example, around the region in phase space near time

C, Q hardly changes with time. Given that a time-delay (or

phase lag) is similar to a change in initial conditions, this

indicates that different initial conditions lead to minimal

changes in Q, leading to lower noise than the standard

vacuum level (as per quantum sensitivity analysis). This is

shown in Figure 2d where using quantum sensitivity anal-

ysis, we find certain times for which the lattice fluctua-

tions can be suppressed by over 10 times the vacuum level.

There are also times for which fluctuations in the modal

momentum can be very large, and as large as the mean

values themselves, indicating the buildup of macroscopic

fluctuations.

These results are interesting in light of the fact that sub-

stantial phonon squeezing has yet to be measured, but may

already be present in existing experiments. This would also

give a route to generate squeezed light at mid-IR and THz

frequencies, where squeezed sources have not been devel-

oped. THz light generation would be achieved by exploiting

the coupling of these IR-active phonons to light, manifesting

as phonon polaritons which could be outcoupled to the

far-field. The same far-field coupling could enable routes to

detect quantumnoise dynamics of phonons aswell. By being

able to map the quantum statistics of the phonon fields to

that of the radiated light, one can use the measured light

to infer the underlying quantum dynamics of the material:

this program is sometimes referred to as noise spectroscopy,

and is conventionally a powerful tool to understand dynam-

ics which are not apparent from mean-field measurements

[59].

The detection of quantum fluctuations of the electro-

magnetic field is typically done via techniques such as

homodyne detection, for which there has been much work

done at optical and infrared frequencies. At the same time,

special techniques have been developed for detecting quan-

tum noise in terahertz (and mid-infrared) fields, which

exploit electro-optic sampling instead of balanced detection

via photodiodes [43], [60]–[63]. These results are also inter-

esting given that generally, high-harmonic phonon genera-

tion as a route to squeezing has not been looked at, as it is

typically assumed that one would need a parametric inter-

action or a Kerr interaction to squeeze. We emphasize that

the perspective from quantum sensitivity analysis not only

makes clear the physics in a way that a standard approach

does not, but it also indicates a clear classical guideline to

reducing the fluctuations further. For example, by engineer-

ing the driving field to induce amore rectangular trajectory,

fluctuations could be suppressed further. This highlights an

important role for drive-engineering as well in generating

quantum states of material excitations at new frequencies.

We note that besides using these phononic squeezing

dynamics to generate quantum light at terahertz frequen-

cies, phonon squeezing may also be used as a tool to con-

trol material properties such as magnetism, optical prop-

erties, and even superconductivity. Intuitively, the impor-

tance of phonon squeezing for these properties comes from

the fact that material properties are strongly shaped by

electron-phonon and spin-phonon coupling. Even in the

absence of real phonons (e.g., at low temperatures, which

for optical phonons, often coincides with room tempera-

ture), vacuum fluctuations are relevant. For example, vir-

tual phonon emission and re-absorption mediate electron-

electron interactions as in superconductivity, as well as

control the band-gaps of semiconductors and insulators. In

the case of superconductivity, it has been argued theoreti-

cally that phonon squeezing (multimode two-mode squeez-

ing of Raman phonons, in particular) can enhance the

superconducting transition temperature, possibly explain-

ing measurements of superconducting signatures in the

optical properties of driven materials [23]. Although Raman

phonons are not readily directly excited by light, they

can be excited by an optical phonon, the latter of which

can be coherently excited by light. I briefly also men-

tion another tantalizing possibility: engineering these vac-

uum fluctuations by means of optical cavities, and con-

trolling both phononic fluctuations and material phases

such as ferroelectrics, as recently theoretically proposed in

Ref. [64].

To conclude the discussion of phonons, we brieflymen-

tion that optical phonon driving is not the only way to

achieve squeezing of phonons. Another class of techniques

are “impulsive” approaches where an ultrashort but very

intense pulse instantaneously changes the electronic prop-

erties of the system, manifesting as an abrupt change in the

phonon frequencies [30], [31]. In general, such approaches

have not unambiguously demonstrated phonon variances

much below the shot noise level, but should be capable of

doing so. That said, the impulsive stimulated Raman scat-

tering effect uponwhich this squeezing is based is generally

inefficient, and the short duration of driving also tends to

inhibit squeezing, which may make approaches based on

coherent driving of optical phonons ideal.

Conceptually similar progress to the case of phonons

is now also being realized for magnons, which can also

be driven resonantly by terahertz pulses. Magnons, or spin

waves, are collective excitations corresponding to wavelike

disturbances where the local magnetization is modulated.

This is in analogy to phonons, where one has a wavelike
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disturbance of the positions of the atoms which make up

the lattice. Magnons, being spin waves, respond efficiently

to the magnetic field of a terahertz pulse, which can drive

either longitudinal oscillations of the local magnetization

or transverse oscillations (leading to precession of the mag-

netization), as shown in Figure 1e and f. For sufficiently

strong driving fields, these magnon modes can mix due

to nonlinear terms which are higher-than-quadratic order

in the magnetization. This can lead to upconversion, as

well as sum- and difference-frequency generation, all of

which have been recently observed in antiferromagnets

[54], [65]. Similarly to the case of phonons, the nonlinearity

is described by nonlinear classical equations of motions

for interacting magnons. One expects that the same type of

interactions that enable sum and difference frequency gen-

eration should allow for parametric down-conversion and

also self-phase modulation, each of which would allow for

squeezing and entanglement of magnons. Similarly to the

case of optical phonons sketched above, the quantum sensi-

tivity analysis framework should elucidate which magnon

observables are squeezed, and should also elucidate which

type of nonlinear terms will be most effective in generating

quantum states of magnons.

Generating quantum states of magnons opens up a

wide variety of new possibilities. For example, squeez-

ing of magnons could lead to squeezed light in the fre-

quency range of 1 THz and even below. These frequencies

can also interface with electronics. Further, quantum states

of magnons may also have implications for spin-electron

and spin-phonon coupling, allowing the enhancement or

suppression of various relaxation and dephasing processes

mediated by coupling to spin. Further, squeezing of spin

fluctuations could lead to stabilizing or destabilizing various

magnetic orders relative to the case of thermal equilibrium.

4 Quantum optics at X-ray

frequencies using high-harmonic

generation

In this section,we discuss another important class of nonlin-

ear effects, called high-harmonic generation, that converts

part of a strong infrared pulse into ultraviolet and even

X-ray photons. This process, which was discovered in the

1990s, and recently acknowledged by the 2023 Nobel Prize

in Physics, has been realized by many groups worldwide,

in gases, solids, and even liquids. The process is famous

for realizing attosecond pulses of light [66]. The attosecond

nature of the generated light can be understood simply as

follows: high-harmonic generation can be seen as a three-

step process [67]. In the first step, a strong electric field

strongly tilts the Coulombic potential binding an electron to

an atomic nucleus, resulting in an electron in the ground

state being able to tunnel out of the atom. In the second, the

newly-liberated electron undergoes driven motion due to

the strong oscillating driving field, which is well understood

classically in terms of a free electron in an AC electric field,

accelerating and gaining significant energy. In the third step,

the electron can recombinewith thenucleus, emitting ahigh

energy photon in the process. This three-step process occurs

with the periodicity of the drive, and so the emitted light has

spectral content at integer multiples of the drive frequency.

Because of the symmetry of the atomic potential, only odd

harmonics are typically produced (with exceptions) which

are coherent with each other. The resulting waveform is

them a frequency comb whose pulse duration is dictated by

the overall span of the comb. The span of the comb is deter-

mined by the atomic potential and the driving field, but for

sufficiently strongfields, can spanhundreds of harmonics of

the driving field, leading to UV and even soft X-ray photons

being generated.

For the first 20 years of research in high-harmonic

generation, a semi-classical picture of the process has suf-

ficed. In particular, many phenomena in HHG can be well-

understood by quantizing the electron but treating the elec-

tromagnetic field classically [68]. In this picture, the radi-

ation is understood as governed by the classical Maxwell

equations with a source. The source is simply the time-

dependent expectation value of the dipole moment of

the radiating atoms (or for solid-state electrons, the time-

dependent expectation value of the current density). This

time-dependent dipole or current is found by solving the

time-dependent Schrodinger equation in the presence of a

classical driving field either based on simple model poten-

tials or from density functional theory [69], [70].

Recently, there has been interest among several groups

worldwide in quantizing the electromagnetic field, and

understanding the signatures of quantum optics in high-

harmonic generation. Some of the earlier work along these

lines was focused on reconciling the accuracy of the clas-

sical description of HHG with the fundamental description

according to a fully quantized theory. The consensus is that

for a driving field which is in a coherent state, the induced

current experiences only weak fluctuations, closely approx-

imating a classical current, which generates coherent states

of the different harmonics – with zero quantum correlation

between the harmonics. In other words, the output state of

the light is a product state of coherent states for the different

harmonics, with the coherent state amplitudes governed by
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the classical Maxwell equations [71], [72]. This is illustrated

schematically in Figure 3a.

Although, from this perspective, HHG seems classical,

there are a number of routes to generating genuinely quan-

tum light through HHG. Generating quantum light at X-ray

frequencies, while also of clear fundamental importance,

may also lead to applications in fields like X-ray imaging

(where shot noise is a limitation) [75] andX-ray spectroscopy

of solids andbiomolecules,where the oftenhighX-rayfluxes

needed to get signal lead to sample damage [76].

Many approaches to generating quantum light from

HHG follow a close analogy with methods for generating

quantum light at optical frequencies. For example, even

in the case where coherent states are generated, measure-

ments on the output state of the harmonics can herald

a non-classical superposition of coherent states (of which

the Schrodinger cat state is an example) [72], [73], [77]. A

proof-of-concept demonstration of this effect was put forth

early in this field (Figure 3b and c).

Beyond this, most other approaches remain only theo-

retically predicted for now. These newly predicted effects,

for the most part, have the major advantage that the

quantum light is produced deterministically. For example,

by exploiting high-harmonic generation in the depleted

regime, where a significant portion of the incident drive

gets converted into harmonics, the fundamental harmonic

can be squeezed [78]. This is in analogy to the case in

optics, where in second-harmonic generation, the funda-

mental harmonic can develop squeezing [79]. In another

example, which is conceptually related, it has been pre-

dicted that for sufficiently strong driving fields, the recom-

bining electron emitting HHG photons can emit pairs of

photons with quantum correlations [74] (Figure 3d and e).

Such two-photon HHG can be seen as a low-gain version of

Figure 3: Quantum optics in high-harmonic generation. (a) The quantum-optical description of “conventional” high-harmonic generation: a driving

laser field, which is thought of as being in a quantum-mechanical coherent state ||𝛼L⟩, drives an atom initially in its ground state, initiating a three-step

process of electron (blue circle) tunneling, field-induced acceleration, and recombination with a parent ion (red). In the quantum description of high-

harmonic generation, the driving field and the emitted harmonics
|||𝜒q

⟩
are all in coherent states, while the driving field under goes a displacement

to a state ||𝛼L + 𝜒L

⟩
. (b) Method of generating quantum light by post-selection. By filtering and measuring the output of HHG (top arm of the inter-

ferometer), it is possible to produce a non-classical superposition of coherent states. Its Wigner function can be measured by homodyning the filtered

output of HHG with a local oscillator, and a typical Wigner function of a superposition of coherent states is shown in (c),W
(
x, p

)
, where x, p are

position quadratures of the light field at the drive frequency. The negative values are a signature of non-classicality. (d) A proposed method for

generating entangled X-rays from high-harmonic generation based on a two-photon process in which the recombining electron in (a) emits two

photons instead of one (a second-order process in quantum electrodynamics). The figure shows a gas pumped by a strong IR drive in a waveguide

geometry to facilitate phase-matching of the two-photon process. The two photons have quantum correlations which can be probed by a Hong–Ou–

Mandel experiment. A prediction of coincidence probability for the photon pairs is shown in (e), which shows perfect destructive interference

of coincidences for pairs less than 100 as apart in time, for different intensities of the drive (corresponding to different colored lines). Figure (a)

is adapted from Ref. [73], while (b, c) are adapted from Ref. [72] with permission from Springer Nature and (d, e) are adapted from Ref. [74].
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a parametric amplifier which generates squeezing in optics.

Here, the major difference in this proposed scheme, from

the depleted-regime case described above, is that even the

X-ray harmonics can have strong quantum correlations.

Beyond these examples, many others have emerged even

in the last year, including examples of using inter-atomic

correlations to generate quantum HHG light [80], [81].

Before concluding this section, we mention a different

flavor of quantum HHG which segues into the next section.

The examples above were focused on driving the HHG

source (be it a gas or a solid) with classical light (coherent

states), and exploring the quantum nature of the emitted

light. We can also ask about driving HHG with quantum

light, and more broadly, the role of the statistics of the driv-

ing light on the emitted light. One of the first studies on this

effect found that by driving HHG with light that has macro-

scopic intensity fluctuations (such that the uncertainty in

the intensity is similar in magnitude to the mean intensity),

the spectrum of the emitted HHG can be strongly extended,

supporting a much larger number of harmonics compared

to the case when driving HHG by a coherent state of the

same mean intensity [82] (Figure 4). Examples of light with

macroscopic intensity fluctuations include thermal light,

as well as bright squeezed vacuum (the squeezed vacuum

state described in Section 2, but with a mean number of

photons much larger than 1. In other words, with r very

large.). This effect is not in-and-of-itself quantum, and relies

mostly on the fact that the output HHG spectral intensity

rises rapidly with the intensity of the driving light. In that

case, the effect of intensity fluctuations away from themean

gets enhanced. Since in the case of both thermal light and

bright squeezed vacuum, there is a significant probability

of having an intensity twice or even thrice the mean value,

it is as if the HHG is driven by an effectively higher intensity,

which in the classical case, leads to higher frequency output.

Such effects have some precedent in perturbative nonlinear

effects such as second-, third-, and fourth-harmonic genera-

tion seeded by bright squeezed vacuum [83], and proof-of-

concept experiments have emerged for these effects [84].

Further explorations into the role ofmultimode correlations

are presently underway [85].

It is important to emphasize that this effect can be

understood in a semi-classical way, as the same effect can

be realized by driving with intense thermal light, which is

effectively classical insofar as a thermal state can be repre-

sented as an incoherent mixture (probability distribution)

of coherent states [86]. The same effect can also be realized

by driving the HHG with an intense laser with extremely

high intensity fluctuations, and the origin of the effect is

ultimately the strong sensitivity of the high-harmonics fluc-

tuations in the intensity of the driving laser. I further empha-

size that definitive quantum signatures, such as quantum

coherence, at the output of HHG, at the time of this writing,

remain to be explored. Indeed, the broader question of how

the quantum state (rather than the mean intensity) of the

output light depends on the quantum state of the driving

field, remains relatively wide open for exploration.

We conclude this section by describing some of the

likely and important future directions of exploration in the

quest for quantum light at ultraviolet and X-ray frequen-

cies. One thing that is missing from the discussion above

is strongly squeezed light at the harmonic frequencies.

Squeezing approaches based on depletion or post-selection

described above apply to the lower harmonics, or the fun-

damental. The two-photon HHG approach theoretically pre-

dicted is analogous a low-gain parametric amplifier: the

squeezed state described earlier, of the form |𝜓⟩ ∼ era
†2 |0⟩

is, for r≪ 1, a superposition of a vacuum state and the

two-photon state (with a probability proportional to r2). The

probability of generating two-photons in the two-photon

HHGprocess described in Ref. [74] ismuch smaller than one,

and is analogous to the weakly-squeezed state described

above. Generating something closer to the squeezed states

used in metrology at optical frequencies requires making

the two-photon nonlinearity more efficient, through the use

of feedback cavities (e.g., based on highly efficient Bragg

mirrors at X-ray wavelengths) or solids, which generate

HHG more efficiently than in gases.

Another important question is related to the effect of

noise in the driving lasers which induce HHG. Lasers at

these ultra-high intensities, as will be mentioned in the next

section, tend to have noise levels far in excess of the level

associated with coherent states (often by orders of magni-

tude). At sufficiently highnoise levels of the drive, the output

harmonics of the HHG process will not exhibit squeezing.

There is therefore an important question as to how the noise

in the drive, as well as quantum noise in the harmonics,

affects the overall quantum state of HHG. Finally, we should

mention that beyond HHG, there are other effects capable

of generating X-rays with quantum properties. For example,

free-electron lasers produce intense X-ray beams which

can undergo nonlinear dynamics in materials. Exploiting

those nonlinear dynamics could provide a route to gen-

erating squeezed X-rays as well. In all of these cases, the

quantum sensitivity analysis framework described in this

work should allow insight into all of these questions and

more.
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Figure 4: Driving high-harmonic generation (HHG) with quantum light. (a) Typically, HHG is driven by light which can be thought of as being in

a quantum-mechanical coherent state. However, one can consider driving HHG with intense light with different statistics, such as bright squeezed

vacuum or even thermal statistics. (b) When looking at the spectrum of HHG generated by different quantum states (coherent, Fock, thermal, and BSV)

with the same mean intensity, BSV and thermal light can generate much higher harmonics, beyond the conventional cutoff associated with coherent

light. This is because thermal and BSV light have strong intensity fluctuations, and so their intensity can in principle be much higher than the mean

intensity. (c) Experimental proof-of-concept for the effect, suggesting that harmonic generation in solids can be more efficient when driven with

BSV-like light, compared to coherent light of the same intensity. (a, b) Is adapted from Ref. [82], while (c) is adapted from Ref. [84]. (a–c) are modified

with permission from Springer Nature.

5 Outlook

The development of new platforms for nonlinearity, at tera-

hertz frequencies and evenX-ray frequencies, as I’ve argued

above, gives promising new avenues for generating quan-

tum states of light at new frequencies, as well as quantum

states of material quasiparticles. What all of these nonlin-

ear platforms have in common is that they require driv-

ing by fairly intense lasers. I’ve also shown that for the

case of phonons, even fairly low quality factors (approxi-

mately 10) do not prohibit the squeezing from happening.

We expect that to also be the case for magnons. Neverthe-

less, there are a number of important questions that will

need to be resolved before such effects can be realized and

exploited in earnest. In fact, as we’ll argue now, this field

will require developments in fundamental laser physics and

technology.

In the standard quantum optical description of

strongly-driven systems, it is almost universally assumed

that the driving field is in a coherent state. This assumption

is nearly always violated in practice with high-power

lasers. A simple way to see this is that many high-power

lasers are realized by amplifying a lower-power laser

(e.g., via an erbium-doped amplifier or a rare-earth-doped

laser crystal). Assuming that the lower power pulse is in

a coherent state, the amplified light will have intensity

fluctuations in the total photon number

(Δn)2 = (2G− 1)⟨n⟩, (17)

where ⟨n⟩ is the number of photons at the output of the
amplifier, and G is the power gain. The Fano factor F ≡
(Δn)2∕⟨n⟩ = 2G− 1, in contrast to a coherent state, where

this ratio is 1 (corresponding to Poissonian statistics). As is

seen from Eq. (17), for large gains, the intensity (and also

phase) fluctuations of the amplified light are large, and this

noise can transfer to the system that this laser is used to

drive, be it phonons or magnons or a gas undergoing high-

harmonic generation. For large gains typical of millijoule

and several microjoule pulses, this noise transduction can

be substantial.

The discussion of the previous paragraph raises a larger

question as to what noise characteristics are required for
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the driving fields in order to realize states that are genuinely

quantum. In fact, this is currently a frontier area in laser

physics, with many theoretical and experimental questions.

For example, there are fewmeasurements of quantumnoise

of very high-power lasers. In part, that is because of a

paucity of low-noise detection systems that can handle high

powers. Typically, quantum statistics of light in the infrared

and visible regime would be determined by photocurrent

statistics in different configurations (direct detection, bal-

anced intensity detection, homodyne, etc.). The photocur-

rent is typically generated by illuminating a photodiode.

But most photodiodes saturate at average powers which are

quite modest compared to those used to drive the material

systems discussed in this work.

Another major question is related to the limits of noise

suppression. Given a system which is far from being in a

coherent state (i.e., for an amplified laser), is it possible to

suppress noise to, or even below the shot noise level associ-

ated with coherent states? Recently, this question has been

broached, where it has been shown that for femtosecond

pulses with noise well-above the shot-noise level (10 dB or

10× more noise than a coherent state), nonlinear filtering

can strongly reduce the noise, generating squeezed light

with noise 4 dB below that of a coherent state: the total

attenuation was roughly four times less than needed from

linear attenuation to get the same variance (linear attenua-

tion reduces the intensity noise as well as the average inten-

sity) [40], [41]. This is due to an “attractor” effect, in which

the output of the nonlinear filtering process is strongly

insensitive to changes in the initial pulse incident into the

nonlinear filter.

In general, an answer to the question of how to produce

high-power lasers which are close enough to being coherent

states is wide open, since it requires understanding quan-

tum noise in systems that are often nonlinear (due to large

powers), multimode (spatially and temporally), and non-

conservative (due to gain and loss). Along these lines, there

have been a number of developments in numerical tools

and theoretical techniques to understand noise dynamics in

nonlinear andmultimode systems [87]. Beyond that, a num-

ber of new platforms have been explored in the context of

understanding the fundamental physics of quantum noise,

from soliton microcombs [9], [88], [89], to multimode fibers

[90], supercontinuum generation [40], and pulsed optical

parametric oscillators [91]. On the theory side, a number

of suggestions have recently been proposed for creating

high-power lasers with noise at or below the quantum shot-

noise limit. Approaches include solid-state [92] and semi-

conductor gain media in cavities [93] with Kerr nonlinear

media (leading to nonlinear gain which adds less noise than

conventional linear gain), as well as nonlinear cavities with

a frequency-dependent outcoupler that can do not outcou-

ple for certain intracavity intensities (representing a type

of nonlinear loss) [94], [95]. This latter approach can be

thought of as a passive feedback scheme that autonomously

keeps the intensity at a certain well-defined level.

Once these questions are resolved, several exciting

opportunities should open up based on the generation of

squeezed and low-noise systems at terahertz and X-ray

frequencies. For example, squeezing at terahertz frequen-

cies could open up opportunities in molecular spectroscopy

and terahertz communications, while squeezing at X-ray

frequencies could open up opportunities in X-ray imaging

(where shot noise is a limitation) [75] andX-ray spectroscopy

of solids and biomolecules. In this latter case, squeezing

could be of interest if extended to suitably high X-ray fluxes,

as squeezing would lower the powers needed to do spec-

troscopy, which is important since many systems and mate-

rials get damaged by X-ray fluxes needed for spectroscopy

measurements [76].
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