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Abstract: Nonlinear dynamics provide an indispensable
resource for creating quantum states of light, as well
as other bosonic systems. Seminal work using second-
and third-order nonlinear optical crystals, cavity quan-
tum electrodynamics, and superconducting circuits, have
enabled generating squeezed states, as well as various non-
Gaussian quantum states (e.g., single photons, cat states)
at both infrared and microwave frequencies. Nevertheless,
it remains challenging to generate quantum states of light
in broad portions of the electromagnetic spectrum: for
example, at terahertz frequencies and at ultraviolet and
X-ray frequencies. In this Perspective, I discuss a variety
of emerging material platforms, as well as emerging the-
oretical and experimental tools, which enable overcoming
these challenges. The main argument of this Perspective is
that advances in driving nonlinear dynamics of material
excitations, will enable generating quantum states of these
material excitations as well as quantum states of light at
new frequency ranges. I will further argue that in order
to realize much of the promise of this nascent field, there
is a need for innovation in the laser systems used to drive
these nonlinear dynamics: specifically, innovations in real-
izing high-power laser sources that have very low noise,
having quantum statistics similar to coherent states of light
which describe lower intensity laser systems. I will highlight
some experimental and theoretical work, in understanding
quantum noise dynamics in complex laser systems, that can
address these challenges.
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1 Introduction

In the physical world, nonlinear systems offer an enor-
mous range of rich and complex effects, many with wide-
ranging implications in fundamental science and technol-
ogy. The vast majority of the work on nonlinear systems
is based on their description according to the laws of clas-
sical physics. At the same time, it has become increas-
ingly important to understand the fundamental description
of nonlinear systems according to the laws of quantum
mechanics.

In part, this is because nonlinear dynamics leads to use-
ful transformations of quantum fluctuations, the fundamen-
tal randomness of system states imposed by Heisenberg’s
uncertainty principle. For example, nonlinearity generi-
cally enables generating states with non-classical fluctua-
tion properties, such as squeezed states and entangled states
[1], which may enable overcoming noise-related limits on
a wide variety of important systems (e.g., interferometers
[2], [3] imaging systems [4], [5], communication systems
[6], [7], light sources such as lasers and frequency combs
[8]-[11], atomic clocks [12]-[14], magnetometers [15], and
other emerging sensors [16], [17]).

Historically, the interplay between classical nonlinear-
ity and quantum noise was first experimentally explored
in the field of nonlinear optics [18]-[20], in nonlinear crys-
tals and in optical fibers. While this interplay is still very
actively explored in optics, it is now consequential for a
much wider variety of physical platforms including optome-
chanics [21], spins [22], phonons [23]-[31], excitons [32]-[34],
and Josephson junctions [35]. In each of these platforms, it is
not quantum states of light that are created by nonlinearity,
but quantum states of matter.

Realizing nonlinearities in new regimes will provide us
with many new opportunities to generate quantum states
of both light and matter with unique properties. That is the
main argument of this Perspective. I will start by review-
ing a universal theoretical connection between classical
nonlinear dynamics and quantum effects such as squeez-
ing and entanglement. This theory shows that the poten-
tial of a system to generate squeezing and entanglement is
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completely dictated by the classical nonlinear equations of
motion describing the system.

Then, I will present a few new emerging platforms for
realizing nonlinearities: optical phonons in polar insulators
and semiconductors, spin waves in ferro- and antiferro-
magnets, and gases/solids irradiated by non-perturbative
infrared driving fields. I will review the progress in realizing
classical nonlinearities in these systems. In cases where
efforts have been made to generate quantum states using
these nonlinearities, I will discuss that prior art, and outline
a few important remaining directions of inquiry. Other-
wise, I will provide a plausibility argument for why quan-
tum states should be realizable in a given driven material
platform. In all cases, nonlinearities in these systems are
accessed by driving these material platforms with strong
laser fields.

I will argue that to realize many of the goals described
above, there will be new required developments in
laser physics itself: specifically in producing light sources
that are simultaneously very intense, while having noise
which is as low as possible — and sometimes even
quantum levels of noise. I will outline some recent
work in understanding quantum noise dynamics in com-
plex laser systems, and highlight some of the major
open theoretical and experimental questions that remain
there.

It is important to mention that in a short Perspective
such as this one, important topics will surely be left out.
Examples of important concepts that I will not discuss here
include nonlinearities in excitonic systems, superconduct-
ing circuits, optomechanics, integrated quantum photon-
ics, and many others. Additionally, while I will focus a lot
on squeezed states, the discussion applies equally well to
the creation of entangled pairs of quanta and other mul-
timode entangled states. I will not go in depth into the
much richer (albeit harder to create and maintain) family
of non-Gaussian quantum states important for quantum
information science, such as single and multi-photon Fock
states, Schrodinger cat and GKP states, and so on. Although
I'will not discuss these non-Gaussian states in depth, the cre-
ation of squeezed and entangled states by nonlinearities is a
necessary and important precursor to these more complex
nonclassical states. In particular, in many cases, the same
interactions that lead to Gaussian squeezed and entangled
states, when made stronger, produce useful non-Gaussian
states (see e.g., [1]).
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2 A general connection between
nonlinear dynamics and quantum
state generation

In this section, we elucidate a general connection between
classical nonlinear dynamics and quantum squeezing
effects. We start by briefly reviewing some of the simplest
and arguably best-known models of squeezing effects. We
then present a general framework for analyzing squeezing
in more complex driven nonlinear systems. In particular
we consider multimode nonlinear systems driven by light,
where the driving light is not necessarily with light in coher-
ent states, which we shall argue is crucial (in the Section 5).

We start by defining two concepts which are critical
to this Perspective: nonlinearity, and modes. We start by
defining nonlinearity for a generic wave. Suppose that we
have a generic wave system described by a single classical
wave field y(x), with x denoting spatial position (vector and
tensor indices are suppressed for simplicity). This wave-
field could represent light waves, lattice distortions in a
solid (acoustic or optical), spin waves, water waves, etc.
The discussion below is essentially unaltered by consider-
ing quantum field operators instead of classical fields. In
a conservative system (i.e., without damping), the dynam-
ics of the system are described by a Hamiltonian. A lin-
ear system corresponds to a quadratic Hamiltonian, i.e.,
one in which y appears at only linear or quadratic order
(overall constants are unimportant). An example of a linear
Hamiltonian would be / dx;a(Vy)* + ; fy? — Fo)w, with
a, f being constants and F(x) being a force. To connect this
definition of linearity to the concept of linear response, we
need only construct an equation of motion for y, which
in this case would be: 0’y — aV2y + fy = F(x) (obtained
by constructing the associated Lagrangian and using the
Euler-Lagrange equations). In this case, the dependence of
w on the force Fislinear in F, since the homogeneous part of
this differential equation is linear in y. Terms of cubic and
higher-order in y would correspond to nonlinear terms in
the equation. An example of a nonlinear Hamiltonian would
be

Hy, = / XL a(Vy) + Ly = Foy + V), @)

with Vy (p) = %631113 + ic4q/4 + ... being the nonlinear
potential, where the ellipses denote higher-order terms.
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In the discussion so far, we have considered a single
field. For multiple fields, (w4, y,, ... ), the linearity condition
is that the Hamiltonian is again a degree-two polynomial
at most (so no cubic terms like l[/lzlllz or higher-order). A
single nonlinear term (cubic or above) renders the entire
system behavior nonlinear, even if one of the fields appears
in at-most-quadratic-order in the Hamiltonian. In the litera-
ture, nonlinearities are occasionally divided into perturba-
tive and non-perturbative nonlinearities. In the perturba-
tive case, the nonlinear potential V,; (y) can be truncated
at some order in y (e.g., third or fourth). We will visit
an example of perturbative nonlinearities for phonons in
Section 3 on phonons and magnons. In the non-perturbative
case, relevant to high-harmonic generation to be discussed
in Section 4, the nonlinear potential is a more general func-
tion of y where the physics cannot be described in terms of
a low-order truncation of the nonlinear potential.

Another key concept to describe is that of a mode. While
this concept has some subtlety, especially in nonlinear as
well as open (dissipative) systems, we will keep the discus-
sion simple by confining ourselves to two important and
highly relevant limits. In particular, we consider the case in
which damping is not so large such that we can refer to a
complete set of orthonormal modes. Further, we consider
the case in which nonlinearity is not so large that the modes
of the underlying linear system are a useful way to describe
the system dynamics. Therefore, we can write our wavefield
as a sum over orthonormal modes. For a real wave field
W, We can write y(x) = 3 U, () + a u’ (x), where the
U, (x) are eigenfunctions of the linear wave equation, and
the a,,, are expansion coefficients similar to Fourier coeffi-
cients. In the case of quantized bosonic fields, the a,,,, o are
“promoted” to annihilation and creation operators a,,, ajn,
satisfying canonical commutation relations [am, a;] = O
Going back to the discussion on nonlinearity in the previous
paragraphs, nonlinearity in the language of creation and
annihilation operator corresponds to the presence of terms
which are higher-than-quadratic order in the a and a* oper-
ators (for example, the term a’a? is a nonlinear term in the
Hamiltonian while a? is not). The physics of squeezing and
quantum noise more broadly is enriched by the presence
of multiple modes. For example, quantum states such as
single-mode squeezed states are states with reduced noise
of some observable in a single mode, while entangled states
are those with non-classical correlations between multiple
modes. Squeezing versus entanglement will be elucidated
later in this section.

We now review a few of the best-known models of
squeezing in optics. In nonlinear optics, there are a variety
of platforms for generating squeezed light. Squeezed light
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can roughly be categorized into squeezed vacuum (with
zero average electric field), and displaced-squeezed vacuum
(with non-zero average field). Examples of platforms for
generating squeezed light include second-order nonlinear
media, atomic gases, and third-order nonlinear media (most
famously optical fibers, but recently also integrated waveg-
uides and cavities). Despite the variety of platforms, the
most successful squeezing platform in terms of applications
is second-order nonlinear media — in part due to the lower
optical powers at which nonlinear squeezing effects can
become efficient. Let us consider a simple case in which
there is a strong coherent pump laser at frequency 2w and a
mode at frequency o which is initially dark (no photons in
it). In this case, where the pump can be treated classically,
the effective Hamiltonian for the lower-frequency mode,
reduces from cubic to quadratic, and is given in the inter-
action picture as:

V/h=ig(a*—a"), @)

with g being a constant and a being a harmonic oscillator
annihilation operator [36]. The quantum state of this mode,
[w(?)), with t being time, is then given from Eq. (2) via

—2iot _qt2

ly(6)= e'(@e <0y, 3)

with r = 2gt, with t the interaction time. Equivalently to the
state transformation of Eq. (3), we can express the squeezing
in terms of transformations of the creation and annihilation
operators. The annihilation operator at the output, denoted

oy = H(OG, + VO, @

with u(t) = e™ ! cosh r, v(t) = —e~'®! sinh r. From this
transformation, we may compute the variance of the
“position” quadrature X = g, + @’ ., (AX)* = (X?) — (X)?
and well as the variance of the “momentum” quadrature
P= i(afmt - aout>, defined similarly. We consider the posi-
tion quadrature for concreteness. From these transforma-
tions, we can see the variance of the position oscillates as:

(AX)? = %(ezr(l —cos 2wt) + e (1 +cos 2mt)),  (5)

while the mean remains zero in time if the initial state is
the vacuum state. Once the parametric interaction ends, the
variance of the freely evolving mode oscillates at twice the
frequency of the parametrically generated mode frequency,
and oscillates between a maximum of e¥” and a minimum of
e~%" [36] (ignoring the time-dependence of r itself, which is
valid since typically w > 2g). The state repesented equiva-
lently by Eqgs. (3) and (4), known as squeezed vacuum, can
be produced by this interaction in optical parametric ampli-
fiers and oscillators. Although the mean amplitude of the
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field is zero, the number of photons is not, going as (n(t)) =
sinh®r.

It is important to point out that the model of squeez-
ing presented above is an idealized one. In practice, when
realizing squeezed states in experiments, there are several
requirements that need to be met. One such requirement
is phase-matching: in propagating-wave parametric ampli-
fiers, one not only needs a field at half the frequency of
the drive, but the wavevectors of the generated photons
also need to be consistent with momentum conservation.
When energy-momentum conservation (phase-matching) is
satisfied, the parametrically generated field can resonantly
build up. In practice, a powerful technique for aiding phase-
matching is poling, which involves creating a spatial mod-
ulation of the optical properties (e.g., periodic along the
propagation direction oflight); this additional spatial depen-
dence can strongly enhance the efficiency of the nonlin-
ear interaction [37], establishing a so-called quasi-phase
matching. Beyond having resonance, one also needs a suf-
ficient length of interaction; in bulk second-order nonlinear
media, this is not too stringent a requirement, but it can be
enhanced for example by use of a cavity (creating a para-
metric oscillator instead). Beyond generating the squeezing,
it is also important to preserve and detect the squeezing.
Importantly, dissipation (e.g., attenuation, scattering, ineffi-
cient detection, etc.) “spoils” squeezing, because the dissipa-
tion mixes in uncorrelated vacuum fluctuations. In particu-
lar, suppose one has a squeezed state of light with n photons,
and suppose it is attenuated such that after attenuation, the
state has #n photons. Then the quadrature variance (AX)*
becomes

(AX)* = £(AXY + (L= 2). ®)

As? = 0,(AX )2 — 1 corresponding to the vacuum level
[38], and obscuring any squeezing which may have been
present. Thus, in experiments where one wishes to detect
squeezing, it is important to avoid large degrees of loss.
This point is of major importance in the sections that fol-
low, on generating squeezed states in condensed matter
systems. The last important experimental point I mention
here is that typically, squeezing is detected by interfering
the squeezed light with a coherent state of much higher
intensity, called the local oscillator [38]. In particular, what
is common is a type of balanced homodyne detection, in
which the local oscillator and squeezed light are combined
on a 50/50 beamsplitter, and then sent to two photodiodes,
whose photocurrents are then subtracted. The signal is then
proportional to the product of the local oscillator field and
the squeezed light field (the latter of which has zero mean
and fluctuates). The presence of the strong coherent state
amplifies the quantum fluctuations of the squeezed state
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to a point at which it is readily discernable in the Fourier
transform of the electric current produced by a photodiode
(yielding a noise power spectral density). In order for this
procedure to work, the local oscillator has to be able to inter-
fere effectively with the squeezed state, which happens for
example if the two are in the same mode. This is especially
relevant for pulsed squeezed states and other multimode
squeezed states [39]. We mention that while we have dis-
cussed much of these ideas in the photonics context, similar
ideas apply in other bosonic systems where squeezing has
been generated such as optomechanics and excitonics (see
Section 1 for relevant references).

We should also discuss the case of squeezing via third-
order nonlinearities and the Kerr effect, which while long-
studied, has been less explored than the second-order non-
linear case. In part, this is because accessing nonlinear-
ities via the Kerr effect has traditionally required much
higher optical powers, being efficient only for pulsed light
or cavities. Further the often-high powers needed to achieve
Kerr-squeezing can cause other deleterious processes to
be efficient (e.g., multiphoton absorption, harmonic gen-
eration, coupling to material degrees of freedom a la the
Raman effect, etc.). Nevertheless, the major advantage of
Kerr-squeezing approaches is that they are realizable in any
material (all materials have third-order nonlinearity, unlike
the second-order case, which requires centro-symmetry
breaking). Further, phase matching is un-necessary in many
cases phase matching is easy to satisfy in many cases due to
similar frequencies of the interacting modes. And, in high-
power laser systems, Kerr effects can be efficiently accessed.

As in the second-order nonlinear case, we consider
the simplest model possible: a single-mode undergoing self-
phase modulation (the Kerr effect). The relevant interaction
Hamiltonian is [36]

H/h=wa'a+ ga“az. )

Although the Hamiltonian of Eq. (7) can be exactly
exponentiated, it will be instructive to make an approxima-
tion. Since any nonlinear effect needs a strong driving field
to become efficient, we can say that

a(t) = a(t) + da(t), 8)

where a(t) = (y|a(®)|w) is the mean c-number amplitude
(with |y ) the initial system state), and éa(t) is a fluctuation
operator. The statistical properties of a are encoded in déa.
In essentially all cases where nonlinearities are triggered
by many photons, the fluctuation operators can be taken as
small compared to the mean, leading to Eq. (8) being a useful
separation. In this approximation, the operator equations of
motion (Heisenberg equations) reduce to linear equations
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for the fluctuation operators, which will imply Gaussian
statistics for the output light. The equations of motion for
the fluctuation operators are then

(d/dt)sa = —iwsa — iK (2|a(t)*sa + a@®)?*sa’), (9)
where a(t) = e"{(@+K12©)t(0), and the equation for Sa’
follows by Hermitian conjugation. While we won’t give the
exact analytical solution here (see [1]), the important thing is
that we can write the solution as a Bogoliubov transforma-
tion of the form a,,, = ux(®a,, + vK(t)a:n, similar to Eq. (4).
This transformation automatically entails squeezing, and
also enforces that the Wigner distribution of the output
light, which is a phase-space distribution, is Gaussian. This is
the sense in which the linearization approximation enforces
Gaussian statistics.

Before moving on to a more general treatment of
squeezing, we point out that the discussion of squeezing
above has primarily been focused on single-mode squeez-
ing, defined by a Bogoliubov transformation of the form:
@ = a+ pa+ va' (where « is a c-number corresponding
to a displacement). More generally, nonlinearities can cause
quantum correlations between two or more modes, leading
to a multimode squeezed state. There, the relevant Bogoli-
ubov transformation is of the form:

a; = ; +Zy,]a +va (10)

where the index i labels different modes (which for light
could be frequency bins of a pulse, cavity modes of a multi-
mode resonator, spatial modes in a light beam, polarization
modes, etc.). In the case of two-mode squeezing, nonclas-
sicality manifests through a reduced variance relative to
multimode coherent states, in observables such as sums and
differences of quadratures of the two modes of interest. In
the multimode case, these quantum correlations between
different modes can be seen also as multimode entangle-
ment.

From the examples above, we see that squeezing gener-
ically occurs when creation and annihilation operators are
coupled together. In what follows, I'll show that this cou-
pling occurs in essentially any classical nonlinear system
(when quantized). To do that, I will review a powerful and
general connection between classical nonlinear dynamics
and squeezing effects. The connection was first introduced
by us in earlier work, see e.g., Refs. [40], [41], and a self-
contained derivation of the theory is given in the Supple-
mentary Information (SI) of this work.

Consider a general nonlinear physical system, which
can have bhoth electromagnetic field and matter degrees of
freedom. Electromagnetic degrees of freedom can refer to
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any type of solution to Maxwell’s equation: plane waves
modes, cavity modes, temporal modes, etc. Matter degrees
of freedom are also broadly defined: these can include a
collection of inverted two-level systems (determining a gain
medium), phonons in a fiber or waveguide, or particles
described by position and momenta.

Defining the collection of independent degrees of free-
dom (and their conjugates) as a, a*, we define the classical
theory of the system as an input-output relation, relating
the degrees of freedom at the final time, a,, e, to those
at the initial time @;,, a; . In particular, we write @y, =
Flay,, et |, where F is some arbitrary function of the light
and matter variables. We will also refer to the components
of the vector a, as «;.

In what follows, we consider the quantum noise
dynamics of this system. We consider the most common case
in which the quantum fluctuations are small compared to
the mean values of the quantities (as we did in the case of
the Kerr effect, described previously), permitting an expan-
sion of the quantum dynamics in powers of the fluctuations
oa;, éaf, suchthata; = a; + da;, where a; = (a;). Thisis true
in nearly all cases where nonlinearities are triggered by
a number of photons (or other excitations) which is much
larger than one. In this limit, we claim the following rule for
determining the final quantum state of the system: associate
the classical degrees of freedom «;, alfk with bosonic annihi-
lation and creation operators a;, aiT. This can also be done
for most matter degrees of freedom, in the limit where the
number of matter particles is large in some characteristic
spatial scale of variation of the system — in that case, the
matter can be described in terms of bosonic fields.! Then,
the output operators a; ,, a.T’ can be written in terms of

the input operators alm,aji in the form of a multimode
Bogoliubov transformation, like Eq. (10). In particular (see
discussion around Egs. S7-9 of the SI for description):

al-,om = ai’out + Zﬂif6aj,ln + Vi 5611 in® with

_ aai,out aal out (11)
Hij =\ 3q. Vi =\ G :
Jn /e ak jin J a ar

in

The term «a;,, is found by solving the classical non-
linear problem. The Bogoliubov coefficients ; and v; are
the Jacobian matrix (or gradients) of the classical dynamics:
they are the sensitivities of the classical final state: @, =
Flay,, ec* |, to changes in the classical initial conditions. We
should mentlon that although it looks like this formalism

1 This is the essence of what is today called macroscopic quantum
electrodynamics. See reviews such as Refs. [96], [97] for more details.
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only works for systems described by bosonic operators, that
is not the case: for systems described by a position and
velocity (like a particle in a potential), the quantities a, a*
getreplaced by x, p (the position and momentum), and noise
is found by differentiating various observables with respect
to the initial positions and momenta. Because of the connec-
tion of quantum noise and sensitivity to initial conditions,
we refer to this framework as quantum sensitivity analysis.

As a quick example, let us evaluate the Bogoliubov
transformation in the case of the Kerr effect. The clas-
sical equation of motion describing self-phase modula-
tion of a single-cavity mode was given above as a,, =
e7i(@+0%an) g Here we have made the replacements:
a(0), a(t) = ay,, oy, and Kt — 6. From the rule above, we

. 2
immediately find: u = e_l(wtw'a‘“l ) X (1 —i0 |0‘m|2> and

e—i(wt+6’|atin |2)

V= (—i0a2 ). To see this, we need to com-

pute u = %‘2‘“ and v = ‘)“m“ (since there is only a single

in

mode, the mode labels i, ] are omitted). Note further that
a;, and a;; are independent variables. The resulting expres-
sions for u, v are in perfect agreement with the standard
approach based on the linearization of the operator Heisen-
berg equations [1]. Notice of course that in the absence
of nonlinearity, 4 =1, v = 0 as expected. The transforma-
tion also respects |u|* — |v|*> =1 as expected (the latter is
needed to preserve the commutation relations of the output
operators).

The same quantum sensitivity analysis framework also
prescribes the variance (noise) of arbitrary observables. For
example, let us consider the variance (or noise) of an arbi-
trary quantity X. X could be intensity in one or more modes,
phase, quadrature, etc. Classically, X is a function of the
initial conditions of the system, i.e., the initial amplitudes
of different light modes and the initial values of degrees
of freedom of different matter excitations. Denoting the
collection of all initial amplitudes as a;,, a; , we can say
X, =X, e ). The theory developed in Refs. [40], [41]

out — out( in>
then prescribes the variance of X as:

(AXout) ( out/aam out/aa)

x (5‘15“) <5a5aT> aXout/aain
(sa'sa)y (sa'sa’)) \oX,./da; )
(12)

The correlation matrix (with entries such as (6ada))
contains the quantum statistics of the initial fields (e.g.,
coherent, squeezed, thermal, multimode entangled). The
new insight developed in [40], [41] lies in the derivatives
0Xui/ 0y, they are the change in X due to changing the
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classical initial conditions. Therefore, the dynamics of quan-
tum fluctuations are completely prescribed by the classical
dynamics and the statistics of the input light. In the case
where the initial state is a multimode coherent state, and
Eq. (12) simplifies to:

Xou) = | 5

k

out

aam k(o) (13)

|V

a,“tout| -

It is worth pointing out that from these expressions
above (Egs. (12) and (13)), it is not obvious “what” quantities
are squeezed for a given nonlinear interaction: in other
words, which quantities X have a smaller variance than one
would expect for a coherent state output. This however can
be solved via the Bloch—Messiah decomposition known in
the field of quantum information science, which expresses
a given multimode quantum state in terms of a set of inde-
pendent squeezing modes. In particular, due to the fact
that put — vv' =1, where p, v are matrices of Bogoliubov
coefficients, it is possible to perform a joint singular value
decomposition on the y and v matrices: y = FX,G,v =
FX,G*, where F(G) define the output (input) “Schmidt
modes”, which are certain linear combinations of the input
operators in the original basis chosen [42]. Meanwhile,
the diagonal matrices %, = diag(coshr, - - -coshry), X, =
diag(sinhr, - - - sinhry) encode the squeezing levels of the
different principal modes (the squeezing level of mode i is
e%1). This decomposition can be seen as taking the input
modes, performing a linear operation on them (G) which
mixes the input modes, applying single-mode squeezing
transformations to the different modes independently, and
then applying another linear-mixing operation (F). Further,
from these Bogoliubov matrices, we can also evaluate the
entanglement of different modes, in analogy with the case
of two-mode squeezing.

I stress that this framework is exactly equivalent in
physical content to the main approach used to describe
squeezing dynamics: linearization of the Heisenberg
operator equations (as we did in the single-mode
Kerr effect), followed by solution of these linearized
equations [1], [43]. In the limit where quantum fluctuations
are small compared to the mean classical fields, the
framework presented here is also equivalent to a
“stochastic equations” framework, where the classical
equations are solved for an ensemble of initial conditions.
The ensemble of initial conditions is often “drawn” from
a multivariate Gaussian distribution whose mean and
variance are prescribed by quantum mechanics [44] and
accurately emulate the effect of quantum fluctuations.
Despite the equivalence of these different approaches,
the framework I present here, which is the newest,
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comes with important theoretical and computational
advantages.

The major new insight which is manifest from the
framework reviewed here [45] here is that the quantum
noise dynamics of a system can be completely predicted
from its underlying classical model: by taking derivatives of
the classical dynamics. In this sense, the quantum sensitivity
analysis framework reveals a “hidden” quantum dimension
to classical systems: I mean this colloquially, in the sense
that the classical theory “knows” about certain quantum
statistical effects. Further, we see, from the Bogoliubov coef-
ficients p;, v;; introduced above, that squeezing in some
observables should be anticipated for a generic nonlinear-
ity, since essentially any conceivable nonlinear term can
couple a complex field to its conjugate.

It is important to emphasize at this stage that although
we are predicting quantum statistics from “classical
dynamics”, this does not limit the treatment to only

2 Theoretically, the quantum sensitivity analysis approach reveals a
powerful design rule for minimizing quantum noise: minimize the
sensitivity of some system observable to all possible changes in ini-
tial conditions, even sensitivities to modes which are not populated
(but which still contribute vacuum fluctuations). It also reveals right
away that a wide variety of nonlinear systems which have a tendency
towards chaos will strongly amplify quantum noise. One of the most
powerful theoretical and computational advantages of this framework
comes from the analytical separation of the sensitivities and the ini-
tial correlations of the input. This means if the quantum statistics
of the input changes, the noise can be immediately determined once
one knows the relevant sensitivities. The role of the input quantum
statistics is important when understanding how a system responds to
squeezed light (which is important in sensing and interferometry) and
also in understanding how excess noise in the input of a nonlinear
system affects squeezing. This computational simplicity is in contrast to
the other approaches (linearization and stochastic simulations), where
a new simulation must be done to take into account a new noise distri-
bution. In the case of linearization, it is in principle possible to capture
a change in the noise distribution without doing a new simulation
(i.e., without numerically solving a set of differential equation), if one
computes a Green’s function for the linearized equations. However,
computing a Green’s function in a highly multimode system (which can
have thousands of degrees of freedom), is very computationally inten-
sive, requiring essentially 2N simulations of the linearized equations,
where N is the number of degrees of freedom. For quantum sensitivity
analysis, if we have a specific observable we want to compute, then
computational adjoint methods allow the noise to be computed using
two simulations. Changing the input noise distribution requires no new
simulations. By simulation, we mean numerically solving a set of N
differential equations, where for many systems N > 1. Importantly,
because of the rise of computational adjoint methods in computational
design and optimization, it is possible to compute the gradient VX
using only two simulations (effectively a forward solve and a backward
solve of the differential equation) [98], [99]. Similarly, for calculating
the noise of specific observables, this approach outperforms stochas-
tic simulations, where a large number of simulations needs to be
done for an ensemble of initial conditions until statistical convergence
is achieved (this can require thousands of simulations for sufficient
convergence).
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predicting quantum statistics of light. Matter systems,
and their quantum statistics, are also accessible from this
framework, as many matter systems have a corresponding
classical description as well. For example,’® we show
how this framework predicts one of the most basic
phenomena in quantum mechanics, the spreading of
the wavefunction of a free particle. In the SI, we show
how our theory also describes the quantum noise added
by a gain medium (which corresponds to an excited
matter reservoir). While our framework cannot address
situations where fluctuations diverge, such as the onset
of phase transitions (such as Bose—Einstein condensation,
superconductivity, etc.), our framework would correctly
describe the excitations of such systems, which can be
understood as fluctuations on top of an ordered state.
For example, the dynamics of Bogoliubov excitations of
a Bose condensate should be accurately described based
on a quantum sensitivity analysis of the Gross—Pitaevskii
equation [46].

This observation informs the “thesis” of this Perspec-
tive: that emerging platforms for accessing nonlinear dynam-
ics in materials should enable new sources of quantum light,
even If the underlying nonlinearities are different in form
from those that have been long-studied in optics (namely
non-resonant second- and third-order nonlinearities). This
program, of identifying quantum effects in new classical
nonlinear systems, can be made algorithmic from the stand-
point of quantum sensitivity analysis. In particular: (1) take
some nonlinear system, potentially with many degrees of
freedom, for which we have a classical description, (2) ana-
Iytically compute, or simulate, the dynamics along with
their gradients, (3) compute noise/correlations for any input
statistics, and (4) then use tools like Bloch-Messiah to find
the degrees of freedom which are most strongly squeezed.
This new framework should allow one to very efficiently

3 Letus consider the dynamics of a quantum particle (such as an elec-
tron) propagating in free space. A particle prepared in a wavepacket
with some initial position and momentum spread ¢,(0), 5,(0) will
spread spatially (but not in momentum, since momentum is con-
served). We now show that the rate of spreading is perfectly pre-
dicted by the quantum sensitivity analysis approach. The classical
equations of motion are X = p/m and p = 0, with x being position,
p being momentum, and m being the particle mass. The solution is
X(t) = x(0) + p(0)t/m, and p(t) = p(0). Assuming an initial condition
where x and p are uncorrelated (so that (xp + px) — 2(x){p) = 0),
quantum sensigivity analysis yiglds for the final position uncertainty:
020 = (29 ) 620) + (29 ) 6%(0) = 63(0) + o3 () /m?. This fol-
lows from Eq. (S14) of the Supplementary Information. The momen-

2
tum uncertainty also follows from Eq. (S14) as: a;(t) = ( gxp—(‘O‘; ) c(0) +

2
(%) o-;(O) = o-é(O). Both of these are the correct result (see e.g.,

[100], and note that for a particle in a pure state, ¢ p(0) = n/20,(0).
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find so-far hidden quantum effects (in potentially very com-
plex) systems which haven’t been studied this way. We will
give an example of this in the next section.

3 Quantum optics at terahertz
frequencies based on driven
collective excitations

In this section, we introduce two emerging platforms for
nonlinearity that should enable generating quantum light at
terahertz frequencies, a frequency range in which squeez-
ing and entanglement has not yet been realized. We should
note that in using the word terahertz, we are broadly includ-
ing light of frequencies ranging from 1THz to a few tens
of THz; the upper part of this range is often referred to as
mid-infrared. The importance of realizing squeezing and
other quantum effects at these frequencies, while being of
intrinsic fundamental interest, may also lead to important
improvements in applications which make use of terahertz
sources. For example, squeezing at terahertz frequencies
could open up opportunities in molecular spectroscopy and
terahertz communications. Recently, the response of mate-
rials to intense pulses of mid-infrared and terahertz light is
coming into focus. In part, this is due to steady technological
advancements in the efficiency of sources in this spectral
range, which are typically realized based on difference-
frequency generation processes that convert nearby fre-
quencies of an IR-vis pulse into a broad spectrum of much
lower-frequency radiation. Light fields at these frequencies
can resonantly drive motion of the lattice (phonons) of a
material, as well as motion of spins (magnons).

Let us start with the case of phonons. Phonons can
be categorized as acoustic or optical. At zero wavevector
(a good approximation for the wavevector of the driving
light, due to the fact that the wavevector of light is much
smaller than a reciprocal lattice vector of the underly-
ing crystal), optical phonons have a finite frequency while
the acoustic phonons are at zero frequency. Hence, light
drives optical phonons, provided that they have a finite
electric dipole motion associated with their oscillation. Such
dipole-carrying optical phonons are called infrared-active,
as opposed to Raman-active phonons, which can still be
excited by light, albeit much less efficiently.

The response of an infrared-optical phonon to light can
be understood most simply in terms of a simple classical
model of a driven anharmonic oscillator. For a particular
optical phonon mode, we can define a mode amplitude
for the i phonon mode, denoted Q; with dimensions of
(mass)"/? x length — as is customary in the field of coherent
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phononics — which satisfies an equation of motion of the
form [45], [47] :

2
%QWV%QﬁwEQﬁV{VL({Q}) =ZE\(D). (14)

Here, y is a damping rate (measured or computed by
ab initio techniques), w, is the natural frequency, Z* is
an effective charge called the mode-effective charge, and
E;(t) is the time-dependent electric field (projected onto
the direction of the dipole of the i phonon mode). The
term V;, ({Q}) = dVy;/0Q is a nonlinear force which can
depend on other phonon modes. For example, in a down-
conversion process, there could be a term in the potential
Vi of the form QiQ§ which generates lower frequency
phonons in mode j. Ignoring the nonlinear term for the
time being, we may immediately see from Eq. (14) that in
response to a time-harmonic drive of the (complex) form
E; = E;e”!, the phonon mode will also undergo a coher-
ent sinusoidal oscillation of complex amplitude

Qy =Z'E;y/ (@) — * — iwy), 15)
which increases with the strength of the drive. As the drive
strength increases, one can see from Eqs. (14) and (15) that
the nonlinear terms become increasingly comparable to the
linear terms, since they grow faster with the drive strength
(for weak driving).

The electric fields needed to reach the nonlinear regime
depend on material (which impacts the phonon dispersion
and modes), as well as driving frequency and pulse dura-
tion. For infrared-active phonons in perovskite materials
(e.g., LINDbO,, SrTiO4, KTa0s,), the typical field scale needed
to access nonlinearities with 100 fs pulses is on the order
of 1 MV/cm. For longer pulses, the needed fields drop due
to the mechanics of resonance, but also may lead to dele-
terious heating dynamics. A variety of nonlinear effects
have been probed, arising from different terms in the non-
linear potential. The effects of these nonlinearities can be
described in terms very familiar to those who have studied
nonlinear optics. For example, a term of the form Q%Q2
can generate a second-harmonic mode Q, (at frequency
2mw) when the material is driven by a field resonant with
mode Q, at frequency w. Such effects have been demon-
strated now in a variety of material platforms [48] and are
promising as a form of creating controlled deformations of
material lattices to induce control of functional properties of
materials (electronic, optical, and magnetic properties, for
example [49]). Although the distortions described thus far
apply to every irradiated unit cell, being in essence uniform
throughout the crystal, it is possible to engineer spatial vari-
ations in light-induced deformations, such as line-defects
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[50] and localized deformations that propagate through a
structure [51].

Advances in generating strong fields at mid-infrared
frequencies have made it possible to access even higher-
order terms in the nonlinear potential of the lattice. For
example, analogues of high-harmonic generation have been
demonstrated, generating third-, fourth-, and even fifth-
harmonics of optical phonons in lithium niobate [52], as
illustrated in Figure 1a and b. Such higher-order polariza-
tion is readily detected optically.

The same nonlinear term (Q%Qz) can also generate
low-frequency phonons and even static rectification. For
example, driving the mode Q, with a pulse can lead to driv-
ing terms with a frequency equal to the difference between
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two frequency components of the original pulse (difference-
frequency generation): such phonons generated can of
course be at very low frequencies [55], [45], [56], [57]. It is
similarly possible to generate zero-frequency components
based on this approach, leading to a DC force on the mode
Q.. It is possible for example to generate acoustic phonons
through this coupling scheme. In another approach, if one
drives the mode Q, at a frequency defined as 2w, it is
possible to generate a mode Q; at frequency w. This pro-
cess, which is the inverse of second-harmonic generation, is
exactly analogous to parametric down-conversion in optics,
and it (and analogues) has been observed in a variety
of platforms including phonon polaritons in thin films of
silicon carbide [53] cuprates [25], and excitonic insulator
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Figure 1: Terahertz nonlinearities in driven phonon and magnon systems. (a) Strong non-perturbative nonlinearities can be realized in polar
insulators (such as lithium niobate, whose unit cell is pictured here), driven by intense terahertz pulses (the yellow MIR field denoted on the figure).
The underlying material dynamics can be detected by a probe pulse (red). Nonlinear processes such as harmonic generation can be measured either
by polarization rotation or second-harmonic generation of a probe pulse. (b) For strong driving fields, the driven phonon mode can oscillate at high
harmonics of the driving field (here, as many as five). The black curves show the total spectrum. (c) In other polar systems, such as silicon carbide
(whose lattice is shown by red and blue atoms), parametric down-conversion can be realized, converting a drive at frequency 2w to a signal at w (£, Q),
which is manifested as amplification of a probe signal at frequency . Observing this amplification via reflection of the probe from the crystal entails
measuring a reflectivity larger than one, which is seen in (d) for sufficiently strong driving fields that parametric down-conversion becomes efficient.
The different curves represent the probe reflectivity for different driving fields. (e) Similarly to the case of phonons, strong terahertz drives can also
excite nonlinear dynamics of magnons, as illustrated in the canted antiferromagnet YFeO; (unit cell depected in (e)) which features quasi-ferro-
magnetic (q-FM) and quasi-antiferromagnetic (q-AFM) modes at different frequencies. The g-FM mode corresponds to precession of the net unit cell
magnetization (purple arrow in upper right inset), while the g-AFM mode corresponds to a longitudinal modulation of the magnetization (lower right
inset). (f) By driving this antiferromagnet with a magnetic field at an angle to the net magnetization, both modes can be excited, and if the drive is
strong, they can nonlinearly mix, leading to sum and difference frequency generation (SHG, DFG) as well as second-harmonic generation (SHG) which
can be observed via 2D terahertz spectroscopy as in (g). Figures (a, b) were adapted from Ref. [52] with permission from Springer Nature, while

(c, d) were adapted from Ref. [53], and (e-g) were adapted from Ref. [54] with permission from Springer Nature.
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candidates [58]. In the latter case, the driven phonon couples
to pairs of Josephson plasmons.

Based on the discussion in Section 2 on the relation-
ship between squeezing and nonlinearity, one expects that
these various forms of nonlinear dynamics should be capa-
ble of generating squeezing of different phonon modes. As
a point of terminology, when we refer to squeezing of a
particular phonon mode i, we mean that the variance of
some particular quadrature goes below one in standard
units (for the position quadrature, this means the posi-
tion variance (AQI-)2 < h/2w;, while for the momentum
quadrature, this means (API-)2 < hw;/2. The dimension-
less quadratures would then be defined as Q;/ \/m and
B,/ \/W). Previously, the term squeezing has also been
used interchangeably with having a variance that oscillates
at twice the frequency of the phonon mode. Although such
a 2w oscillation is required by squeezing (as discussed in
Section 2), it does not necessarily entail a variance which
goes below unity.

Borrowing from the deep knowledge of quantum light
generation that has been accumulated in optics, the most
obvious candidate to realizing squeezing in phononic plat-
forms is in non-centrosymmetric materials (e.g., materials
in their ferroelectric phase), where the nonlinear poten-
tial can contain cubic terms of the form described above.
However, squeezing effects are not generic, requiring a
phonon band which is at half the frequency of the driven
band. Unlike in photonics, where phase matching can be
engineered by material geometry, the phononic dispersion
properties are much less straightforward to tune. While by
no means prohibitive to achieving squeezing, it is important
to find more generic approaches to squeezing that can apply
in principle to any material. For example, approaches that
require only a single phonon band, as we will consider in
Figure 2.

In Figure 2, we argue that squeezing can be real-
ized generically in driven phononic systems that have a
strong enough driving field to realize nonlinear effects,
within the decay time of the phonons — even with a single
band - where second-order nonlinearity is not particularly
important. As an example, we take the system considered
in Figure 1a and b: we consider a material (here, LiNbO,)
in the presence of a strong mid-IR drive which excites an
optical phonon (of frequency 15 THz). The optical phonon
corresponds to a displacement of the x atom of each unit
cell, which is typically parameterized by Q#,., where . is an
atom-dependent vector of eigendisplacements. The modal
displacement Q is defined as previously discussed, such that
potential energy is given by
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Figure 2: Squeezing and correlations in nonlinear dynamics of light-
driven optical phonons. (a) A few-cycle terahertz pulse incident in

a material can resonantly excite a phonon mode, causing displacement
of the atoms in the lattice. The material considered in this example is
LiNbO,. (b) Potential energy as a function of modal displacement Q.

The analytical form of the potential is given in Eq. (16) below. For large
displacements, the potential deviates strongly from the harmonic
approximation typically used to describe phonon dynamics. (c) Dynamics
of the modal displacement and the conjugate modal momentum

(P = dQ/dt), with w, being the phonon frequency in the harmonic
approximation. Black line indicates mean trajectory. Red dots represent
a cluster of initial conditions, and dots of different colors represent how
those initial conditions evolve over time (letters have the same meaning
in (c) and (d)), showing the spread of (quantum) fluctuations in the initial
conditions. (d) Variance of modal displacement (blue) and momentum
(red), calculated using quantum sensitivity analysis, showing large
degrees of squeezing of the modal displacement (above 10 dB), resulting
from a strong insensitivity of the displacement to the initial conditions for
certain times. The driving pulse is taken to be £(t) = £ sin(wt)e‘fz/fz,
with £, =100 MV/cm, w, = 2z X 17.5 THz, and 7 =150 fs.

Data generated for this figure is simulated using the quantum

sensitivity analysis framework discussed in Section 2 and derived

in the Supplementary Information. Code which generates and plots

the data is provided in: https://github.com/nrivera494/Phonon-
squeezing-by-ultrafast-driving.

V) = 100 + a0 + 10,0+ Sa,0°  (19)
(all parameters are taken from Ref. [52]). We note that while
there is a cubic term here, corresponding to second-order
nonlinearity, the effect we will show persists at a similar
magnitude even when the cubic term is removed.

The classical trajectories associated with various initial
conditions are shown in Figure 2c, and show the existence
of certain times for which the variance of Q or P can be well
below the standard quantum limit. Examining the mean
trajectory (in black), it is clear why this can happen. The
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mean trajectory has a quasi-rectangular shape. In the rel-
atively flat regions, either Q or P hardly changes over time.
For example, around the region in phase space near time
C, Q hardly changes with time. Given that a time-delay (or
phase lag) is similar to a change in initial conditions, this
indicates that different initial conditions lead to minimal
changes in Q, leading to lower noise than the standard
vacuum level (as per quantum sensitivity analysis). This is
shown in Figure 2d where using quantum sensitivity anal-
ysis, we find certain times for which the lattice fluctua-
tions can be suppressed by over 10 times the vacuum level.
There are also times for which fluctuations in the modal
momentum can be very large, and as large as the mean
values themselves, indicating the buildup of macroscopic
fluctuations.

These results are interesting in light of the fact that sub-
stantial phonon squeezing has yet to be measured, but may
already be present in existing experiments. This would also
give a route to generate squeezed light at mid-IR and THz
frequencies, where squeezed sources have not been devel-
oped. THz light generation would be achieved by exploiting
the coupling of these IR-active phonons to light, manifesting
as phonon polaritons which could be outcoupled to the
far-field. The same far-field coupling could enable routes to
detect quantum noise dynamics of phonons as well. By being
able to map the quantum statistics of the phonon fields to
that of the radiated light, one can use the measured light
to infer the underlying quantum dynamics of the material:
this program is sometimes referred to as noise spectroscopy,
and is conventionally a powerful tool to understand dynam-
ics which are not apparent from mean-field measurements
[59].

The detection of quantum fluctuations of the electro-
magnetic field is typically done via techniques such as
homodyne detection, for which there has been much work
done at optical and infrared frequencies. At the same time,
special techniques have been developed for detecting quan-
tum noise in terahertz (and mid-infrared) fields, which
exploit electro-optic sampling instead of balanced detection
via photodiodes [43], [60]-[63]. These results are also inter-
esting given that generally, high-harmonic phonon genera-
tion as a route to squeezing has not been looked at, as it is
typically assumed that one would need a parametric inter-
action or a Kerr interaction to squeeze. We emphasize that
the perspective from quantum sensitivity analysis not only
makes clear the physics in a way that a standard approach
does not, but it also indicates a clear classical guideline to
reducing the fluctuations further. For example, by engineer-
ing the driving field to induce a more rectangular trajectory,
fluctuations could be suppressed further. This highlights an
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important role for drive-engineering as well in generating
quantum states of material excitations at new frequencies.

We note that besides using these phononic squeezing
dynamics to generate quantum light at terahertz frequen-
cies, phonon squeezing may also be used as a tool to con-
trol material properties such as magnetism, optical prop-
erties, and even superconductivity. Intuitively, the impor-
tance of phonon squeezing for these properties comes from
the fact that material properties are strongly shaped by
electron-phonon and spin-phonon coupling. Even in the
absence of real phonons (e.g., at low temperatures, which
for optical phonons, often coincides with room tempera-
ture), vacuum fluctuations are relevant. For example, vir-
tual phonon emission and re-absorption mediate electron-
electron interactions as in superconductivity, as well as
control the band-gaps of semiconductors and insulators. In
the case of superconductivity, it has been argued theoreti-
cally that phonon squeezing (multimode two-mode squeez-
ing of Raman phonons, in particular) can enhance the
superconducting transition temperature, possibly explain-
ing measurements of superconducting signatures in the
optical properties of driven materials [23]. Although Raman
phonons are not readily directly excited by light, they
can be excited by an optical phonon, the latter of which
can be coherently excited by light. I briefly also men-
tion another tantalizing possibility: engineering these vac-
uum fluctuations by means of optical cavities, and con-
trolling both phononic fluctuations and material phases
such as ferroelectrics, as recently theoretically proposed in
Ref. [64].

To conclude the discussion of phonons, we briefly men-
tion that optical phonon driving is not the only way to
achieve squeezing of phonons. Another class of techniques
are “impulsive” approaches where an ultrashort but very
intense pulse instantaneously changes the electronic prop-
erties of the system, manifesting as an abrupt change in the
phonon frequencies [30], [31]. In general, such approaches
have not unambiguously demonstrated phonon variances
much below the shot noise level, but should be capable of
doing so. That said, the impulsive stimulated Raman scat-
tering effect upon which this squeezing is based is generally
inefficient, and the short duration of driving also tends to
inhibit squeezing, which may make approaches based on
coherent driving of optical phonons ideal.

Conceptually similar progress to the case of phonons
is now also being realized for magnons, which can also
be driven resonantly by terahertz pulses. Magnons, or spin
waves, are collective excitations corresponding to wavelike
disturbances where the local magnetization is modulated.
This is in analogy to phonons, where one has a wavelike
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disturbance of the positions of the atoms which make up
the lattice. Magnons, being spin waves, respond efficiently
to the magnetic field of a terahertz pulse, which can drive
either longitudinal oscillations of the local magnetization
or transverse oscillations (leading to precession of the mag-
netization), as shown in Figure 1le and f. For sufficiently
strong driving fields, these magnon modes can mix due
to nonlinear terms which are higher-than-quadratic order
in the magnetization. This can lead to upconversion, as
well as sum- and difference-frequency generation, all of
which have been recently observed in antiferromagnets
[54], [65]. Similarly to the case of phonons, the nonlinearity
is described by nonlinear classical equations of motions
for interacting magnons. One expects that the same type of
interactions that enable sum and difference frequency gen-
eration should allow for parametric down-conversion and
also self-phase modulation, each of which would allow for
squeezing and entanglement of magnons. Similarly to the
case of optical phonons sketched above, the quantum sensi-
tivity analysis framework should elucidate which magnon
observables are squeezed, and should also elucidate which
type of nonlinear terms will be most effective in generating
quantum states of magnons.

Generating quantum states of magnons opens up a
wide variety of new possibilities. For example, squeez-
ing of magnons could lead to squeezed light in the fre-
quency range of 1 THz and even below. These frequencies
can also interface with electronics. Further, quantum states
of magnons may also have implications for spin-electron
and spin-phonon coupling, allowing the enhancement or
suppression of various relaxation and dephasing processes
mediated by coupling to spin. Further, squeezing of spin
fluctuations could lead to stabilizing or destabilizing various
magnetic orders relative to the case of thermal equilibrium.

4 Quantum optics at X-ray
frequencies using high-harmonic
generation

In this section, we discuss another important class of nonlin-
ear effects, called high-harmonic generation, that converts
part of a strong infrared pulse into ultraviolet and even
X-ray photons. This process, which was discovered in the
1990s, and recently acknowledged by the 2023 Nobel Prize
in Physics, has been realized by many groups worldwide,
in gases, solids, and even liquids. The process is famous
for realizing attosecond pulses of light [66]. The attosecond
nature of the generated light can be understood simply as
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follows: high-harmonic generation can be seen as a three-
step process [67]. In the first step, a strong electric field
strongly tilts the Coulombic potential binding an electron to
an atomic nucleus, resulting in an electron in the ground
state being able to tunnel out of the atom. In the second, the
newly-liberated electron undergoes driven motion due to
the strong oscillating driving field, which is well understood
classically in terms of a free electron in an AC electric field,
accelerating and gaining significant energy. In the third step,
the electron can recombine with the nucleus, emitting a high
energy photon in the process. This three-step process occurs
with the periodicity of the drive, and so the emitted light has
spectral content at integer multiples of the drive frequency.
Because of the symmetry of the atomic potential, only odd
harmonics are typically produced (with exceptions) which
are coherent with each other. The resulting waveform is
them a frequency comb whose pulse duration is dictated by
the overall span of the comb. The span of the comb is deter-
mined by the atomic potential and the driving field, but for
sufficiently strong fields, can span hundreds of harmonics of
the driving field, leading to UV and even soft X-ray photons
being generated.

For the first 20 years of research in high-harmonic
generation, a semi-classical picture of the process has suf-
ficed. In particular, many phenomena in HHG can be well-
understood by quantizing the electron but treating the elec-
tromagnetic field classically [68]. In this picture, the radi-
ation is understood as governed by the classical Maxwell
equations with a source. The source is simply the time-
dependent expectation value of the dipole moment of
the radiating atoms (or for solid-state electrons, the time-
dependent expectation value of the current density). This
time-dependent dipole or current is found by solving the
time-dependent Schrodinger equation in the presence of a
classical driving field either based on simple model poten-
tials or from density functional theory [69], [70].

Recently, there has been interest among several groups
worldwide in quantizing the electromagnetic field, and
understanding the signatures of quantum optics in high-
harmonic generation. Some of the earlier work along these
lines was focused on reconciling the accuracy of the clas-
sical description of HHG with the fundamental description
according to a fully quantized theory. The consensus is that
for a driving field which is in a coherent state, the induced
current experiences only weak fluctuations, closely approx-
imating a classical current, which generates coherent states
of the different harmonics — with zero quantum correlation
between the harmonics. In other words, the output state of
the light is a product state of coherent states for the different
harmonics, with the coherent state amplitudes governed by
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the classical Maxwell equations [71], [72]. This is illustrated
schematically in Figure 3a.

Although, from this perspective, HHG seems classical,
there are a number of routes to generating genuinely quan-
tum light through HHG. Generating quantum light at X-ray
frequencies, while also of clear fundamental importance,
may also lead to applications in fields like X-ray imaging
(where shot noise is alimitation) [75] and X-ray spectroscopy
of solids and biomolecules, where the often high X-ray fluxes
needed to get signal lead to sample damage [76].

Many approaches to generating quantum light from
HHG follow a close analogy with methods for generating
quantum light at optical frequencies. For example, even
in the case where coherent states are generated, measure-
ments on the output state of the harmonics can herald
a non-classical superposition of coherent states (of which
the Schrodinger cat state is an example) [72], [73], [77]. A
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proof-of-concept demonstration of this effect was put forth
early in this field (Figure 3b and c).

Beyond this, most other approaches remain only theo-
retically predicted for now. These newly predicted effects,
for the most part, have the major advantage that the
quantum light is produced deterministically. For example,
by exploiting high-harmonic generation in the depleted
regime, where a significant portion of the incident drive
gets converted into harmonics, the fundamental harmonic
can be squeezed [78]. This is in analogy to the case in
optics, where in second-harmonic generation, the funda-
mental harmonic can develop squeezing [79]. In another
example, which is conceptually related, it has been pre-
dicted that for sufficiently strong driving fields, the recom-
bining electron emitting HHG photons can emit pairs of
photons with quantum correlations [74] (Figure 3d and e).
Such two-photon HHG can be seen as a low-gain version of
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Figure 3: Quantum optics in high-harmonic generation. (a) The quantum-optical description of “conventional” high-harmonic generation: a driving
laser field, which is thought of as being in a quantum-mechanical coherent state |a,), drives an atom initially in its ground state, initiating a three-step
process of electron (blue circle) tunneling, field-induced acceleration, and recombination with a parent ion (red). In the quantum description of high-
harmonic generation, the driving field and the emitted harmonics |;(q are all in coherent states, while the driving field under goes a displacement

to a state |aL + )(L>. (b) Method of generating quantum light by post-selection. By filtering and measuring the output of HHG (top arm of the inter-
ferometer), it is possible to produce a non-classical superposition of coherent states. Its Wigner function can be measured by homodyning the filtered
output of HHG with a local oscillator, and a typical Wigner function of a superposition of coherent states is shown in (c), W (x, p), where x, p are
position quadratures of the light field at the drive frequency. The negative values are a signature of non-classicality. (d) A proposed method for
generating entangled X-rays from high-harmonic generation based on a two-photon process in which the recombining electron in (a) emits two
photons instead of one (a second-order process in quantum electrodynamics). The figure shows a gas pumped by a strong IR drive in a waveguide
geometry to facilitate phase-matching of the two-photon process. The two photons have quantum correlations which can be probed by a Hong-Ou-
Mandel experiment. A prediction of coincidence probability for the photon pairs is shown in (e), which shows perfect destructive interference

of coincidences for pairs less than 100 as apart in time, for different intensities of the drive (corresponding to different colored lines). Figure (a)

is adapted from Ref. [73], while (b, ) are adapted from Ref. [72] with permission from Springer Nature and (d, e) are adapted from Ref. [74].
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a parametric amplifier which generates squeezing in optics.
Here, the major difference in this proposed scheme, from
the depleted-regime case described above, is that even the
X-ray harmonics can have strong quantum correlations.
Beyond these examples, many others have emerged even
in the last year, including examples of using inter-atomic
correlations to generate quantum HHG light [80], [81].

Before concluding this section, we mention a different
flavor of quantum HHG which segues into the next section.
The examples above were focused on driving the HHG
source (be it a gas or a solid) with classical light (coherent
states), and exploring the quantum nature of the emitted
light. We can also ask about driving HHG with quantum
light, and more broadly, the role of the statistics of the driv-
ing light on the emitted light. One of the first studies on this
effect found that by driving HHG with light that has macro-
scopic intensity fluctuations (such that the uncertainty in
the intensity is similar in magnitude to the mean intensity),
the spectrum of the emitted HHG can be strongly extended,
supporting a much larger number of harmonics compared
to the case when driving HHG by a coherent state of the
same mean intensity [82] (Figure 4). Examples of light with
macroscopic intensity fluctuations include thermal light,
as well as bright squeezed vacuum (the squeezed vacuum
state described in Section 2, but with a mean number of
photons much larger than 1. In other words, with r very
large.). This effect is not in-and-of-itself quantum, and relies
mostly on the fact that the output HHG spectral intensity
rises rapidly with the intensity of the driving light. In that
case, the effect of intensity fluctuations away from the mean
gets enhanced. Since in the case of both thermal light and
bright squeezed vacuum, there is a significant probability
of having an intensity twice or even thrice the mean value,
itis as if the HHG is driven by an effectively higher intensity,
which in the classical case, leads to higher frequency output.
Such effects have some precedent in perturbative nonlinear
effects such as second-, third-, and fourth-harmonic genera-
tion seeded by bright squeezed vacuum [83], and proof-of-
concept experiments have emerged for these effects [84].
Further explorations into the role of multimode correlations
are presently underway [85].

It is important to emphasize that this effect can be
understood in a semi-classical way, as the same effect can
be realized by driving with intense thermal light, which is
effectively classical insofar as a thermal state can be repre-
sented as an incoherent mixture (probability distribution)
of coherent states [86]. The same effect can also be realized
by driving the HHG with an intense laser with extremely
high intensity fluctuations, and the origin of the effect is
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ultimately the strong sensitivity of the high-harmonics fluc-
tuations in the intensity of the driving laser. I further empha-
size that definitive quantum signatures, such as quantum
coherence, at the output of HHG, at the time of this writing,
remain to be explored. Indeed, the broader question of how
the quantum state (rather than the mean intensity) of the
output light depends on the quantum state of the driving
field, remains relatively wide open for exploration.

We conclude this section by describing some of the
likely and important future directions of exploration in the
quest for quantum light at ultraviolet and X-ray frequen-
cies. One thing that is missing from the discussion above
is strongly squeezed light at the harmonic frequencies.
Squeezing approaches based on depletion or post-selection
described above apply to the lower harmonics, or the fun-
damental. The two-photon HHG approach theoretically pre-
dicted is analogous a low-gain parametric amplifier: the
squeezed state described earlier, of the form |y) ~ e""|0)
is, for r < 1, a superposition of a vacuum state and the
two-photon state (with a probability proportional to r2). The
probability of generating two-photons in the two-photon
HHG process described in Ref. [74] is much smaller than one,
and is analogous to the weakly-squeezed state described
above. Generating something closer to the squeezed states
used in metrology at optical frequencies requires making
the two-photon nonlinearity more efficient, through the use
of feedback cavities (e.g., based on highly efficient Bragg
mirrors at X-ray wavelengths) or solids, which generate
HHG more efficiently than in gases.

Another important question is related to the effect of
noise in the driving lasers which induce HHG. Lasers at
these ultra-high intensities, as will be mentioned in the next
section, tend to have noise levels far in excess of the level
associated with coherent states (often by orders of magni-
tude). At sufficiently high noise levels of the drive, the output
harmonics of the HHG process will not exhibit squeezing.
There is therefore an important question as to how the noise
in the drive, as well as quantum noise in the harmonics,
affects the overall quantum state of HHG. Finally, we should
mention that beyond HHG, there are other effects capable
of generating X-rays with quantum properties. For example,
free-electron lasers produce intense X-ray beams which
can undergo nonlinear dynamics in materials. Exploiting
those nonlinear dynamics could provide a route to gen-
erating squeezed X-rays as well. In all of these cases, the
quantum sensitivity analysis framework described in this
work should allow insight into all of these questions and
more.



DE GRUYTER N. Rivera: Creating quantum states of light and matter with intense laser fields == 1851
(b) (c)
= - gohfrent =
== FOC all
'% = Thermal 8|28 ]
£ - BSV L o
@
[
£ o7
k]
3 riid
g < |3
o 2
) - /ﬁ\/\
n
. - Y

0 50 100
Harmonic order

150 2 3 4 5
Photon energy (eV)

Figure 4: Driving high-harmonic generation (HHG) with quantum light. (a) Typically, HHG is driven by light which can be thought of as being in

a quantum-mechanical coherent state. However, one can consider driving HHG with intense light with different statistics, such as bright squeezed
vacuum or even thermal statistics. (b) When looking at the spectrum of HHG generated by different quantum states (coherent, Fock, thermal, and BSV)
with the same mean intensity, BSV and thermal light can generate much higher harmonics, beyond the conventional cutoff associated with coherent
light. This is because thermal and BSV light have strong intensity fluctuations, and so their intensity can in principle be much higher than the mean
intensity. (c) Experimental proof-of-concept for the effect, suggesting that harmonic generation in solids can be more efficient when driven with
BSV-like light, compared to coherent light of the same intensity. (a, b) Is adapted from Ref. [82], while (c) is adapted from Ref. [84]. (a-c) are modified

with permission from Springer Nature.

5 Outlook

The development of new platforms for nonlinearity, at tera-
hertz frequencies and even X-ray frequencies, as I've argued
above, gives promising new avenues for generating quan-
tum states of light at new frequencies, as well as quantum
states of material quasiparticles. What all of these nonlin-
ear platforms have in common is that they require driv-
ing by fairly intense lasers. I've also shown that for the
case of phonons, even fairly low quality factors (approxi-
mately 10) do not prohibit the squeezing from happening.
We expect that to also be the case for magnons. Neverthe-
less, there are a number of important questions that will
need to be resolved before such effects can be realized and
exploited in earnest. In fact, as we’ll argue now, this field
will require developments in fundamental laser physics and
technology.

In the standard quantum optical description of
strongly-driven systems, it is almost universally assumed
that the driving field is in a coherent state. This assumption
is nearly always violated in practice with high-power

lasers. A simple way to see this is that many high-power
lasers are realized by amplifying a lower-power laser
(e.g., via an erbium-doped amplifier or a rare-earth-doped
laser crystal). Assuming that the lower power pulse is in
a coherent state, the amplified light will have intensity
fluctuations in the total photon number
(An)* = (2G — 1)(n), an
where (n) is the number of photons at the output of the
amplifier, and G is the power gain. The Fano factor F =
(An)*/(n) = 2G — 1, in contrast to a coherent state, where
this ratio is 1 (corresponding to Poissonian statistics). As is
seen from Eq. (17), for large gains, the intensity (and also
phase) fluctuations of the amplified light are large, and this
noise can transfer to the system that this laser is used to
drive, be it phonons or magnons or a gas undergoing high-
harmonic generation. For large gains typical of millijoule
and several microjoule pulses, this noise transduction can
be substantial.
The discussion of the previous paragraph raises a larger
question as to what noise characteristics are required for



1852 = N.Rivera: Creating quantum states of light and matter with intense laser fields

the driving fields in order to realize states that are genuinely
quantum. In fact, this is currently a frontier area in laser
physics, with many theoretical and experimental questions.
For example, there are few measurements of quantum noise
of very high-power lasers. In part, that is because of a
paucity of low-noise detection systems that can handle high
powers. Typically, quantum statistics of light in the infrared
and visible regime would be determined by photocurrent
statistics in different configurations (direct detection, bal-
anced intensity detection, homodyne, etc.). The photocur-
rent is typically generated by illuminating a photodiode.
But most photodiodes saturate at average powers which are
quite modest compared to those used to drive the material
systems discussed in this work.

Another major question is related to the limits of noise
suppression. Given a system which is far from being in a
coherent state (i.e., for an amplified laser), is it possible to
suppress noise to, or even below the shot noise level associ-
ated with coherent states? Recently, this question has been
broached, where it has been shown that for femtosecond
pulses with noise well-above the shot-noise level (10 dB or
10X more noise than a coherent state), nonlinear filtering
can strongly reduce the noise, generating squeezed light
with noise 4 dB below that of a coherent state: the total
attenuation was roughly four times less than needed from
linear attenuation to get the same variance (linear attenua-
tion reduces the intensity noise as well as the average inten-
sity) [40], [41]. This is due to an “attractor” effect, in which
the output of the nonlinear filtering process is strongly
insensitive to changes in the initial pulse incident into the
nonlinear filter.

In general, an answer to the question of how to produce
high-power lasers which are close enough to being coherent
states is wide open, since it requires understanding quan-
tum noise in systems that are often nonlinear (due to large
powers), multimode (spatially and temporally), and non-
conservative (due to gain and loss). Along these lines, there
have been a number of developments in numerical tools
and theoretical techniques to understand noise dynamics in
nonlinear and multimode systems [87]. Beyond that, a num-
ber of new platforms have been explored in the context of
understanding the fundamental physics of quantum noise,
from soliton microcombs [9], [88], [89], to multimode fibers
[90], supercontinuum generation [40], and pulsed optical
parametric oscillators [91]. On the theory side, a number
of suggestions have recently been proposed for creating
high-power lasers with noise at or below the quantum shot-
noise limit. Approaches include solid-state [92] and semi-
conductor gain media in cavities [93] with Kerr nonlinear
media (leading to nonlinear gain which adds less noise than
conventional linear gain), as well as nonlinear cavities with
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a frequency-dependent outcoupler that can do not outcou-
ple for certain intracavity intensities (representing a type
of nonlinear loss) [94], [95]. This latter approach can be
thought of as a passive feedback scheme that autonomously
keeps the intensity at a certain well-defined level.

Once these questions are resolved, several exciting
opportunities should open up based on the generation of
squeezed and low-noise systems at terahertz and X-ray
frequencies. For example, squeezing at terahertz frequen-
cies could open up opportunities in molecular spectroscopy
and terahertz communications, while squeezing at X-ray
frequencies could open up opportunities in X-ray imaging
(where shot noise is alimitation) [75] and X-ray spectroscopy
of solids and biomolecules. In this latter case, squeezing
could be of interest if extended to suitably high X-ray fluxes,
as squeezing would lower the powers needed to do spec-
troscopy, which is important since many systems and mate-
rials get damaged by X-ray fluxes needed for spectroscopy
measurements [76].
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