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Abstract: Arrays of atomic emitters have proven to be a
promising platform to manipulate and engineer optical
properties, due to their efficient cooperative response to
near-resonant light. Here, we theoretically investigate their
use as an efficient metalens. We show that, by spatially
tailoring the (subwavelength) lattice constants of three con-
secutive two-dimensional arrays of identical atomic emit-
ters, one can realize a large transmission coefficient with
arbitrary position-dependent phase shift, whose robustness
against losses is enhanced by the collective response. To
characterize the efficiency of this atomic metalens, we per-
form large-scale numerical simulations involving a sub-
stantial number of atoms (N ~ 5 X 10°) that is consider-
ably larger than comparable works. Our results suggest
that low-loss, robust optical devices with complex function-
alities, ranging from metasurfaces to computer-generated
holograms, could be potentially assembled from properly
engineered arrays of atomic emitters.
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1 Introduction

Light-mediated dipole—dipole interactions in dense ensem-
bles of atom-like emitters, and the wave interference
encoded in them, can lead to a cooperative response that
is markedly different from that of an isolated emitter [1],
[2]. This resource is most effectively harnessed in ordered
arrays of emitters with subwavelength lattice constants,
where the collective behavior leads to nontrivial phenom-
ena, including an efficient, directional coupling to light.
Capitalizing on these properties, many works have explored
classical and quantum optical applications of atomic arrays
[31-[22], such as the realization of an atomically thin mir-
ror [23]-[25]. Perhaps most relevant to the theme of this
paper, these arrays have been proposed to implement vari-
ous classical optical functionalities, including nonreciproc-
ity [26], optical magnetism [27]-[29], wavefront engineering
[28]-[30], polarization control [31], [32], and chiral sensing
[33]. Here, we explore a distinct route toward their applica-
tion as an optical metalens, which only requires the ability
to design the positions of identical emitters.

Metalenses have recently emerged as a promising alter-
native to traditional bulk optics, enabling complex optical
operations while retaining subwavelength thicknesses [34],
[35]. Their functionality demands simultaneous control over
both transmission intensity and phase pattern. In conven-
tional metasurfaces, this is achieved by spatially varying
the size, shape, and orientation of individual nanoscatter-
ers, which generally support both electric and magnetic
modes. In contrast, the optical response of atom-like quan-
tum emitters is usually dominated by electric dipole tran-
sitions, and it offers limited control over their radiative
properties. On the other hand, atomic emitters represent an
excellent playground to engineer collective effects, as their
electronic transition can provide a low-loss, near-resonant
optical resonance, with a large scattering cross section ~
ﬂf), compared to their point-like, physical size [36]. Inspired
by the paradigms of conventional metasurfaces, previous
works have proposed to engineer an optical metalens out of
a bi-layer atomic array, by locally shifting the resonance fre-
quencies of the individual emitters with additional dressing
lasers, whose intensities should vary on a subwavelength
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scale [28]-[30]. A similar approach was also proposed in Ref.
[37], involving a disordered sheet of atoms.

With one eye on integrated photonic devices, here we
propose a different mechanism to realize an efficient metal-
ens, which only requires a suitable choice of the positions
of solid-state, atom-like emitters. Specifically, we demon-
strate that one can achieve full control of the transmission
phase in a bi-layer, rectangular array, while maintaining
unit transmittance, by simply varying lattice constants and
layer spacing. Moreover, by adding a third layer, we show
that these transmission properties can be robustly main-
tained even in the presence of nonradiative losses or other
imperfections, owing to the enhanced collective response.
Finally, we demonstrate that these structures can be used
as building blocks of an efficient metalens, which we verify
through large-scale numerical simulations involving a sub-
stantial number of emitters (up to N ~ 5 x 10%), which is
considerably higher than comparable works [38]-[49]. The
corresponding code is available for public use at Ref. [50],
provided with a broader, user-friendly toolbox to simulate
the linear optical response of an arbitrary set of two-level,
quantum emitters.

The rest of the paper is structured as follows. First,
in Section 2, we review the concept of metalenses, and we
introduce the physical system under analysis and its the-
oretical model. Then, in Section 3, we show how arrays
of atomic emitters can be engineered to guarantee unit
transmission and tunable phase shift. In Section 4, we use
these elements to design an illustrative metalens composed
of atomic arrays, and in Section 4.1, we test its behav-
ior through extensive numerics, while optimizing its free
parameters via a global particle-swarm algorithm [50].
Finally, in Section 4.2, we probe the resistance of that design
against different sources of losses or imperfections.

2 Overview of metalens concept
and presentation of our system

Conventional refractive lenses rely on local variations of
the optical path inside the lens (where light experiences a
higher, positive refractive index) to induce a spatially depen-
dent phase shift. Thereby, the wavefront is shaped in such
a way that the output beam focuses at a designed distance,
as pictorially represented in Figure 1a. In the past couple of
decades, however, the novel idea of developing flat metal-
enses with much smaller footprints has emerged [51]-[55].
These metalenses rely on the electromagnetic response
of tailored nanostructures to locally impress abrupt
phase shifts on the transmitted light [35], [56]-[58], while
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Figure 1: Pictorial comparison between a textbook bulk lens and

an atomic metalens. (a) Bulk lens of refractive index n, whose spatially
variable optical path d(R) induces a phase delay ¢,(R), which curves
the incident wavefront, to make it focus at the target distance.

(b) Schematic structure of an atomic metalens. Its building blocks consist
of at least two atomic arrays in series, whose subwavelength lattice con-
stants d, ,, < 4, can be engineered to ideally ensure a fully directional

XY,z

transmission, with an arbitrary phase shift. For a realistic, lossy system,
three atomic layers are required to enhance the robustness to losses.

maintaining a thickness on the order of the wavelength or
less [34], [35].

Regardless of physical implementation, the function of
a simple ideal lens of focal length f on a monochromatic
input beam of light with wavevector k = 27/ 4,)Z = kyZ is
to impart the position-dependent phase profile

Brens(R) = kg (f —\/R+ f2> + by 6))

upon transmission. This phase is defined modulo 2z, and
here we adopt the convention —7 < ¢, < 7. Moreover,
we define the transverse coordinate R = y/x* + y?, while
the parameter ¢, corresponds to the phase at the center of
the lens [53], [59]. Rather than using dielectric or metallic
nano-elements to realize this phase, an atomic metalens
instead relies on the use of properly positioned, two-level,
solid-state emitters (see Figure 1b).

Although the theory that we present will be rather
general, from an experimental perspective color centers in
diamond can offer a promising framework for its implemen-
tation, as they stand out for their excellent optical properties
[60]. Specifically, they behave as atom-like emitters with
well-defined selection rules and a dipolar response aligned
along one of the four possible tetrahedral directions of the
diamond lattice [60]-[65]. Current fabrication technologies,
moreover, offer good control over their spatial position [66],
up to <10 nm [67], [68]. At the same time, recent works
have explored ways to fix the dipole orientations along a
well-defined axis [69]-[72] or create exactly one emitter
at a target position [73], [74]. Although the full combina-
tion of these properties into either 2D [75], [76] or 3D [77]
large-scale arrays remains a challenge, recent experimental



DE GRUYTER

efforts show promising results toward that direction [74].
Concretely, to achieve high-resolution 3D structures, one
can envision a process of patterned ion implantation fol-
lowed by near-field enhanced laser writing, to determin-
istically write defects at the desired locations. This would
be followed by overgrowth of subsequent array layers [78].
Alternatively, processes utilizing block-polymers can also
realize the desired resolution [79]. In principle, all these
processes could be modified to create desired arrays of point
dipoles.

More specifically, we focus on the case of Silicon
Vacancy (SiV) centers, which we model as idealized two-
level emitters with resonant frequency 2zc/w, = 737 nm.
In this model, we assume that the fabrication process per-
mits to preferentially discriminate over the four possi-
ble orientations, so that all the emitters have the same
dipole matrix element P, = Py,X. Moreover, we charac-
terize these emitters with both a coherent, radiative and
elastic scattering rate I'y = k3|P;|*/(3z¢h), and an addi-
tional broadening I'" ~ 5.75I"; which accounts for losses
and other deviations from the ideal case. Here, k, =
27 /Ay = nw,/c denotes the resonant wavevector within
the bulk diamond of refractive index n ~ 2.4. Further
details on the definition of I'” are discussed in Appendix A.
Although the ratio I'y/(Iy +I") ~ 0.15 is relatively low,
the optical response of an atomic metalens is protected by
the collective behavior, thus allowing for higher efficien-
cies. To conclude, although we focus on this illustrative
level of detrimental broadening, in Sec. IVB, we study the
behavior of our system when increasing I’ by orders of
magnitude.

3 Global control of transmission

We now introduce the theoretical framework to capture
the linear optical response of a collection of N quan-
tum emitters in response to a monochromatic classi-
cal field, allowing for arbitrary positions. For intensities
below the saturation threshold, the nonlinear behavior
of a quantum emitter is negligible, and each SiV lin-
early responds to near-resonant light with a characteristic
polarizability ay(A,T) = =37, /[(A +i(Ty +17) /2)k3 |,
where A = @ — wycorresponds to the detuning between the
input w and resonant w, frequencies [80].

The total field at any point in space consists of the sum
between the incident field E;, (r) and the field rescattered by
the atomic emitters, reading

K2 N
Eq(r) = Eip(r) + ;";G -r)-p; @
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where the dyadic Green’s tensor

iko |
V® V> e )

I
G(r) = 477:( TR i

defines the scattering pattern of each atomic dipole p; =
p;X. For simplicity, the Green’s tensor is computed at the
resonant frequency w,, making the equations local in time.
This approximation is commonly adopted in the context of
atomic physics, owing to the small bandwidth of the optical
response I'y < @, [5]. Moreover, this approach becomes
exact in the resonant limit of A =0 that will be later
considered.

The dipole moments of the emitters are linearly driven
by the total field at their position, leading to the self-
consistent coupled-dipole equations [81]

D _ Q. (1)
Po_ 37r l +/§;G’JP1 @

which account for the process of multiple light scattering
in a nonperturbative fashion. Here, we defined the parame-
ter G;; = 3z /ky)X - G(r, - r;) - X, while we introduced the
input Rabi frequency Q;, (r)= P; - E;,(r)/A.

3.1 Transmission of M arrays in series

Our goal is to show how the transverse lattice constants d, ,
and distances d, of a stack of M > 2, 2D rectangular arrays
of atomic emitters can be chosen to impress an arbitrary
phase shift, while preserving unit transmission. To do so, it
is useful to define the atomic dipoles as p,,;, whose double
indices identify the positions as r,,;; = z,,Z + R, with trans-
verse coordinates R; = x;X + y§.

We first review the cooperative behavior of a sin-
gle, rectangular 2D array, placed at z = z,,. For simplic-
ity, we assume that the input light is a X-polarized,
plane wave E; (R,z)=E,e’?&, and we focus on the
limit where the arrays infinitely extend in the transverse
directions X, §. Within this regime, any generic solution
Pmj = / dq,, pm(qu)ei‘lw'kf of Eq. (4) can be written as a
superposition of transverse Bloch modes with wavevec-
tor q,,. A plane wave at normal incidence, however, only
excites the mode with vanishing transverse wavevector
q,, = 0, meaning that all the dipole moments simplify to
Pnj = Pn(dy = 0) = p,,. The whole array, then, coopera-
tively responds to light as a single, collective degree of
freedom, with an effective polarizability .., = ao(A —
®coops Leoop)s Characterized by the cooperative decay rate
[eoopldy,y) and frequency shift a,,,(d,,) of the excited
mode [23], [24]. Physically, these properties come from the
single atoms interacting with the fields generated by all

coop?
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the others in the plane; mathematically, when assuming
Pmj = P In Eq. (4), one obtains the in-plane contribution
T0Y 2:Gm = —®caop + il cqop — I'y)/2, which can be com-
puted with the prescription of Refs. [6], [82], [83].

Once excited, the field coherently scattered by each
array can be calculated via Eq. (2). Due to the discrete trans-
lational symmetry, the array can add a reciprocal lattice vec-
tor ki‘;’b) = 2zr(ak/d, + by/d,) to the incident field, where
a,b € 7 are integers. This results in a set of diffraction
orders with total wavevector k'“ = kﬁ(‘;’b) + k"D, where

the z-component is k" = K2 — |kf{‘;b)|2 since energy

is conserved |k(“’b)| = Kk,. In the relevant subwavelength
regime d, , < 4, all diffraction orders become evanescent
except kgo,m = k,. This ensures the selective radiance of
the array into the same mode of the input light [84], [85],
with a cooperative decay rate I'¢,,, = 3AyAL/ (4rd,d,) that
scales inversely with the lattice constants, and can thus
be significantly greater than the single emitter rate. When
stacking M arrays consecutively, the scattered light is then
constrained within the normal direction k = kZ, and each
array responds with the same polarizability a,,, men-
tioned before (as pictorially described in Figure 2). At this
point, Eq. (4) simplifies into a smaller set of M equations for
the dipole amplitudes p, of each array [16]

3 M-1
Pa _ %eoopKy | Qo i Pn
L= —F 2 —— e 4 Coum 21, (5)
PO 3 Fcoop mz¢n PO
Y
A
TTTTTTTTT S\ : o .\!\\
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: : I Ay
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Figure 2: 1D, cooperative model for a 3D atomic array, illuminated at
normal incidence. We consider a stack of M subwavelength, rectangular
2D arrays of atomic emitters with constant d, ,, separated by a longit-
udinal distance d,. The emitters are identical two-level systems,

with a resonant frequency @, and spontaneous emission rate I"y, which
identify the polarizability ay(A = @ — @, I). The layers are illuminated
at normal incidence and can scatter light only in this direction (red, wavy
arrows), since the other diffraction orders are evanescent (blue, shaded,
wavy arrows). Within each 2D array, the optical response is characterized
by a single-mode, collective transition, with cooperative resonant
frequency @, and decay rate I'y,,, = 3T, A} /(47d,d,), characterizing

the cooperative polarizability & yo, = ag(A = @coeps Legop)-
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where Q; = €,,(0,0), while the terms G,, = G4 + ¢&V
are related to the field scattered by an array at z,, and
probed by the array at z,. Its radiative part is given by
Grad = (i/2)elkolzn=2l while G2V is the sum of the evanescent
diffraction orders with imaginary wavevectors k;“’b ) whose
value is reported in Appendix B.

After solving the set of collective coupled-dipole
equations Eq. (5), one can use Eq. (2) to reconstruct the field.
Since each array can only selectively radiate into the same
mode of the input light, it is straightforward to define the
far-field transmission and reflection coefficients [16]

T )
i, =1+ 5" Y % ez,
0 m=1"0 )
F M
Iy = i coop h eikozm
2Q, ~ Py

We notice that these equations can be solved with-
out fixing any value of €, due to the linearity of the
optical response p,, « €. Similarly, Eq. (5) can be directly
solved for the dimensionless ratios p,,/P,, so that the
value of the dipole matrix element 7, does not have to be
specified.

To conclude, for the following calculations, we find it
favorable to restrict to a regime where the evanescent fields
Gt} ~ 0 are negligible. For a subwavelength, rectangular
lattice, an approximate rule of thumb that guarantees this
condition is that all the diffraction orders are at least expo-
nentially suppressed by a factor ~ 1/e?, which happens
whend, 2 d, /. As discussed in Appendix B, further cau-
tion is required when approaching d, ~ 4, due to perfect
interference effects that make G* nominally diverge in the
limit of infinitely extended 2D arrays.

3.2 Phase control

A metalens is typically composed of nanostructures as wide
as S 4y, which transmit the majority of light and impress a
tunable phase shift. We now show how the lattice constants
of a stack of atomic arrays can be similarly engineered, aim-
ing to use them as the building blocks of an atomic metalens.
Hereafter, we define the phase of transmission as ¢,;; =
arg t,,. € (—x, z], and we explicitly focus on the resonant
case A = 0, although the same method can be extended to
near-resonant light.

We begin by considering the simplest scenario, cor-
responding to a single atomic layer in the lossless regime
of I = 0. The complex value of t;; depends on the differ-
ence between the collective resonance frequency o, (d, )
and the frequency of the incoming light, which we fixed
to the resonance frequency of a single emitter (ie, A =
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0). In principle, this means that the transmission phase
¢y, = arg ty;, is itself tunable via the choice of lattice con-
stants d, ,. Nonetheless, using Egs. (5) and (6), it is easy
to show that high transmission and arbitrary phase can-
not be achieved with one layer of atoms, as the condi-
tions of reciprocity ry; = (t;;, — 1)e%%?n and energy conser-
vation |t |* + |y, |> = 1impose |t;; | = cos(¢y; ), which lim-
its the phase range to |¢;;| < #/2 and allows unit trans-
mission only in the trivial case of far-detuned driving,
where no phase is imprinted ¢;; = 0. On the contrary, the
largest phase shifts |¢, | ~ #/2 are obtained near reso-
nance, where the transmittance drops sharply to zero (i.e.,
the input field is strongly reflected). Moreover, the range
of achievable phases is particularly fragile to the addition
of small losses I'’ /Teoop << 1, decreasing as |¢y | S 7 /2 —
2 \I F,/FCOOP'

For an ideal system, we can achieve perfect transmis-
sion with arbitrary phase by considering a bi-layer (M = 2)
array. As long as gfg’j ~ 0, this system is equivalent to a
Fabry-Perot cavity, composed of two atomic mirrors with
the complex reflectivity r;; and transmission ¢;; mentioned
above [33], [86]. In the lossless regime I’ =0, it is well
known that such an interferometer ensures unit transmis-
sion t,; = exp(2igh;;,) when the distance between the mir-
rors matches the Airy condition k,d, = =l — arg(ry; ), with
[ € N [87]. Due to thisreason, a proper choice of dx,y’z
to keep unit transmission while arbitrarily designing the
total phase ¢, = 2¢,;, over the full (—x, ] range. This
property is represented in Figure 3a, where we indepen-
dently vary both the subwavelength lattice constants d, ,
and layer spacing d,, plotting ¢,; as a function of d, and the
single-layer parameter @ qop(d, ,)/Teoop(dy ). As expected,
we observe full phase tunability with sufficient transmit-
tance, as quantified by the nonshaded, brightly colored
regions where |t, [> > 0.5.

However, the phase range contracts as |, | = 2|¢py| S

x—4,/T"/ [coop in presence of small losses, preventing the
achievement of |¢,; | = r, regardless of how small I > 0
is. As shown by the inset of Figure 3a, this can be related
to the asymptotically small bandwidth associated to both
|hor| ~ 7 and |ty |> > 0.5 [86], [88], which makes the sys-
tem more fragile against I'". To better quantify this state-
ment, we must first set a minimum interatomic distance
d i = 10 nm, whose value is inspired by the discussion of
Section 2. This translates into d, , , > dp;, = 0.034,, which
prevents the cooperative response Iy, & I'g A2 /(d,d,)* to
become arbitrarily large and overtake any sources of broad-
ening " > 0. In Figure 3b, we then use the conventional

allows
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Figure 3: Transmission of a multilayer atomic array, as a function of
@o0p(dy )/ T coop(dy ) and d,. (a, b) Colorbar representation of the phase
shift ¢p,, = argt,, of two atomic layers, given either I” = 0 (a) or

I'= 5.75T, (b). The transverse lattice constants are varied

within the range 4, > d, , > dy;, = 0.034, which means that
I“’/l"mp y) 2 0.03. When different choices of d, and d,, are associated
to the same value of @44, (dy )/ T co0p (), the pair with the highest
cooperative decay is selected. The region where |t |2 < 0.5 is
represented by a white shaded area, while the insets show the relevant
case of ¢, = argt, ~ +xand |ty |*> > 0.5. (c, d) Same structure of
subfigures (a) and (b), but for the three-layer case. The white dashed lines
represent the chosen branch d,(d, ,) that maximizes the transmittance.
Along this path, the insets show that both the phase ¢;, = +x and the
transmission |t; |> > 0.5 can be simultaneously obtained over a much
broader bandwidth (c), becoming more resistant to the losses (d).

value I" = 5.75I", of Section 2, observing that both a suffi-
cient transmission |t,; |2 > 0.5 and full phase control can no
longer be simultaneously achieved.

In general, M — 1transparency conditions d,(d, ,) simi-
lar to that of a Fabry—Perot cavity can be found for arbitrary
values of M [89], and the addition of more atomic layers
M > 2isimportant to restore the resistance to losses around
|| ~ 7. This can be intuitively understood for even num-
ber of layers M, as a proper choice of d,(d,,) can make
the system act as M /2 cascaded cavities, so that |¢,,.| =
M|y | S aM /2 — 2M4 /T’ /Ty, For odd number of layers
M, less intuitive conditions for perfect interference hold,
but still we show that M = 3 layers are enough to provide
resistance to losses.
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To define the proper relations d,(d, ,) between the lon-
gitudinal and transverse lattice constants, we introduce a
closed-form solution of Eq. (6), which reads [90]

el1-Mad ¢

tyL = . 7
ML= o dy) — gy (k, ety @

where the function uy,(k,d,) = sin(Mkd,)/sin(kd,) relates
the finite-size behavior to the dispersion relation k(d, , ,) =
K(@¢oop(dy )/ Tcoop(dy y), d;) of an infinite chain [16]. In
the lossless regime of I = 0, the unit transmission t,; =
(=D® exp(iMk,yd,) is ensured by fixing d,(d,,) to ful-
fill k(d,,,) = an/(Md,), where the natural number a =
1,...,M —1 identifies the M — 1 possible solutions within
the first Brillouin zone. With this choice, the field acquires
a total phase shift of ¢, (d, ) = Mkyd,(d, ) + ar with
respect to propagation in the bulk environment.

In our M = 3 case, we choose the branch of dz(dx,y)
with a =2, as represented in Figure 3c and 3d by a
dashed, white line. When spanning d, ,, this is associated
to high transmittance and complete phase control, in both
the lossless (Figure 3c) and lossy I" = 5.75I", (Figure 3d)
regimes. More specifically, we scan the transverse lattice
constants d, , along the two straight lines (d, = dy;,) U
(dpin < dy, < Ag) and (dpyip, < dy < Ag) U (d, = dyyyp), which
allows to associate a unique set of spacings d, , , to any value
of ¢q(d, ) = arg ts (d, ,, d,(d, ). This correspondence is
represented in Figure 4a, showing that only a limited set
of distances A,/6 < d, < 4,/3 is required, thus implying
a maximum thickness of 2d)** = 24, /3, which translates
to ~205 nm for the case of SiV centers. To conclude, in
Figure 4b, we explicitly prove that this scheme allows, in
presence of broadening I’ = 5.75I",, to maintain a sufficient
transmittance |t; |* > 0.6 for any relevant value of ¢, .

We notice that those phases within the interval of 0 <
¢4, < 0.017 cannot be engineered, due to the limited value
of mMax wgqop & 281 ¢oe, fOr dpyy < dy, < 4g. Nonetheless,
for practical applications such as a metalens, this range can
be approximated with exactly ¢, =0 (i.e., no emitters),
as its span is negligible compared to typical discretization
scales.

4 Atomic metalens

To design an atomic metalens out of three-layer atomic
arrays, one needs to spatially tune the lattice constants d, ,,
to make the phase shift ¢ (d, ) match that of an ideal
lens, i.e., the value ¢y, (R) specified in Eq. (1). To define a
concrete recipe, we divide the transverse plane into con-
centric rings j =1,2... of radius Rj = jAR (see Figure 5a),
and we associate to each ring the central phase shift ¢; =
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Figure 4: Lattice constants d, ,, and transmittance |t, | as a function

of phase ¢,,, given I = 5.75I",. (a) We scan the transverse lattice
constants along the two straight lines (d, = d,,,,) U (di, < d, < 4,) and

min = Yy

(dmin < dy < A9) U (d), = dpyp), with dy, = 0.034, (black, dashed line).
At the same time, the choice of dz(dw) that maximizes the transmittance
allows to associate a unique set of lattice constants (colored lines) to

any phase ¢ = arg t; (d, ,, d,(d, ,)) (horizontal axis). (b) Transmittance

|t5 |? as a function of the phase ¢, (gray line). The colored points are

associated to the rings composing the illustrative atomic metalens

discussed in Section 4. Their colors are associated to the relative power
X - ; ) ) R;

of the input light over their area, i.e., Pi’n x /R,-/,1 |E;, |2dR.

Diens(Rj_1/2 + R;/2), by using Eq. (1). Here, we recall that
the initial phase ¢, is a free parameter. At this point, we
impose ¢y (d)]( y) = ¢; and extract the lattice constants d)]("y
by numerically inverting the solid line of Figure 4a. The
transparency condition of Figure 4b can then be used to
define the longitudinal constant dg = dz(d){’y). The final
metalens is then the union of these discrete building blocks,
as shown in Figure 5. By choosing AR < A, we ensure a
discretization scale with the same order of magnitude of
that of usual metalenses [34].

At the interface between the finite rings, the abrupt
change of lattice constants can potentially scatter light into
unwanted diffraction modes. To soften these detrimental
effects, in the X, §-plane we introduce a small buffer zone
between two consecutive rings, with atoms placed at inter-
mediate positions. These zones extend over the first fraction
0 < @ <1/2 of each ring, and their definition is not strict,
with many possible variants. Our approach is described
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Figure 5: Structure of an atomic metalens, with focal length f = 204, and radius R, = 104,. (a) 3D representation of the atomic metalens, where
each point depicts the position of one atom. This atomic metalens is composed of 15 concentric rings of thickness AR &~ 24, /3, with a buffer-zone
parameter a = 0.2. The lens has a width of Az ~ 24, /3, much thinner than the total diameter of 20 4,. The atoms belonging to the j-th ring have the

same lattice constants dfw,

which are uniquely associated to the phase shift qb/ = Prens(AR(2j — 1)/2) of Eq. (1) (with by = —2.06), through the curves

¢; =y, dj‘yy and dzj = dz<djyy) shown in Figure 4. The color of the atoms in each ring reflects the value of ¢;, as described by the colorbar at the
bottom. (b) Focusing of a X-polarized, resonant, input Gaussian beam with w, = 44,, by the action of the atomic metalens. The orange, shaded area
shows the textbook beam waist w(z) during the focusing process. The metalens is designed to focus the beam at a distance z; = 174,. This defines
the focal plane, where we numerically reconstruct the total relative intensity |Em,t(R,zf)/E0|2 via the input-output formalism of Eq. (2), in the lossy
regime of I" = 5.75T,. The value of |E,(R, Z/)/Eq|* is portrayed with the color scheme shown by the colorbar at the bottom. Further results from

the coupled-dipole simulations are shown in Figure 6.

in Appendix C, and we numerically associate it to a small
efficiency increase, up to an additional factor ~0.02 in the
estimated efficiency.

To conclude, we remark that for each target focal length
f, our atomic metalens is defined up to three free parame-
ters, which are an overall phase shift —z < ¢, < 7, thering
thickness d;;, < AR < 4, and the buffer fraction0 < a <
1/2.

min

4.1 Numerical simulations

To check our design, we want to estimate the efficiency of
an atomic metalens with focal length f and centered around
z = 0. To this aim, we fix the atomic positions, and we illu-
minate the system at normal incidence with a X-polarized,
resonant, input Gaussian beam focused at z = 0, which has
beam waist w, and focal intensity |E,|? (see Appendix D).
We then perform exact simulations of the linear optical
response, reconstructing the total field E (R, z) via Eqgs. (2)
and (4). We want to compare it with the theoretical predic-
tion of the field transmitted by an ideal, thin lens of focal
length f. This is given by the Gaussian beam E((R, 2), char-
acterized by the beam waist w, = w, /M, the focal position

zp=01- M) f, and the focal intensity |Ef(0,zf)/E0|2 =

M?. Here, the parameter M = 1/1+ [kowg/(Zf)]2 >1is
the so-called magnification of the lens, which quantifies
the focusing ability and ensures the conservation of energy
JEfPdR = [ |E;[*dR o Py,

To characterize the metalens performance, we quan-
tify the fraction n = P, /Py, of power P, that is correctly
transmitted into the target, ideal Gaussian mode E o divided
by the total input power P;, [91]. Operatively, this effi-
ciency can be obtained by analytically projecting E,; into
the target mode E;, namely # = [(Ef|E,,)|*. This projec-
tion has a simple, closed-form expression, which is detailed
in Appendix D. Another quantity of interest is the over-
lap between the transmitted field and the input field € =
|(Eiy |Egue)]?. Obviously, one would aim to operate in a
regime where 5 ~ 1, while € < 1, with the latter inequality
signifying that the lens performs some non-negligible trans-
formation. Finally, we notice that, for certain applications,
the main requirement is the identification of the focal spot
over the background of transmitted light. In view of that,
we define the signal-to-background ratio 7 = P, /P,, which
divides the power transmitted into the target mode P, by
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the total transmitted power P,, rather than by the total input
power. Here, one has P, = nP;,, while P, [ |E,,|*dR is
numerically computed from the total field at the focal plane
z=12z;.

To show the potential of our scheme, we can now dis-
cuss an illustrative full-scale simulation of a metalens with
focal length f = 204, and radius R, = 104,, illuminated
by an input Gaussian beam of waist w, = 44,. In this illus-
trative scenario, the ideal magnification would read M =
wy/w; =~ 2.7, associated to an ideal intensity enhancement
of [E/(0,2f) /E,|> = M? ~7.32. These simulations involve
a substantial number of atoms N ~ 5 X 10%, and the tech-
niques by which we accomplish this result are described
in the Methods. All the codes are written in Julia [92] and
are available at Ref. [50]. The free parameters AR ~ 24,/3,
¢y =~ —2.06, and a ~ 0.2 are chosen to maximize # in the
lossy regime I'" = 5.75I",. This was first accomplished via
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a brute-force optimization and then confirmed through a
particle-swarm, global-optimization algorithm [50].

The numerical results are shown in Figure 6, where we
plot the relative intensity of the total field |E (R, 2)/E, %
calculated on the horizontal plane y = 0 (top row) and at
the expected focal plane z = z; ~ 174, (bottom row). The
column on the left (Figure 6a and 6d) shows the ideal values
that one would expect for a texthook, ideal lens, i.e.,E f(R, z).
This is compared to the numerical simulations of the atomic
metalens, calculated for the lossy case I = 5.75I; (right
column, Figure 6b and 6e). Very similar plots are obtained
when studying the lossless case I” = 0, or when plotting the
intensity on the plane x = 0.

We benchmark the optical response of the atomic
metalens from our simulations, finding an efficiency # ~
0.95 and an intensity enhancement at the focal point of
|Egu(0.27)/Eg|* ~ 6.03, in the lossless regime of I = 0.
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Figure 6: Illustrative case of an atomic metalens with focal length f = 204,, radius R, = 104, and parameters AR = 24,/3, ¢, ~ —2.06,

and a ~ 0.2, illuminated by a resonant Gaussian beam with waist w, = 44,. The figures show the relative intensity of the total field |E,(R,2)/E,|?

>

calculated on the planes y = 0 (top row, subfigures a, b) and z = z; ~ 174, (bottom row, subfigures d, e). The subplots (a, d) represent the ideal case
of a textbook lens, while the subplots (b, e) show the results of the numerical simulations with = 5.75I'y. The dashed, white lines represent the ideal
value of the beam waist w(z), while the dot-dashed, white lines show the waist of the input beam if no lens were present. The efficiency of the lossy

I = 5.75T, case, estimated from the simulations, reads # =~ 0.90, while the signal-to-background ratio reads /7 > 0.98. The number of simulated
atomsis N 2~ 4.6 X 10°. Finally, the subplots (c, f) show two line-cuts of the intensity profile, along either the z axis in the x = y = 0 plane (c) or

the x axis in the y = 0,z = z; plane (f). This quantity is depicted for both the ideal (dashed, red line) and lossy (solid, blue line) cases. The gray area

in subfigure (c) depicts the space occupied by the atomic metalens.
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Similarly, in the lossy case of = 5.75I";, we obtain the
values 1 =~ 0.90 and |E,(0,z)/E,|* = 5.60. This value can
be appreciated in Figure 6c and 6f, where we compare the
ideal (red, dashed line) and numerical (blue, solid line) field
intensity along, respectively, either the z axis (inthex = y =
0 plane) or the x axis (at the focal plane). These high efficien-
cies stand out when considering the much lower overlap
€ =~ 0.42between the output field and the input beam, which
means that the atomic metalens is nontrivially acting on the
input beam. Finally, both the lossy and the lossless cases
exhibit a high signal-to-background ratio, reading # > 0.98.
To understand how the broadening I = 5.75I', affects the
efficiency, we recall from Figure 4b that the transmittance
|t; |2 highly depends on ¢y, meaning that some rings can
transmit more light than others. Considering our illustrative
metalens, the complex transmission associated to each ring
isrepresented with a colored point in Figure 4b. The overall
reduction of the efficiency due to the losses (i.e., the ratio
between the lossy I" > 0 and lossless I'" = 0 efficiencies)
agrees well with the average transmittance |ty (¢ }-)l2 of the
rings, each weighted by the relative power of the input light
illuminating their area (corresponding to the color of the
points in Figure 4b). Notably, this intuitive model explains
why the efficiency # can strongly depend on the choice
of ¢,.

Although the atomic metalens was designed to operate
for resonant light at A = 0, a similar reasoning allows to
qualitatively predict the spectral bandwidth where the effi-
ciency remains high. To show this, we calculate the coop-
erative decay rates l“goop for all the rings that compose the
metalens and weight them by the corresponding fraction of
input light, to define the average value (Fé 00 p) ~ 961", (of
the order of ~27 X 10 GHz for SiVs [93], [94]). As detailed
in Appendix E, we observe that the efficiency remains as
high as # 2 0.8 as long as |A| < (I, )/2, while quickly
decreasing outside.

To conclude, it is interesting to investigate how the
response is modified when increasing the focusing ability of
the lens, as quantified by the magnification M. Specifically,
in Figure 7, we fix w, = 44, and scan different focal lengths
f, plotting the efficiency # (blue points) and the signal-
to-background ratio # (green points) as a function of 1 <
M S wy /Ay < kyw,. Here, the maximum magnification is
associated to the limit kyw; > 1 imposed by the paraxial
approximation, while the choice of w, = 44, represents the
largest beam waist that we can compute, due to the numeri-
cal complexity of the simulation. In presence of broadening
I = 5.75T"), we observe that the efficiency remains as high
as n 2 0.82 (dotted, black line) up to M =4, where the
overlap with the input field is as low as € =~ 0.26. Overall, we
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Figure 7: Efficiency of an atomic metalens as a function of the magni-
fication, given I = 5.75I,. We fix both the waist of the input beam
to w, = 44, and the radius of the lens R, = 104, while showing
the efficiency # (blue points), signal-to-background ratio 7 (green
points), and input-field overlap € (orange points) as a function of

the magnification 1 < M < w, /4, = 4. For each point, we perform
a particle-swarm optimization of the free parameters ¢, a, and AR to
maximize the efficiency # [50]. By fitting the data, we infer

the empirical scalings # ~ 1.06 — 0.06.M, # = 1.05 — 0.03M and

€ ~ —0.04 + 1.23/ M (colored, dashed lines). The black, dotted line
shows the reference value of 0.8.

find the empirical scalings of # ~ 1.06 — 0.06. M, 7} =~ 1.05 —
0.03M, and € =~ —0.04 + 1.23/ M (colored dashed lines).
Assuming that these scalings would hold true for larger
values of w,, they would predict efficiencies as high as # ~
0.5 up to M = 10 (where the overlap with the input field is
as low as € = 0.08), and signal-to-background ratios larger
than 77 2 0.5 up to M = 20 (where ¢ = 0.02).

4.2 Losses and imperfections

Up to now, the presence of experimental losses and imper-
fections has been modeled by the addition of a detrimental
broadening I’ ~ 5.75", whose value was chosen to qualita-
tively capture some key properties of state-of-the-art exper-
iments with color centers in diamond. While our studies up
to now represent an optimistic scenario, here we investigate
the performance of the metalens as the broadening rate
I'" increases, or when the atoms are subject to increasing
spatial disorder.

First, we study the resistance to increasing levels of
broadening I'’, which we compare with the maximum
cooperative decay rate I = [ooop(dy y = dyin) & 2251
allowed in the system. To this aim, it is instructive to focus on
the single building blocks of the metalens. In Figure 8a, we
show the relation between the phase ¢, (on the horizontal



384 = F. Andreoli et al.: Metalens of atomic emitters

(a)

i

DE GRUYTER
(b) M I Teoop
0.01 0.1 1 10 102
1.0f-. P
0.8f 1
Q
g8
[
e 0.6f ]
-
04— A
1 10 102 103 10*
rir,
—n —n —€ Nin

Figure 8: Resistance to nonradiative losses. (a) Transmission of a three-layer array, given increasing levels of I'”". Similarly to Figure 4b, we use our

definition of d, , ,

to associate a unique transmittance |t; |? (color scheme) to any target phase ¢;, (horizontal axis). We then vary I'”" (vertical axis)

to track the change in the transmittance. We notice that an almost identical plot is obtained when numerically optimizing the choices of
d,,, > d., = 0.034, to maximize transmittance, proving the validity of our scheme. The black, dashed line highlights the particular case I = 5.75[,.

XYz =

The black areas (bounded by dotted, white lines) identify regions of the parameter space that cannot be obtained with any choice of d, , . (b) Efficiency
as a function of I, given an atomic metalens with focal length f = 20, radius R., = 104,, and construction parameters AR = 21,/3, ¢, ~ —2.06,
and a = 0.2, illuminated by a Gaussian beam with w, = 44,. The lines show the efficiency # (blue), signal-to-background ratio # (green), input-field
overlap € (orange), and base-line efficiency #;, = |(E,|Ein)|2 (black, dashed line). The colored, dotted lines represent the values at " = 0, while the
colored points show the case of I” = 5.75I",. The black, dotted line depicts a threshold value of 0.9, while the shaded, gray region portrays the regime
where some phases cannot be engineered anymore, corresponding to the appearance of black areas in subfigure (a). Finally, the blue asterisks show
the efficiencies in case the structural parameters AR, ¢, and « are changed to be optimal for the corresponding value of I”".

axis) and transmittance |ty |?> (color scheme), when
considering increasing values of I” (vertical axis, in
log scale). This corresponds to the extension of Figure 4b
(which coincides with the black dashed line in Figure 8a) to
arbitrary values of I". Notably, when " 2 0.15['3 > ~ 300,
some phases cannot be realized anymore (black areas in
the plot). We recall that the addition of further atomic
layers is expected to drastically increase the resistance
to losses, although presenting the drawback of adding
more atomic emitters, and increasing the overall thickness
of the metalens. Reducing the minimum lattice constant
din would similarly work, by increasing the maximum
cooperative rate Fi‘;f;.

To get further insights, itis instructive to explicitly focus
on the illustrative atomic metalens of Figure 6, with focal
length f = 204, radius Ry, = 104, and parameters AR ~
240/3, ¢y =~ —2.06, and a = 0.2. In Figure 8b, we discuss the
overall response of this metalens, for broadening levels up
to I & 3 x 102 ~ 10°T,. The blue line depicts the effi-
ciency #, the orange line the input-field overlap €, and the
green line the signal-to-background ratio #. Roughly, the sys-
tem becomes ineffective above the threshold I’ > (FZ o op) o~
0.5I" E‘(‘)‘;’; ~ 10T, Notably, the efficiency remains acceptable

n 2 0.7 as long as I > 60, although, in principle, this

corresponds to a regime where some phases around |¢| ~
7 cannot be engineered anymore (gray, shaded region). At
the same time, the signal-to-background ratio 77 remains
relatively high up to much higher losses, so that 77 2 0.9
uptoI” » 0.8 ~ 10°Tand 77 2 0.5upto I ~ STt ~
10°T,. We note that these efficiencies are calculated for
a fixed choice of AR, ¢,, and @, which are optimal only
for I'" = 5.75T",. This reasoning well describes a situation
where the amount of losses is unknown. On the other hand,
higher efficiencies (blue asterisk in Figure 8b) are obtained
by choosing optimal parameters tailored on the broadening
I’,as computed via particle-swarm optimization [50].
Finally, we discuss the effect of disorder in the atomic
positions, defined by randomly displacing each atomic emit-
ter inside a 3D sphere of radius 6d, with a uniform distri-
bution. In Figure 9, we represent with colored points the
same quantities of Figure 8b, as a function of increasing
disorder 6d. As intuitively expected, when the displacement
is comparable to d,;,, then the efficiency is strongly under-
mined, with # ~ 0. In that regime, the transmitted light is so
randomly altered, that it does not overlap anymore with the
input field either, and one gets € ~ 0. Nonetheless, we notice
that the signal-to-background ratio exhibits more robust
properties, with #7 2 0.6 up to 6d ~ 0.7d,;,. We relate these
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Figure 9: Resistance to additional position disorder. The data are
calculated for the atomic metalens with focal length f = 204, radius
Riens = 94, and construction parameters AR = 24, /3, ¢, = —2.06, and
a ~ 0.2, illuminated by a Gaussian beam with w, = 44,. The horizontal
axis represents the random displacement radius 6d in units of

the minimum lattice constant d,,. The points represent the average
efficiency (1, blue), signal-to-background ratio (7, green), and overlap
with the input beam (¢, orange). Each point is calculated by averaging
over 10 random configurations, and the error bars represent one
standard deviation. The simulation is performed for the lossy case

[ = 5.75I,. The lines represent the theoretical prediction when
replacing the random displacement with the additional inelastic rate
~2.5T" (8d, d o) = 2.5(7 /2)(6d [ d 2T, where the numerically

dis coop’

inferred prefactor stems from the additional complexity of the metalens,
compared to stacks of infinite arrays.

results to the overall drop of transmitted light that occurs in
the disordered regime.

As detailed in Appendix A.2, small displacements
in a 2D array (or in a stack of arrays) can be well
described by a supplementary broadening Ffﬁs(éd, dy) =
[76d*/(2d,d,)|Tgop(d, ), Whose scaling ensures the
dependence of the optical response only on the relative
displacement 6d/4/d,d,. For the more complex case of
an atomic metalens, we numerically find that the position
disorder can be still characterized by a supplementary
rate ~2.5F£ﬁs(5d, din), Where the empirical prefactor can
be attributed to the more fragile interference patterns
involved in the metalens response, as well as to the attempt
of capturing the overall behavior of different rings with
only one unique rate, calculated for d, , = d,. To show
this, we consider a metalens with perfect spatial positioning
but with an additional broadening rate ~2.5F£hs(5d, Ain)s
and we then use the results of Figure 8b to obtain the curves
shown in Figure 9. As long as the displacement is small
(solid part of the curves), these approximated predictions
are in good agreement with the numerical points.
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5 Discussion

Complete wavefront shaping requires the simultaneous
achievement of high transmittance and full phase control.
Usually, metamaterials achieve these requirements by engi-
neering the local properties of the individual scatterers,
such as, for example, the shape of nanoresonators. Solid-
state, atom-like emitters, however, do not provide the
same manufacturing flexibility, and theoretical proposals
of atom-based metasurfaces rely on external drives with
subwavelength intensity profiles to locally change the emit-
ter properties [28]-[30], [37]. Still, the possibility of engi-
neering a complex optical response by solely implanting
atomic-scale scatterers in a solid-state environment repre-
sents an interesting perspective on device integration and
miniaturizability [95], especially when considering the thick
substrate that is usually required by standard metasurfaces
(typically ~1 mm [34]).

In this work, we showed that stacks of two or more
consecutive arrays of solid-state emitters can be engineered
to fulfill the necessary requirements of transmittance and
phase control, by only choosing proper lattice constants
that ensure their correct collective response. Via large-scale
numerical simulations [50], we argued that these elements
can be combined as the building blocks of a metalens,
whose efficiency is robust to losses and other imperfections,
due to the collective enhancement of the optical response.
This is achieved within a maximum thickness of ~24,/3,
which might be potentially reduced even further, by prop-
erly addressing the more complicated regime of evanescent
interactions. Notably, the perfect tunability of these building
blocks and the possibility of their combination can in princi-
ple guarantee arbitrary wavefront shaping, which suggests
the extension of this mechanism to more articulated appli-
cations, such as phase-only holograms [96].

The core design of our atomic metalens is based on an
analytic map between any discretized phase pattern and the
corresponding set of lattice constants. Although this scheme
is intrinsically scalable, the design is complete only up to
three macroscopic free variables, given by the overall phase
shift ¢, of the metalens, the discretization size of the rings
AR, and the fraction a of “buffer zones”. The scalability
of this optimization step is not trivial, as it involves large-
scale coupled-dipole simulations. To facilitate it, one pos-
sible strategy would consist of investigating whether each
ring made of discrete atoms could be modeled by smooth,
flat mirrors, with proper transmission and reflection coeffi-
cients. This would enable simulation via optical commercial
software, with a computational complexity decoupled from
the number of dipoles [97]-[101]. Alternatively, it would be
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interesting to explore if a target, collective optical response
could be obtained with far fewer emitters, by inverse-
designing their positions through proper optimization algo-
rithms [102]. Some preliminary numerical simulations sug-
gest that adjoint methods might be a promising path in this
direction [103].

With our scheme, the total efficiency is protected by
the collective response, even if the losses of the individual
scatterers are non-negligible I’ > I';. Similar considera-
tions apply beyond the case of atom-like emitters, to any set
of optical scatterers with a well-defined resonant, dipolar
response, and a ratio between scattering and total cross
section equating I'y /(' + I'’) [36]. This would be the case
of plasmonic nanoparticles, for example, which are indeed
known to become more resistant to their intrinsic losses
when collectively (i.e., nonlocally) responding to light in a
2D, subwavelength array [104]. Our work, based on the idea
of combining different arrays together, can then provide
additional insights and tools to the context of nonlocal meta-
surfaces [105].

Finally, it is interesting to mention some specific
features of color centers in diamond, whose two-level
nature provides nontrivial properties both at the classi-
cal and at the quantum level. For example, an atomic
metalens based on SiVs would be extremely narrowband
and polarization sensitive, finding possible applications
in terms of spectral filtering [106]-[108], tunability [109],
or polarization control [110], [111]. Furthermore, color
centers are highly saturable objects, due to their intrin-
sic nonlinearity, and this behavior would automatically
limit the metalens response up to a threshold intensity
of light.

At the quantum level, it is known that color centers can
be embedded inside a metasurface to enhance some of their
functionalities, for example as single-photon sources [112].
It would be interesting to explore if enhanced, collective
properties of an ensemble of color centers could be more
easily designed by engineering the emitters to act as a non-
local metasurface. Some evidence exist, for example, that
stacks of two atomic arrays can exhibit enhanced nonlin-
ear correlations [86]. More generally, a metasurface based
on color centers could provide a possible playground for
the emerging contexts of quantum metasurfaces [113] and
quantum holography [114], [115].

Methods: We numerically simulate the optical response
of the system by solving the coupled-dipole equations of
Egs. (2) and (4), whose computational time scales as ~ N°,
where N is the number of atomic dipoles. The input Gaus-
sian beam must have a waist w, much smaller than the
radius R of the atomic metalens, to avoid scattering from
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the edges or a non-negligible fraction of light passing outside
the lens. Due to the paraxial approximation, however, this
imposes the constraint 1y < wy < Ry, Furthermore, to
counteract the effects of the broadening I'’, one must work
with small lattice constants down to d;, ~ 0.03%,, thus
explaining the necessity of simulating up to N ~ 5 x 10°
atomic dipoles. To accomplish this task, we exploit the fact
that the system is symmetric for X — —% and § — —¥, which
implies that the each dipole d; is equal to those of the atoms
at the mirrored positions. The actual degrees of freedom are
given by the number of atoms satisfying x; > 0 and y; > 0,
which are roughly N ~ N /4. The coupled dipole equations
can be then simplified by accounting only for these atoms,
and then considering as if each of them scattered light from
the mirrored positions as well. A supplementary problem
is the amount of Random Access Memory (RAM) needed
to perform the simulation. We design the code in such a
way that the maximum allocation of memory is given by
the construction of the N x N Green’s function matrix. By
defining it as a matrix of Complex{Float32} (64 bit) rather
than the custom Complex{Float64} (128 hit), we cut the mem-
ory consumption to ~200 — 300 GB of RAM. We checked
that we were still working with enough numerical preci-
sion, by comparing the simulations of smaller systems, per-
formed with both choices of the variable definition. Finally,
the overall computational time was sped up by using the
native, multicore implementation of linear algebra in Julia
as well as its vectorized treatment of tensor operations [92],
while other relevant computations were split over multiple
threads. More information is available in the Github repos-
itory provided at Ref. [50].
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Appendix A: Coherent scattering
by silicon vacancy centers

In this appendix, we explain more in detail our model of
SiV centers in diamond as two-level, dipole emitters. We
stress that similar considerations apply to other group IV
color centers [60]. The Zero-Phonon-Line (ZPL) of a SiV is
centered around 2z¢c/w, = 737 nm and is composed of four
resonances, associated to the spin-orbit splitting into two
ground |g, ) and two excited states |e, ) [116]. At cryogenic
temperatures ~4 K, these resonances become spectrally
resolved [117], and one can target the brightest spectral line
(between the lowest ground |g_) and the lowest excited
state |e_)) to obtain an effective two-level emitter, with a
well-defined dipole moment aligned along the axis between
the silicon atom and the carbon vacancy [116]. Although part
of the initial population can be in |g, ) rather than |g_),
in principle this problem can be solved by optical pumping
[117], or by further lowering the temperature [118]. At the
same time, the inelastic excitation of |e +> from |e_), via
phonon coupling, is strongly suppressed already at ~4 K
[117]. Still, the target excited state |e_) can inelasticaly decay
into the upper ground state |g +> or nonradiatively decay
out of the ZPL, eventually returning to |g_) by phononic
relaxation [118], [119].

In view of all these considerations, we model the system
by considering that the lifetime 7 of the excited state |e_)
defines a transform-limited linewidth 1/7 =T+ 17, +
l"]'rur composed of several terms [117]. First, we identify the
elastic, radiative component I'y = k3|P,|*/(3z¢eh), which
describes the radiative decay into |g_), with P; associ-
ated to the corresponding dipole matrix element. Second,
we include the inelastic Fi/nel and nonradiative F;r pro-
cesses by considering that, at ~4 K, they should account for
roughly half of the photonic decay [120], leading to I i,nel +
F;r ~I';. On top of that, the linewidth of the target reso-
nance can undergo homogeneous broadening, which can
be caused by nonradiative decay [117], or phonon-induced
dephasing [118] and depolarization [117]. In our model, we

group these phenomena into an additional rate Ffwm ST,
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whose value qualitatively accounts for the fact that nearly
transform-limited linewidths have been observed at cryo-
genic temperatures (we also notice that encouraging paths
have been suggested to extend this property up to much
higher temperatures [121]). At the same time, we consider
the possibility that local properties (such as strain, or spec-
tral diffusion) randomly shift the resonance frequencies
of the individual emitters, thus resulting in an additional
inhomogeneous broadening. As detailed in Appendix Al,
we model this process with a supplementary rate Fi’nhom
2.75I';, where its value is inspired by the experimental
results of Ref. [120]. Finally, in Appendix A.2, we show that
small disorder in the positions of the solid-state emitters
can be similarly modeled by a supplementary inelastic rate,
where we take the value of F:iis ~I';. Given the set of
parameters considered, this will roughly correspond to a
random displacement within a radius of ~0.1 times the
average lattice constants. Overall, this defines the total,
additional broadening I" =T7  + T +T7 . +T7 .+
I, ~ 5750,

For each emitter; the quantity Iy / (I'y + I'"') & 0.15 then
estimates, on average, the fraction of resonant scattering
events that are coherent and elastic [122].

~

A.1 Inhomogeneous broadening

To model the presence of inhomogeneous broadening,
we assume that each atom of the array has a shifted
resonance frequency @; randomly distributed
according to the probability distribution Py (@).
Here, for simplicity, we focus on a Lorentzian
distribution of full-width-half-maximum 26;g.enq, 1€,
Pinhom (@) = Ororentz/ |7 (62 oy + @*)]-  The system is
still described by the coupled-dipole equations Eq. (4),
with the difference that each atom now exhibits the
shifted polarizability ’(A) = ay(A — @;). In our model,
we assume that we can average the atomic response
over disorder first, before solving the multiple-scattering
problem. We obtain an average atomic polarizability, which
reads

ap = (@ (@) = € [ _LoPinnom(@)

K ) A-o+iry2 "

AD

- _(37’6> I
K ) A+i(Co+T]0m) /2

where we defined I'} = 267 grens-

In Figure A.1, we numerically check the soundness of
this assumption by evaluating the spectrum of transmission
[t(A)]?> of a 2D square array of size I = 6.44, and lattice
constant d, , = 0.24,, illuminated by a Gaussian beam of
waist w, = L/4. Here, t(A) is calculated by projecting the
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Figure A.1: Effects of inhomogeneous broadening on a 2D atomic array.
Transmission spectrum of a finite 2D square lattice with transverse size

L = 6.44, and lattice constants d, , = 0.24,, illuminated by a Gaussian
beam of waist w, = L/4. The blue points (green squares) are calculated
by solving the inhomogeneous version of the coupled-dipole

equations Eq. (4) with randomly shifted polarizabilities ay — o’ (®;),

and considering atomic resonance frequencies @; randomly sampled
from a Lorentzian (Gaussian) distribution of half-width-half-maximum

O Lorentz = 2.51 (standard deviation o, = 5I). The red line shows the

analytic model of a nonradiative decay rate I, , = 5I'y. The data are

averaged over ~100 randomly sampled configurations. Similar plots can
be derived when calculating the phase of transmission, or the reflection
properties.

output field of Eq. (2) onto the same mode as the input
beam [80], as also detailed in Appendix D. We compare
the analytic model of I" = I' .,y = 51, (red line), with the
numerical results obtained by considering a Lorentzian dis-
tribution of resonant frequencies with o g e, = 2.5 (blue
points), observing a remarkable agreement. As a reference,
the green points show the case of resonances @; sampled
from a Gaussian distribution of standard deviation ¢, =
50", whose qualitative similarity leads to the approximate
estimation I},

Rather than an exact model of a specific set of exper-
imental data, we aim to capture a reasonable, qualitative
description of the effects of inhomogeneous broadening. To
this aim, we consider the results of Ref. [120], where they
observe a set of 14 SiVs with the same polarization, which
exhibit frequencies spanning an interval of Aw = 9.5,
Assuming that these resonances are uniformly distributed
within that bandwidth, we consider a Gaussian distribution
with the same standard deviation, which leads to the rough
estimation of Fi’nhom ~ Aw/ \/1_2 ~ 2.75I;. We notice that
Lorentzian distributions do not have a well-defined stan-
dard deviation, which prompted us to consider the Gaussian
case.

~
~ OGauss
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A.2 Position disorder

Here, we discuss how small random displacements in the
positions of the atomic emitters can affect the optical
response. To this aim, we focus on a 2D, square array of
constant d,,, and we uniformly sample the displacement
within small spheres of radius d.

Specifically, we aim to define an effective broadening
Fihs, which should describe the average transmission and
reflection of the array. To do so, we consider the reflection
ry, of an idealized infinite array, as expressed in Eq. (6), and
we assume that all the losses are contained into Fihs. At the
resonant condition A = @y, this allows to define
F:‘lis — 1 -1
Iﬁcoop | 613 (wcoop ) |

(A2)

In Figure A.2, we thus consider a finite, square array of
size L and subwavelength lattice constants d,W < Ag, llumi-
nated by an input Gaussian beam of waist 4, < w, < L,

16 [~ AN i 3
1 %X
2107+ E
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The
= 102k Ira)2 . ta)? |
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Figure A.2: Average inelastic scattering due to the disorder in the atomic
positions. For each value of the lattice constant d, = d, = d,, of a
square, 2D array, we randomly displace the atomic positions within

a sphere of radius 6d. We then compute the average resonant reflection
(r) at A = @c,qp, upon illumination by an input Gaussian beam of waist
wy =L/4 > Ay, where L is the size of the array. Each point is obtained by
averaging over 50 random sets of displaced positions. The value of L
varied to keep the number of atomic emitters to N = 500. For each
configuration, we define the inelastic rate from Eq. (A.2), as l"éhs/l“mp =
[{r)|~" — 1, and we scan increasing radii of disorder §d. The black,
dashed line represents the empirical scaling of Eq. (A.3). The insets show
the average spectral behavior of reflection (circles) and transmission
(triangles) for the cases d,, = 0.254, and 6d ~ 0.12d,,, (up-left inset)
ord,, = 0.14, and 6d ~ 0.34d,, (bottom-right inset). The black,

dashed curves represent the predictions of Eq. (A.3), which are in large
agreement.
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and we numerically compute the reflection r by projecting
onto the same Gaussian mode as the input [80]. For each
value of d,,, we randomly displace the positions uniformly
within a sphere of radius 6d, and define the average reflec-
tion (r).

Using Eq. (A.2) as an operative definition, we are able
to estimate the value of Fiﬁs from (r). We reasonably expect
that the optical response should be a function of the ratio
5d/dxy. Due to this reason, we plot Félis as a function of
éd/d,, in log-log scale, which we numerically fit to obtain
the equation

2 2
5d 3( 6dA
. ~%(%)\r =2(2%% | A3
dis 2 <dxy> coop 8( d)z(y ) 0 ( )

which is represented by a black, dashed line. The numer-
ics confirm our intuition, proving that Eq. (A.3) describes
well the reflection properties, at least as long as 6d < 0.7d,,
and 6d < A,. From a similar analysis, we found that this
prediction can capture the spectral behavior of both the
reflection (r(A)) and the transmission (t(A)) coefficients as
a function of the detuning (e.g., see the insets of Figure A.2,

(8) 0.5 pma
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for the case with either d,, = 0.0254, and 6d ~ 0.12d,,, or
d,, = 0.14; and 6d ~ 0.34d,,). The result in Eq. (A.3) should
in principle be extendable to the case of rectangular arrays
with d, # d,,, by using the substitution rule d)z(y —d,d,. We
also notice that this result extends the simplified scaling
Féis x (6d/ AO)Z mentioned in Ref. [17], to the case of arbi-
trary lattice constants. Finally, we report that the scaling in
Eq. (A.3) is confirmed by similar calculations performed on
M = 2,3 square arrays in series.

Appendix B: Evanescent interaction

In this appendix, we further investigate the role of evanes-
cent interactions between 2D atomic arrays, with the goal
of justifying the assumption that they are negligible in our
regime of interest. We recall that we deal with rectangular,
2D arrays of constants d, , < 4,, placed at a distance of
d,, and that the dipole matrix elements of the emitters are
P, = P,X. The evanescent interaction G¢7 results from the
evanescent diffraction orders of the field scattered by the
atomic layer at z,,, when probed by the atoms at z,. For

b) 0.5

< 0.3 [P 03
1) 0.2 ' 0.2
01- ] 0.1
0.0 R A— 0.0 EEE—————_———l
00 02 04 06 08 1.0 00 02 04 06 08 1.0
d, | Ag d, ! Ao
d
0.0 0.25 0.5 0.75 1.0 >1.0 |g;‘g |

Figure A.3: Strength of the evanescent interaction between two nearest neighbor layers of atoms. The color legend identifies the relative magnitude
|g$§|/|g§;d| as a function of the lattice constant d, , and distance d,. We recall that the radiative contribution has a constant magnitude of

|Gi4| = 1/2, since in Eq. (5) we define the interactions in units of the cooperative rate I'co0p- The red color describes the region where the evanescent
field dominates, i.e., |G| /|C124| > 1. On the contrary, the black area is associated to negligible evanescent interaction |G%5 | /|G| < 0.01. In the two
panels, we explore the two branches of the path chosen for our scheme, reading (d, = dpyn) U (dpyin < dy < 4g) (3) and (dy, = dyip) U (A < d), < Ag)
(b), where we recall that d,;, = 0.034,. The evanescent interaction is calculated from the full equation Eq. (A.4). The white, dotted line represents

the possible range of values d,(d, ) that guarantee high transmission and full phase control in a three-layer scheme. The white points show the actual
values that we used to design the lens of Figure 6, which all fall in a regime where G£) ~ 0. Finally, the white, solid lines show the approximated rule of
thumb d,=max d, ,/m.
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subwavelength arrays, its value reads

S |12 @h) o \| o—imnia, e,
2 e K= (kPR ) eimmdsie, g

KED 20

eV _
gnm -

where the diffraction orders are labeled by the integer num-
bers (a, b), which identify the corresponding wavevector
kﬁ(‘;’b) = 27(ak/d, + by/d,) and characteristic distance of

exponential suppression &, =1/ / |kf(‘;b’ | — k2.

The evanescent interaction 1s stronger for nearest
neighbor layers, so we focus on 3’ . Moreover, the lead-
ing contributions are given by the first two diffraction
orders (a,b) = (1,0) and (a, b) = (0, 1), which are exponen-
tially suppressed by a factor of ~1/e? roughly when d, =
2max(&y, &y) ~ max d, /. The last step is valid for very
subwavelength arrays with max d, , > 4, and can serve as
a simple rule of thumb to roughly identify the regime where

1 ~ 0.

Going beyond this rough estimate, in Figure A.3, we
numerically calculate the ratio of evanescent to radia-
tive interaction strength |Q§;’ / QE‘H, as a function of
the lattice constants d, , ,. Specifically, on the horizontal
axis, we vary the transverse constants along one of the
two paths (dy, = dpip) U (dyin < dy < 4g) (Figure A.3a) or
(dy = dpin) U (dpin < d, < Ag) (Figure A.3b). The distance is
spanned on the vertical axis within the range d;, < d, <
A¢/2, while the white, dotted lines show the specific choice
d,(d,,) that we used to define an atomic metalens. The
white, solid line shows the rule of thumb d, ~ max d, ,/=.
As long as d, = dyy,, d, S Ag/4 or dy =dpin, dy S Ag/4
the evanescent interaction is completely negligible, being
1G5, 1/ |Q{gd| < 0.01 (black region). The specific sets of lattice
constants used to define the illustrative metalens in the
main text (white points) genuinely fall in that regime. By
comparing Figure A.3 with Figure 4a, we can infer that
almost all phases ¢ can be engineered, except the small
range —0.037 < ¢4 < 0.067 around ¢y, ~ 0. Two possible
ways exist to address this issue. First, one can think of
leaving the related ring empty (which would correspond
to approximating the phase with ¢ = 0). Otherwise, one
can consider larger distances d,, given that ¢, is invari-
ant (ignoring evanescent interactions) for d, — d, + at,/2
(with a =1,2,...), while the effects of evanescent fields
rapidly diminish with increasing d,.

These conclusions apply for all sets of lattice constants,
excluding the limit of d, — 4,. In that specific case, indeed,
the diffraction order with (a, b) = (0,1) would give rise, in
Eq. (A.4), to a nominally infinite evanescent contribution
arising from the constructive interference between an infi-
nite number of atoms in each 2D layer, associated with an
infinite range £,, — oo of interaction.
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Appendix C: Buffer zones

Here, we describe in detail our definition of the buffer
zone between consecutive rings of an atomic metalens. This
scheme explicitly takes advantage of the fact that, in our
approach, often one of the two lattice constants d, , does not
change between two consecutive rings. The full algorithm is
described below.

- Given each ring j, its first 0 <a <1 fraction is
reserved as a buffer zone (green and orange regions of
Figure A.4), aimed to connect the array inside the j-th
ring with the previous, in a smoother way. Hereafter,
we describe how a generic j-th buffer (separating the
(j — D-th and the j-th ring) is constructed.

—  First, the system checks if either d)’; = d)’;_l = dp, Or
d§ = di,_l = d i, is satisfied. If none of them is fulfilled,
then the algorithm ignores that buffer (as in the orange
regions of Figure A.4).

— Let us assume that one has d; = dffl = d i S In
the green regions of Figure A.4. The opposite case is

X/ Ag

Figure A.4: Example of “buffer zones” between two consecutive rings,
in the &, §-plane. The blue points show the atomic positions, while each
ring is identified by a red line, as well as an ordinal number, still in red.
The first & = 0.2 fraction of each ring is dedicated to the buffer zones,
which are represented by either green or orange regions. In particular,
the green areas describe the case where one of the two conditions
d=d" =d,, or dﬁ = df = d,;, are satisfied, which allows to
smoothly connect the neighboring rings. On the contrary, the case where
none of these two conditions is fulfilled is shown by the orange zones,
which are simply treated as normal parts of the corresponding ring.
The black and purple boxes identify two peculiar instances, as described
in the main text.
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a straightforward extension, which can be described
by simply reversing the references to the vertical and
horizontal coordinates.

— In this regime, the lattices are organized in columns
spaced by either d){_l and d)’;. The algorithm defines
Xmax = MaxX;_q + (3/4)d,{_1, where x;_; identify the
horizontal positions of the columns of the (j — 1)-th ring.
If there are columns of the j-th ring having X; > Xy,
then those columns are ignored in the following steps
(as in the black box of Figure A.4).

— At this point, the algorithm counts the number of
columns in either the j-th or the (j—1)-th ring,
satisfying the condition 0 < x; ;_; < Xy Then, it iden-
tifies which of the two rings has less columns. For the
sake of simplicity, we will assume it to be the j-th ring,
but the algorithm deals with the opposite case in a
similar manner. For each column i of this ring, the code
searches the horizontally nearest column k among the
ones of the (j — 1)-th ring, i.e., the one minimizing the
quantity |x§. - x;‘_1|.

- Giventhis pair of columns, the algorithm connects them
by drawing a straight line, and then placing atoms with
a vertical spacing d§ = dfl = d ;- For a line to be
drawn, the condition y; > y’}f_l must be fulfilled. When
the number of columns in the two original rings are
different, some columns must remain unconnected, as
highlighted by the purple box in Figure A.4.

- For what concerns the Z position, all the atoms of the
J-th buffer are associated to the lattice constant dg,
meaning that the columns are “connected” only in the
X, §-plane. We tested the idea of fully connecting them
in 3D, without noticing significant improvements in the
efficiencies.

Appendix D: Definition
of the efficiency

In our simulations of an atomic metalens, we consider a
finite ensemble of N, X-polarizable atomic emitters, with
resonant frequency w, and embedded in a nonabsorbing,
bulk material of index n, so that the resonant wavevector
reads k, = 2/ Ay = nw,/c. The system is illuminated by
a resonant, X-polarized Gaussian beam of waist w,, which
reads E; (R, z) = E,, (R, Z, wy), with

'gauss

|RJ?

w,
E R,z,w,) = E,——%—exp|-—————;
gauss( 0) 0 LU(Z, wO) p[ LU(Z, wo)z

+ikyz + ip(|R], z, wo)] %, (AS)
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where  w(z, wy) = wy\/1+ [Zz/(kowg)]2 is  the

waist of the beam, while we have @(R,z,w,) =
—arctan(2z/ (kyw?)) + kR?/[2p(z, wy)],  with  radius
of curvature p(z, w) = z[1+ [kyw?/(22)1?]. The total field
E, (R, z) is given by Eqs. (2) and (4) and must be compared
to the theoretical output field that one would expect for an
ideal lens of focal length f [87]

E/(R,2) = Egus(R, 2 — 2, w0y )™ M, (A6)
where one has
kouw? \
Yo = Mm 1+< ; 0), (A7)
wp f
and
z;=(1- M) f. (A8)

Here, M is the so-called magnification of the lens
and ensures energy conservation in the form of P,
J dR|Ey|* = [ dR|Ef|* = 7|Ey|*w} /2. The ideal increase in
the beam intensity at the focal point (over the peak input
intensity |Ey|?) is instead given by |E;(0, z;)[*/|E,|* = M*.
We can calculate the efficiency # of the atomic metalens by
evaluating the overlap between this ideal solution and the

2
total field. In the paraxial limit, this reads # = |(E #lEou)| 5
where [7], [80]

[RZE;(R, z) - E (R, 2)dR
Jw2 |Ef (R, 2)|*dR

S i () [ 2
07 (kywy)* \ E: P,

j=1

<Ef|E0ut> =

(A.9)

where we have

kowowy

. (A.10)
k0<wf) + wi)/z +izs

by = <Ef|Ein> =

Here, we recall that P, = P,X is the dipole matrix
element of the emitters, while we have the Rabi fre-
quency Q, = P;E,/h. With this definition, the value of
n describes the fraction of input power that is trans-
mitted into the desired spatial mode of light. We have
made use of the relation [ E’]‘;(R,z) .G(R - R;,z—z;)dR =
iE;'i(R j2Z;) /(2k,), which is true in the far field and as long as
the paraxial condition of w, 2 4, (or, more exactly, kgwy >

1) is satisfied [7], [38], [80]. Similarly, we define the overlap
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€= |(Ein|E0m)|2 between the output and the input mode,
where

N
3i I E; (R-,Z~)} P;
EIE V=1+_—°- (20 Z St Tt E
( ml out> (k0w0)2<£20> [ Eg PO

j=1
(A1D)

Appendix E: Spectral behavior
of the metalens

We described a method to engineer an atomic metalens,
designed to optimally focus resonant light A = w — w, =
0. Nonetheless, it is interesting to explore the bandwidth
where the efficiency remains high. To address this ques-
tion, we consider the illustrative example of the main
text, corresponding to a metalens with focal length f =
204y, radius Ry, = 104, and constitutive parameters AR ~

Ajrme
4 -3 -2 -1 0 1 2 3 4
T S A T B A
0.8
0.6 ]
0.4
0.2
; M=575T -
ool M e |
-1000  -500 0 500 1000
A/T,
—n —0 € - Min

Figure A.5: Spectral response of the atomic metalens, with focal length
f = 204y, radius R, = 104,, and parameters AR ~ 24,/3,

¢y =~ —2.06,and a =~ 0.2. The curves represent the efficiency # (blue),
signal-to-background ratio #7 (green), and overlap € (orange) with

the input beam. The dashed, black, horizontal line shows the value

of the overlap between the input and the ideal field 7, = [(E|E;,)[*.
The simulation is performed for the lossy case I = 5.75T,. The detuning
A = w — w, is expressed either in units of ' (label below) or in units
of Trep = I'eoop(@min) = 25T, (label above). The dark gray region
empirically corresponds to the regime where the atomic emitters
become transparent, which roughly reads A < —21“‘;1’; and A > F‘;‘Z’;.
On the contrary, the white region corresponds to the bandwidth

|A] < (Fioop)/z, where the efficiency remains high# = 0.8.

Here, (T p) is the average decay rate within the rings, weighted by

€00
the fraction of light power illuminating each ring.
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240/3, ¢y =~ —2.06, and « ~ 0.2, which acts on an input
beam of waist w, = 44,.

Intuitively, we expect the largest bandwidth of non-
vanishing optical response to be of the same order of the
maximum cooperative decay rate allowed in our system, i.e.,
Feoop = Teoop(@yy = i) = 225T,. This intuition matches
well with what we numerically observe in Figure A.5,
where we plot the spectrum of efficiency # (blue), signal-
to-background ratio # (green), and overlap with the input
mode € (orange). This is calculated when illuminating our
illustrative atomic metalens with a Gaussian beam of waist
wy = 44, in the lossy regime of I’ = 5.75I,. As expected,
when |A /FE‘(‘)%’;| > 1, the metalens shows the features of
a transparent system, i.e., E ; ~ E;,, meaning that e ~
1, while the efficiency tends to the overlap between the
ideal and the input mode, ie.,  ~ #y, = [(E/|Ey)|* ~ 0.4
(approximately marked with a dark gray region in the
plot).

On the contrary, the behavior inside the light-gray area
is irregular, but we can identify a bandwidth (white area)

of ~ i<Fioop> /2 where the efficiency remains as high as

n 2 0.8. Here, we defined the average decay rate (I" J

coop > ~

96I'; by calculating the decay rates Fgoop within each ring
that compose the metalens, and then computing the mean
value, after weighting each element with the fraction of
input light that illuminates the area of the corresponding
ring. The value of these weights is illustrated by the colors
of the points in Figure 4b. Finally, we stress that the values of
[ eoop @0d <F£oop> are related to our particular choice of d;,.
In general, we can identify a trade-off between the tight-
ness of the bandwidth and the resistance to losses, meaning
that some applications that require smaller bandwidths, but
can tolerate lower efficiencies, can opt for higher values

of d i,
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