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Abstract: Arrays of atomic emitters have proven to be a

promising platform to manipulate and engineer optical

properties, due to their efficient cooperative response to

near-resonant light. Here, we theoretically investigate their

use as an efficient metalens. We show that, by spatially

tailoring the (subwavelength) lattice constants of three con-

secutive two-dimensional arrays of identical atomic emit-

ters, one can realize a large transmission coefficient with

arbitrary position-dependent phase shift, whose robustness

against losses is enhanced by the collective response. To

characterize the efficiency of this atomic metalens, we per-

form large-scale numerical simulations involving a sub-

stantial number of atoms (N ∼ 5 × 105) that is consider-

ably larger than comparable works. Our results suggest

that low-loss, robust optical devices with complex function-

alities, ranging from metasurfaces to computer-generated

holograms, could be potentially assembled from properly

engineered arrays of atomic emitters.
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1 Introduction

Light-mediated dipole–dipole interactions in dense ensem-

bles of atom-like emitters, and the wave interference

encoded in them, can lead to a cooperative response that

is markedly different from that of an isolated emitter [1],

[2]. This resource is most effectively harnessed in ordered

arrays of emitters with subwavelength lattice constants,

where the collective behavior leads to nontrivial phenom-

ena, including an efficient, directional coupling to light.

Capitalizing on these properties, manyworks have explored

classical and quantum optical applications of atomic arrays

[3]–[22], such as the realization of an atomically thin mir-

ror [23]–[25]. Perhaps most relevant to the theme of this

paper, these arrays have been proposed to implement vari-

ous classical optical functionalities, including nonreciproc-

ity [26], optical magnetism [27]–[29], wavefront engineering

[28]–[30], polarization control [31], [32], and chiral sensing

[33]. Here, we explore a distinct route toward their applica-

tion as an optical metalens, which only requires the ability

to design the positions of identical emitters.

Metalenses have recently emerged as a promising alter-

native to traditional bulk optics, enabling complex optical

operations while retaining subwavelength thicknesses [34],

[35]. Their functionality demands simultaneous control over

both transmission intensity and phase pattern. In conven-

tional metasurfaces, this is achieved by spatially varying

the size, shape, and orientation of individual nanoscatter-

ers, which generally support both electric and magnetic

modes. In contrast, the optical response of atom-like quan-

tum emitters is usually dominated by electric dipole tran-

sitions, and it offers limited control over their radiative

properties. On the other hand, atomic emitters represent an

excellent playground to engineer collective effects, as their

electronic transition can provide a low-loss, near-resonant

optical resonance, with a large scattering cross section ∼
𝜆2
0
, compared to their point-like, physical size [36]. Inspired

by the paradigms of conventional metasurfaces, previous

works have proposed to engineer an optical metalens out of

a bi-layer atomic array, by locally shifting the resonance fre-

quencies of the individual emitters with additional dressing

lasers, whose intensities should vary on a subwavelength
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scale [28]–[30]. A similar approachwas also proposed in Ref.

[37], involving a disordered sheet of atoms.

With one eye on integrated photonic devices, here we

propose a different mechanism to realize an efficient metal-

ens, which only requires a suitable choice of the positions

of solid-state, atom-like emitters. Specifically, we demon-

strate that one can achieve full control of the transmission

phase in a bi-layer, rectangular array, while maintaining

unit transmittance, by simply varying lattice constants and

layer spacing. Moreover, by adding a third layer, we show

that these transmission properties can be robustly main-

tained even in the presence of nonradiative losses or other

imperfections, owing to the enhanced collective response.

Finally, we demonstrate that these structures can be used

as building blocks of an efficient metalens, which we verify

through large-scale numerical simulations involving a sub-

stantial number of emitters (up to N ∼ 5 × 105), which is

considerably higher than comparable works [38]–[49]. The

corresponding code is available for public use at Ref. [50],

provided with a broader, user-friendly toolbox to simulate

the linear optical response of an arbitrary set of two-level,

quantum emitters.

The rest of the paper is structured as follows. First,

in Section 2, we review the concept of metalenses, and we

introduce the physical system under analysis and its the-

oretical model. Then, in Section 3, we show how arrays

of atomic emitters can be engineered to guarantee unit

transmission and tunable phase shift. In Section 4, we use

these elements to design an illustrative metalens composed

of atomic arrays, and in Section 4.1, we test its behav-

ior through extensive numerics, while optimizing its free

parameters via a global particle-swarm algorithm [50].

Finally, in Section 4.2, we probe the resistance of that design

against different sources of losses or imperfections.

2 Overview of metalens concept

and presentation of our system

Conventional refractive lenses rely on local variations of

the optical path inside the lens (where light experiences a

higher, positive refractive index) to induce a spatially depen-

dent phase shift. Thereby, the wavefront is shaped in such

a way that the output beam focuses at a designed distance,

as pictorially represented in Figure 1a. In the past couple of

decades, however, the novel idea of developing flat metal-

enses with much smaller footprints has emerged [51]–[55].

These metalenses rely on the electromagnetic response

of tailored nanostructures to locally impress abrupt

phase shifts on the transmitted light [35], [56]–[58], while

Figure 1: Pictorial comparison between a textbook bulk lens and

an atomic metalens. (a) Bulk lens of refractive index n, whose spatially

variable optical path d(R) induces a phase delay 𝜙lens(R), which curves

the incident wavefront, to make it focus at the target distance.

(b) Schematic structure of an atomic metalens. Its building blocks consist

of at least two atomic arrays in series, whose subwavelength lattice con-

stants dx,y,z < 𝜆0 can be engineered to ideally ensure a fully directional

transmission, with an arbitrary phase shift. For a realistic, lossy system,

three atomic layers are required to enhance the robustness to losses.

maintaining a thickness on the order of the wavelength or

less [34], [35].

Regardless of physical implementation, the function of

a simple ideal lens of focal length f on a monochromatic

input beam of light with wavevector k = (2𝜋∕𝜆0 )ẑ = k0ẑ is

to impart the position-dependent phase profile

𝜙lens(R) = k0

(
f −

√
R2 + f 2

)
+ 𝜙0, (1)

upon transmission. This phase is defined modulo 2𝜋, and

here we adopt the convention −𝜋 ≤ 𝜙lens ≤ 𝜋. Moreover,

we define the transverse coordinate R =
√
x2 + y2, while

the parameter 𝜙0 corresponds to the phase at the center of

the lens [53], [59]. Rather than using dielectric or metallic

nano-elements to realize this phase, an atomic metalens

instead relies on the use of properly positioned, two-level,

solid-state emitters (see Figure 1b).

Although the theory that we present will be rather

general, from an experimental perspective color centers in

diamond can offer a promising framework for its implemen-

tation, as they stand out for their excellent optical properties

[60]. Specifically, they behave as atom-like emitters with

well-defined selection rules and a dipolar response aligned

along one of the four possible tetrahedral directions of the

diamond lattice [60]–[65]. Current fabrication technologies,

moreover, offer good control over their spatial position [66],

up to <10 nm [67], [68]. At the same time, recent works

have explored ways to fix the dipole orientations along a

well-defined axis [69]–[72] or create exactly one emitter

at a target position [73], [74]. Although the full combina-

tion of these properties into either 2D [75], [76] or 3D [77]

large-scale arrays remains a challenge, recent experimental
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efforts show promising results toward that direction [74].

Concretely, to achieve high-resolution 3D structures, one

can envision a process of patterned ion implantation fol-

lowed by near-field enhanced laser writing, to determin-

istically write defects at the desired locations. This would

be followed by overgrowth of subsequent array layers [78].

Alternatively, processes utilizing block-polymers can also

realize the desired resolution [79]. In principle, all these

processes could bemodified to create desired arrays of point

dipoles.

More specifically, we focus on the case of Silicon

Vacancy (SiV) centers, which we model as idealized two-

level emitters with resonant frequency 2𝜋c∕𝜔0 ≈ 737 nm.

In this model, we assume that the fabrication process per-

mits to preferentially discriminate over the four possi-

ble orientations, so that all the emitters have the same

dipole matrix element  0 = 0x̂. Moreover, we charac-

terize these emitters with both a coherent, radiative and

elastic scattering rate Γ0 = k3
0
|0|2∕(3𝜋𝜖ℏ), and an addi-

tional broadening Γ′ ≈ 5.75Γ0 which accounts for losses

and other deviations from the ideal case. Here, k0 =
2𝜋∕𝜆0 = n𝜔0∕c denotes the resonant wavevector within

the bulk diamond of refractive index n ≃ 2.4. Further

details on the definition of Γ′ are discussed in Appendix A.

Although the ratio Γ0∕
(
Γ0 + Γ′) ≈ 0.15 is relatively low,

the optical response of an atomic metalens is protected by

the collective behavior, thus allowing for higher efficien-

cies. To conclude, although we focus on this illustrative

level of detrimental broadening, in Sec. IVB, we study the

behavior of our system when increasing Γ′ by orders of

magnitude.

3 Global control of transmission

We now introduce the theoretical framework to capture

the linear optical response of a collection of N quan-

tum emitters in response to a monochromatic classi-

cal field, allowing for arbitrary positions. For intensities

below the saturation threshold, the nonlinear behavior

of a quantum emitter is negligible, and each SiV lin-

early responds to near-resonant light with a characteristic

polarizability 𝛼0(Δ,Γ0 ) = −3𝜋Γ0∕
[
(Δ+ i

(
Γ0 + Γ′)∕2)k3

0

]
,

whereΔ = 𝜔−𝜔0corresponds to the detuning between the

input 𝜔 and resonant 𝜔0 frequencies [80].

The total field at any point in space consists of the sum

between the incident field Ein(r) and the field rescattered by

the atomic emitters, reading

Eout(r) = Ein(r)+
k2
0

𝜖

N∑
j=1

̄̄
G(r− r j ) ⋅ p j, (2)

where the dyadic Green’s tensor

̄̄
G(r) = 1

4𝜋

(
̄̄
I+ ∇⊗∇

k2
0

)
eik0|r||r| , (3)

defines the scattering pattern of each atomic dipole p j =
p jx̂. For simplicity, the Green’s tensor is computed at the

resonant frequency 𝜔0, making the equations local in time.

This approximation is commonly adopted in the context of

atomic physics, owing to the small bandwidth of the optical

response Γ0 ≪ 𝜔0 [5]. Moreover, this approach becomes

exact in the resonant limit of Δ = 0 that will be later

considered.

The dipole moments of the emitters are linearly driven

by the total field at their position, leading to the self-

consistent coupled-dipole equations [81]

pi
0

=
𝛼0k

3
0

3𝜋

[
Ωin(ri )

Γ0

+
N−1∑
j≠i

Gi j
p j

0

]
, (4)

which account for the process of multiple light scattering

in a nonperturbative fashion. Here, we defined the parame-

ter Gi j = (3𝜋∕k0 )x̂ ⋅ ̄̄G
(
ri − r j

)
⋅ x̂, while we introduced the

input Rabi frequencyΩin(r)= 
∗
0
⋅ Ein(r)∕ℏ.

3.1 Transmission ofM arrays in series

Our goal is to show how the transverse lattice constants dx,y
and distances dz of a stack of M ≥ 2, 2D rectangular arrays

of atomic emitters can be chosen to impress an arbitrary

phase shift, while preserving unit transmission. To do so, it

is useful to define the atomic dipoles as pmj, whose double

indices identify the positions as rmj = zmẑ+ R j, with trans-

verse coordinates R j = x jx̂+ y jŷ.

We first review the cooperative behavior of a sin-

gle, rectangular 2D array, placed at z = zm. For simplic-

ity, we assume that the input light is a x̂-polarized,

plane wave Ein(R, z) = E0e
ik0zx̂, and we focus on the

limit where the arrays infinitely extend in the transverse

directions x̂, ŷ. Within this regime, any generic solution

pmj = ∫ dqxy pm(qxy )e
iqx y⋅R j of Eq. (4) can be written as a

superposition of transverse Bloch modes with wavevec-

tor qxy. A plane wave at normal incidence, however, only

excites the mode with vanishing transverse wavevector

qxy = 0, meaning that all the dipole moments simplify to

pmj = pm(qxy = 0) = pm. The whole array, then, coopera-

tively responds to light as a single, collective degree of

freedom, with an effective polarizability 𝛼coop = 𝛼0(Δ−
𝜔coop,Γcoop), characterized by the cooperative decay rate

Γcoop(dx,y) and frequency shift 𝜔coop(dx,y) of the excited

mode [23], [24]. Physically, these properties come from the

single atoms interacting with the fields generated by all
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the others in the plane; mathematically, when assuming

pmj = pm in Eq. (4), one obtains the in-plane contribution

Γ0

∑
j≠iG

i j
mm = −𝜔coop + i(Γcoop − Γ0 )∕2, which can be com-

puted with the prescription of Refs. [6], [82], [83].

Once excited, the field coherently scattered by each

array can be calculated via Eq. (2). Due to the discrete trans-

lational symmetry, the array can add a reciprocal lattice vec-

tor k(a,b)
xy

= 2𝜋(ax̂∕dx + bŷ∕dy ) to the incident field, where
a, b ∈ ℤ are integers. This results in a set of diffraction

orders with total wavevector k(a,b) = k
(a,b)
xy

+ k(a,b)z ẑ, where

the z-component is k(a,b)z =
√
k2
0
− |k(a,b)

xy
|2 since energy

is conserved |k(a,b)| = k0. In the relevant subwavelength

regime dx,y < 𝜆0, all diffraction orders become evanescent

except k(0,0)z = k0. This ensures the selective radiance of

the array into the same mode of the input light [84], [85],

with a cooperative decay rate Γcoop = 3Γ0𝜆
2
0
∕(4𝜋dxdy ) that

scales inversely with the lattice constants, and can thus

be significantly greater than the single emitter rate. When

stacking M arrays consecutively, the scattered light is then

constrained within the normal direction k = k0ẑ, and each

array responds with the same polarizability 𝛼coop men-

tioned before (as pictorially described in Figure 2). At this

point, Eq. (4) simplifies into a smaller set ofM equations for

the dipole amplitudes pn of each array [16]

pn
0

=
𝛼coopk

3
0

3𝜋

[
Ω0

Γcoop

eik0zn +
M−1∑
m≠n

nm
pm
0

]
, (5)

Individual
emiƩer

CooperaƟve
emiƩer

Figure 2: 1D, cooperative model for a 3D atomic array, illuminated at

normal incidence. We consider a stack of M subwavelength, rectangular

2D arrays of atomic emitters with constant dx,y , separated by a longit-

udinal distance dz. The emitters are identical two-level systems,

with a resonant frequency𝜔0 and spontaneous emission rate Γ0, which

identify the polarizability 𝛼0(Δ = 𝜔−𝜔0,Γ0). The layers are illuminated

at normal incidence and can scatter light only in this direction (red, wavy

arrows), since the other diffraction orders are evanescent (blue, shaded,

wavy arrows). Within each 2D array, the optical response is characterized

by a single-mode, collective transition, with cooperative resonant

frequency𝜔coop and decay rate Γcoop = 3Γ0𝜆
2
0
∕(4𝜋dxdy ), characterizing

the cooperative polarizability 𝛼coop = 𝛼0(Δ−𝜔coop,Γcoop).

where Ω0 = Ωin(0, 0), while the terms nm = rad
nm

+ ev
nm

are related to the field scattered by an array at zm and

probed by the array at zn. Its radiative part is given by

rad
nm

= (i∕2)eik0|zm−zn|, whileev
nm

is the sumof the evanescent

diffraction orders with imaginary wavevectors k(a,b)z , whose

value is reported in Appendix B.

After solving the set of collective coupled-dipole

equations Eq. (5), one can use Eq. (2) to reconstruct the field.

Since each array can only selectively radiate into the same

mode of the input light, it is straightforward to define the

far-field transmission and reflection coefficients [16]

tML = 1+ i
Γcoop

2Ω0

M∑
m=1

pm
0

e−ik0zm ,

rML = i
Γcoop

2Ω0

M∑
m=1

pm
0

eik0zm .

(6)

We notice that these equations can be solved with-

out fixing any value of Ω0, due to the linearity of the

optical response pm ∝ Ω0. Similarly, Eq. (5) can be directly

solved for the dimensionless ratios pm∕0, so that the

value of the dipole matrix element 0 does not have to be

specified.

To conclude, for the following calculations, we find it

favorable to restrict to a regimewhere the evanescent fields

ev
nm

∼ 0 are negligible. For a subwavelength, rectangular

lattice, an approximate rule of thumb that guarantees this

condition is that all the diffraction orders are at least expo-

nentially suppressed by a factor ∼ 1∕e2, which happens

when dz ≳ dx,y∕𝜋. As discussed in Appendix B, further cau-
tion is required when approaching dy ∼ 𝜆0, due to perfect

interference effects that make ev
nm

nominally diverge in the

limit of infinitely extended 2D arrays.

3.2 Phase control

Ametalens is typically composed of nanostructures as wide

as ≲ 𝜆0, which transmit the majority of light and impress a

tunable phase shift. We now show how the lattice constants

of a stack of atomic arrays can be similarly engineered, aim-

ing to use themas the building blocks of an atomicmetalens.

Hereafter, we define the phase of transmission as 𝜙ML =
arg tML ∈ (−𝜋, 𝜋], and we explicitly focus on the resonant

case Δ = 0, although the same method can be extended to

near-resonant light.

We begin by considering the simplest scenario, cor-

responding to a single atomic layer in the lossless regime

of Γ′ = 0. The complex value of t1L depends on the differ-

ence between the collective resonance frequency𝜔coop(dx,y)

and the frequency of the incoming light, which we fixed

to the resonance frequency of a single emitter (i.e., Δ =
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0). In principle, this means that the transmission phase

𝜙1L = arg t1L is itself tunable via the choice of lattice con-

stants dx,y. Nonetheless, using Eqs. (5) and (6), it is easy

to show that high transmission and arbitrary phase can-

not be achieved with one layer of atoms, as the condi-

tions of reciprocity r1L = (t1L − 1)e2ik0zm and energy conser-

vation |t1L|2 + |r1L|2 = 1 impose |t1L| = cos(𝜙1L), which lim-

its the phase range to |𝜙1L| ≤ 𝜋∕2 and allows unit trans-

mission only in the trivial case of far-detuned driving,

where no phase is imprinted 𝜙1L = 0. On the contrary, the

largest phase shifts |𝜙1L| ∼ 𝜋∕2 are obtained near reso-

nance, where the transmittance drops sharply to zero (i.e.,

the input field is strongly reflected). Moreover, the range

of achievable phases is particularly fragile to the addition

of small losses Γ′∕Γcoop ≪ 1, decreasing as |𝜙1L| ≲ 𝜋∕2−
2
√
Γ′∕Γcoop.

For an ideal system, we can achieve perfect transmis-

sion with arbitrary phase by considering a bi-layer (M = 2)

array. As long as ev
mj

∼ 0, this system is equivalent to a

Fabry–Perot cavity, composed of two atomic mirrors with

the complex reflectivity r1L and transmission t1L mentioned

above [33], [86]. In the lossless regime Γ′ = 0, it is well

known that such an interferometer ensures unit transmis-

sion t2L = exp(2i𝜙1L) when the distance between the mir-

rors matches the Airy condition k0dz = 𝜋l − arg(r1L), with

l ∈ ℕ [87]. Due to this reason, a proper choice of dx,y,z allows

to keep unit transmission while arbitrarily designing the

total phase 𝜙2L = 2𝜙1L over the full (−𝜋, 𝜋] range. This
property is represented in Figure 3a, where we indepen-

dently vary both the subwavelength lattice constants dx,y
and layer spacing dz, plotting𝜙2L as a function of dz and the

single-layer parameter 𝜔coop(dx,y)∕Γcoop(dx,y). As expected,

we observe full phase tunability with sufficient transmit-

tance, as quantified by the nonshaded, brightly colored

regions where |t2L|2 > 0.5.

However, the phase range contracts as |𝜙2L| = 2|𝜙1L| ≲
𝜋 − 4

√
Γ′∕Γcoop in presence of small losses, preventing the

achievement of |𝜙2L| = 𝜋, regardless of how small Γ′ > 0

is. As shown by the inset of Figure 3a, this can be related

to the asymptotically small bandwidth associated to both|𝜙2L| ∼ 𝜋 and |t2L|2 ≥ 0.5 [86], [88], which makes the sys-

tem more fragile against Γ′. To better quantify this state-

ment, we must first set a minimum interatomic distance

dmin = 10 nm, whose value is inspired by the discussion of

Section 2. This translates into dx,y,z ≥ dmin = 0.03𝜆0, which

prevents the cooperative response Γcoop ∝ Γ0𝜆
2
0
∕(dxdy )2 to

become arbitrarily large and overtake any sources of broad-

ening Γ′ > 0. In Figure 3b, we then use the conventional

Figure 3: Transmission of a multilayer atomic array, as a function of

𝜔coop(dx,y )∕Γcoop(dx,y ) and dz. (a, b) Colorbar representation of the phase

shift 𝜙2L = arg t2L of two atomic layers, given either Γ′ = 0 (a) or

Γ′ = 5.75Γ0 (b). The transverse lattice constants are varied

within the range 𝜆0 > dx,y ≥ dmin = 0.03𝜆0, which means that

Γ′∕Γcoop(dx,y ) ≳ 0.03. When different choices of dx and dy are associated

to the same value of𝜔coop(dx,y )∕Γcoop(dx,y ), the pair with the highest

cooperative decay is selected. The region where |t2L|2 < 0.5 is

represented by a white shaded area, while the insets show the relevant

case of 𝜙2L ≡ arg t2L ∼ ±𝜋 and |t2L|2 ≥ 0.5. (c, d) Same structure of

subfigures (a) and (b), but for the three-layer case. The white dashed lines

represent the chosen branch dz(dx,y ) that maximizes the transmittance.

Along this path, the insets show that both the phase 𝜙3L = ±𝜋 and the

transmission |t3L|2 ≥ 0.5 can be simultaneously obtained over a much

broader bandwidth (c), becoming more resistant to the losses (d).

value Γ′ = 5.75Γ0 of Section 2, observing that both a suffi-

cient transmission |t2L|2 ≥ 0.5 and full phase control can no

longer be simultaneously achieved.

In general,M − 1 transparency conditions dz(dx,y) simi-

lar to that of a Fabry–Perot cavity can be found for arbitrary

values of M [89], and the addition of more atomic layers

M > 2 is important to restore the resistance to losses around|𝜙ML| ∼ 𝜋. This can be intuitively understood for evennum-

ber of layers M, as a proper choice of dz(dx,y) can make

the system act as M∕2 cascaded cavities, so that |𝜙ML| =
M|𝜙1L| ≲ 𝜋M∕2− 2M

√
Γ′∕Γcoop. For odd number of layers

M, less intuitive conditions for perfect interference hold,

but still we show that M = 3 layers are enough to provide

resistance to losses.
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To define the proper relations dz(dx,y) between the lon-

gitudinal and transverse lattice constants, we introduce a

closed-form solution of Eq. (6), which reads [90]

tML =
ei(1−M )k0dz t1L

uM (k, dz )− uM−1(k, dz )e
ik0dz t1L

, (7)

where the function uM (k, dz) = sin(Mkdz)∕sin(kdz) relates
the finite-size behavior to the dispersion relation k(dx,y,z) =
k(𝜔coop(dx,y)∕Γcoop(dx,y), dz) of an infinite chain [16]. In

the lossless regime of Γ′ = 0, the unit transmission tML =
(−1)a exp(iMk0dz) is ensured by fixing dz(dx,y) to ful-

fill k(dx,y,z) = a𝜋∕(Mdz), where the natural number a =
1,… ,M − 1 identifies the M − 1 possible solutions within

the first Brillouin zone. With this choice, the field acquires

a total phase shift of 𝜙ML(dx,y) = Mk0dz(dx,y)+ a𝜋 with

respect to propagation in the bulk environment.

In our M = 3 case, we choose the branch of dz(dx,y)

with a = 2, as represented in Figure 3c and 3d by a

dashed, white line. When spanning dx,y, this is associated

to high transmittance and complete phase control, in both

the lossless (Figure 3c) and lossy Γ′ = 5.75Γ0 (Figure 3d)

regimes. More specifically, we scan the transverse lattice

constants dx,y along the two straight lines (dx = dmin) ∪
(dmin ≤ dy < 𝜆0) and (dmin ≤ dx < 𝜆0) ∪ (dy = dmin), which

allows to associate a unique set of spacings dx,y,z to any value

of 𝜙3L(dx,y) = arg t3L(dx,y, dz(dx,y)). This correspondence is

represented in Figure 4a, showing that only a limited set

of distances 𝜆0∕6 ≤ dz ≤ 𝜆0∕3 is required, thus implying

a maximum thickness of 2dmax
z

= 2𝜆0∕3, which translates

to ≈205 nm for the case of SiV centers. To conclude, in

Figure 4b, we explicitly prove that this scheme allows, in

presence of broadeningΓ′ = 5.75Γ0, tomaintain a sufficient

transmittance |t3L|2 > 0.6 for any relevant value of 𝜙3L.

We notice that those phases within the interval of 0 ≲

𝜙3L ≲ 0.01𝜋 cannot be engineered, due to the limited value

of max 𝜔coop ≈ 28Γcoop for dmin ≤ dx,y ≤ 𝜆0. Nonetheless,

for practical applications such as a metalens, this range can

be approximated with exactly 𝜙3L = 0 (i.e., no emitters),

as its span is negligible compared to typical discretization

scales.

4 Atomic metalens

To design an atomic metalens out of three-layer atomic

arrays, one needs to spatially tune the lattice constants dx,y,

to make the phase shift 𝜙3L(dx,y) match that of an ideal

lens, i.e., the value 𝜙lens(R) specified in Eq. (1). To define a

concrete recipe, we divide the transverse plane into con-

centric rings j = 1, 2… of radius Rj = jΔR (see Figure 5a),

and we associate to each ring the central phase shift 𝜙 j ≡

(a)

(b)

Figure 4: Lattice constants dx,y,z and transmittance |t3L|2 as a function
of phase 𝜙3L, given Γ′ = 5.75Γ0. (a) We scan the transverse lattice

constants along the two straight lines (dx = dmin) ∪ (dmin ≤ dy < 𝜆0) and

(dmin ≤ dx < 𝜆0) ∪ (dy = dmin), with dmin = 0.03𝜆0 (black, dashed line).

At the same time, the choice of dz(dx,y ) that maximizes the transmittance

allows to associate a unique set of lattice constants (colored lines) to

any phase 𝜙3L = arg t3L(dx,y , dz(dx,y )) (horizontal axis). (b) Transmittance|t3L|2 as a function of the phase 𝜙3L (gray line). The colored points are

associated to the rings composing the illustrative atomic metalens

discussed in Section 4. Their colors are associated to the relative power

of the input light over their area, i.e., P
j

in
∝ ∫

R j

R j−1
|Ein|2dR.

𝜙lens(Rj−1∕2+ Rj∕2), by using Eq. (1). Here, we recall that

the initial phase 𝜙0 is a free parameter. At this point, we

impose𝜙3L

(
d
j
x,y

)
= 𝜙 j and extract the lattice constants d

j
x,y

by numerically inverting the solid line of Figure 4a. The

transparency condition of Figure 4b can then be used to

define the longitudinal constant d
j
z = dz

(
d
j
x,y

)
. The final

metalens is then the union of these discrete building blocks,

as shown in Figure 5. By choosing ΔR ≲ 𝜆0, we ensure a

discretization scale with the same order of magnitude of

that of usual metalenses [34].

At the interface between the finite rings, the abrupt

change of lattice constants can potentially scatter light into

unwanted diffraction modes. To soften these detrimental

effects, in the x̂, ŷ-plane we introduce a small buffer zone

between two consecutive rings, with atoms placed at inter-

mediate positions. These zones extend over the first fraction

0 ≤ 𝛼 ≤ 1∕2 of each ring, and their definition is not strict,

with many possible variants. Our approach is described
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Figure 5: Structure of an atomic metalens, with focal length f = 20𝜆0 and radius Rlens = 10𝜆0. (a) 3D representation of the atomic metalens, where

each point depicts the position of one atom. This atomic metalens is composed of 15 concentric rings of thicknessΔR ≈ 2𝜆0∕3, with a buffer-zone
parameter 𝛼 ≈ 0.2. The lens has a width ofΔz ≈ 2𝜆0∕3, much thinner than the total diameter of 20𝜆0. The atoms belonging to the j-th ring have the
same lattice constants d

j
x, y,z , which are uniquely associated to the phase shift 𝜙 j = 𝜙lens(ΔR(2 j − 1)∕2) of Eq. (1) (with 𝜙0 ≃ −2.06), through the curves

𝜙 j = 𝜙3L

(
d
j
x, y

)
and d

j
z = dz

(
d
j
x, y

)
shown in Figure 4. The color of the atoms in each ring reflects the value of 𝜙 j , as described by the colorbar at the

bottom. (b) Focusing of a x̂-polarized, resonant, input Gaussian beam with𝑤0 = 4𝜆0, by the action of the atomic metalens. The orange, shaded area

shows the textbook beam waist𝑤(z) during the focusing process. The metalens is designed to focus the beam at a distance z f ≃ 17𝜆0. This defines

the focal plane, where we numerically reconstruct the total relative intensity |Eout(R, z f )∕E0|2 via the input–output formalism of Eq. (2), in the lossy

regime of Γ′ = 5.75Γ0. The value of |Eout(R, z f )∕E0|2 is portrayed with the color scheme shown by the colorbar at the bottom. Further results from
the coupled-dipole simulations are shown in Figure 6.

in Appendix C, and we numerically associate it to a small

efficiency increase, up to an additional factor ∼0.02 in the

estimated efficiency.

To conclude,we remark that for each target focal length

f , our atomic metalens is defined up to three free parame-

ters, which are an overall phase shift−𝜋 < 𝜙0 ≤ 𝜋, the ring

thickness dmin ≪ ΔR ≲ 𝜆0, and the buffer fraction 0 ≤ 𝛼 ≤

1∕2.

4.1 Numerical simulations

To check our design, we want to estimate the efficiency of

an atomicmetalenswith focal length f and centered around

z = 0. To this aim, we fix the atomic positions, and we illu-

minate the system at normal incidence with a x̂-polarized,

resonant, input Gaussian beam focused at z = 0, which has

beam waist 𝑤0 and focal intensity |E0|2 (see Appendix D).
We then perform exact simulations of the linear optical

response, reconstructing the total field Eout(R, z) via Eqs. (2)

and (4). We want to compare it with the theoretical predic-

tion of the field transmitted by an ideal, thin lens of focal

length f . This is given by the Gaussian beam E f (R, z), char-

acterized by the beamwaist𝑤 f = 𝑤0∕, the focal position

z f = (1−−2 ) f , and the focal intensity |E f (0, z f )∕E0|2 =
2. Here, the parameter  =

√
1+

[
k0𝑤

2
0
∕(2 f )

]2
≥ 1 is

the so-called magnification of the lens, which quantifies

the focusing ability and ensures the conservation of energy

∫ |E f |2dR = ∫ |Ein|2dR ∝ Pin.

To characterize the metalens performance, we quan-

tify the fraction 𝜂 = P𝜂∕Pin of power P𝜂 that is correctly

transmitted into the target, ideal Gaussianmode E f , divided

by the total input power Pin [91]. Operatively, this effi-

ciency can be obtained by analytically projecting Eout into

the target mode E f , namely 𝜂 = |⟨E f |Eout⟩|2. This projec-
tion has a simple, closed-form expression, which is detailed

in Appendix D. Another quantity of interest is the over-

lap between the transmitted field and the input field 𝜖 =|⟨Ein|Eout⟩|2. Obviously, one would aim to operate in a

regime where 𝜂 ∼ 1, while 𝜖 ≪ 1, with the latter inequality

signifying that the lens performs some non-negligible trans-

formation. Finally, we notice that, for certain applications,

the main requirement is the identification of the focal spot

over the background of transmitted light. In view of that,

we define the signal-to-background ratio 𝜂̃ = P𝜂∕Pt, which
divides the power transmitted into the target mode P𝜂 by
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the total transmitted power Pt, rather than by the total input

power. Here, one has P𝜂 = 𝜂Pin, while Pt ∝ ∫ |Eout|2dR is

numerically computed from the total field at the focal plane

z = z f .

To show the potential of our scheme, we can now dis-

cuss an illustrative full-scale simulation of a metalens with

focal length f = 20𝜆0 and radius Rlens = 10𝜆0, illuminated

by an input Gaussian beam of waist𝑤0 = 4𝜆0. In this illus-

trative scenario, the ideal magnification would read  =
𝑤0∕𝑤 f ≃ 2.7, associated to an ideal intensity enhancement

of |E f (0, z f )∕E0|2 = 2 ≃ 7.32. These simulations involve

a substantial number of atoms N ∼ 5 × 105, and the tech-

niques by which we accomplish this result are described

in the Methods. All the codes are written in Julia [92] and

are available at Ref. [50]. The free parameters ΔR ≈ 2𝜆0∕3,
𝜙0 ≃ −2.06, and 𝛼 ≈ 0.2 are chosen to maximize 𝜂 in the

lossy regime Γ′ = 5.75Γ0. This was first accomplished via

a brute-force optimization and then confirmed through a

particle-swarm, global-optimization algorithm [50].

The numerical results are shown in Figure 6, where we

plot the relative intensity of the total field |Eout(R, z)∕E0|2,
calculated on the horizontal plane y = 0 (top row) and at

the expected focal plane z = z f ≃ 17𝜆0 (bottom row). The

column on the left (Figure 6a and 6d) shows the ideal values

that onewould expect for a textbook, ideal lens, i.e., E f (R, z).

This is compared to the numerical simulations of the atomic

metalens, calculated for the lossy case Γ′ = 5.75Γ0 (right

column, Figure 6b and 6e). Very similar plots are obtained

when studying the lossless caseΓ′ = 0, or when plotting the

intensity on the plane x = 0.

We benchmark the optical response of the atomic

metalens from our simulations, finding an efficiency 𝜂 ≃
0.95 and an intensity enhancement at the focal point of|Eout(0, z f )∕E0|2 ≃ 6.03, in the lossless regime of Γ′ = 0.

(a) (b) (c)

(d) (e) (f)

Figure 6: Illustrative case of an atomic metalens with focal length f = 20𝜆0, radius Rlens = 10𝜆0, and parametersΔR ≈ 2𝜆0∕3, 𝜙0 ≈ −2.06,
and 𝛼 ≈ 0.2, illuminated by a resonant Gaussian beam with waist𝑤0 = 4𝜆0. The figures show the relative intensity of the total field |Eout(R, z)∕E0|2,
calculated on the planes y = 0 (top row, subfigures a, b) and z = z f ≃ 17𝜆0 (bottom row, subfigures d, e). The subplots (a, d) represent the ideal case

of a textbook lens, while the subplots (b, e) show the results of the numerical simulations with Γ′ = 5.75Γ0. The dashed, white lines represent the ideal

value of the beam waist𝑤(z), while the dot-dashed, white lines show the waist of the input beam if no lens were present. The efficiency of the lossy

Γ′ = 5.75Γ0 case, estimated from the simulations, reads 𝜂 ≃ 0.90, while the signal-to-background ratio reads 𝜂̃ > 0.98. The number of simulated

atoms is N ≃ 4.6 × 105. Finally, the subplots (c, f) show two line-cuts of the intensity profile, along either the z axis in the x = y = 0 plane (c) or

the x axis in the y = 0, z = z f plane (f). This quantity is depicted for both the ideal (dashed, red line) and lossy (solid, blue line) cases. The gray area

in subfigure (c) depicts the space occupied by the atomic metalens.
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Similarly, in the lossy case of Γ′ = 5.75Γ0, we obtain the

values 𝜂 ≃ 0.90 and |Eout(0, z f )∕E0|2 ≃ 5.60. This value can

be appreciated in Figure 6c and 6f, where we compare the

ideal (red, dashed line) and numerical (blue, solid line) field

intensity along, respectively, either the z axis (in the x = y =
0 plane) or the x axis (at the focal plane). These high efficien-

cies stand out when considering the much lower overlap

𝜖 ≃ 0.42 between the output field and the input beam,which

means that the atomicmetalens is nontrivially acting on the

input beam. Finally, both the lossy and the lossless cases

exhibit a high signal-to-background ratio, reading 𝜂̃ > 0.98.

To understand how the broadening Γ′ = 5.75Γ0 affects the

efficiency, we recall from Figure 4b that the transmittance|t3L|2 highly depends on 𝜙3L, meaning that some rings can

transmitmore light than others. Considering our illustrative

metalens, the complex transmission associated to each ring

is represented with a colored point in Figure 4b. The overall

reduction of the efficiency due to the losses (i.e., the ratio

between the lossy Γ′ > 0 and lossless Γ′ = 0 efficiencies)

agrees well with the average transmittance |t3L(𝜙 j)|2 of the
rings, each weighted by the relative power of the input light

illuminating their area (corresponding to the color of the

points in Figure 4b). Notably, this intuitive model explains

why the efficiency 𝜂 can strongly depend on the choice

of 𝜙0.

Although the atomic metalens was designed to operate

for resonant light at Δ = 0, a similar reasoning allows to

qualitatively predict the spectral bandwidth where the effi-

ciency remains high. To show this, we calculate the coop-

erative decay rates Γ j
coop

for all the rings that compose the

metalens and weight them by the corresponding fraction of

input light, to define the average value ⟨Γ j
coop

⟩ ≈ 96Γ0 (of

the order of ∼2𝜋 × 10 GHz for SiVs [93], [94]). As detailed

in Appendix E, we observe that the efficiency remains as

high as 𝜂 ≳ 0.8 as long as |Δ| ≤ ⟨Γ j
coop

⟩∕2, while quickly

decreasing outside.

To conclude, it is interesting to investigate how the

response is modifiedwhen increasing the focusing ability of

the lens, as quantified by the magnification. Specifically,

in Figure 7, we fix𝑤0 = 4𝜆0 and scan different focal lengths

f , plotting the efficiency 𝜂 (blue points) and the signal-

to-background ratio 𝜂̃ (green points) as a function of 1 ≤

 ≲ 𝑤0∕𝜆0 ≪ k0𝑤0. Here, the maximummagnification is

associated to the limit k0𝑤 f ≫ 1 imposed by the paraxial

approximation, while the choice of𝑤0 = 4𝜆0 represents the

largest beamwaist that we can compute, due to the numeri-

cal complexity of the simulation. In presence of broadening

Γ′ = 5.75Γ0, we observe that the efficiency remains as high

as 𝜂 ≳ 0.82 (dotted, black line) up to  = 4, where the

overlapwith the input field is as low as 𝜖 ≈ 0.26. Overall, we

Figure 7: Efficiency of an atomic metalens as a function of the magni-

fication, given Γ′ = 5.75Γ0. We fix both the waist of the input beam

to𝑤0 = 4𝜆0, and the radius of the lens Rlens = 10𝜆0, while showing

the efficiency 𝜂 (blue points), signal-to-background ratio 𝜂̃ (green

points), and input-field overlap 𝜖 (orange points) as a function of

the magnification 1 ≤  ≲ 𝑤0∕𝜆0 = 4. For each point, we perform

a particle-swarm optimization of the free parameters 𝜙0, 𝛼, andΔR to
maximize the efficiency 𝜂 [50]. By fitting the data, we infer

the empirical scalings 𝜂 ≈ 1.06− 0.06, 𝜂̃ ≈ 1.05− 0.03 and

𝜖 ≈ −0.04+ 1.23∕ (colored, dashed lines). The black, dotted line

shows the reference value of 0.8.

find the empirical scalings of 𝜂 ≈ 1.06− 0.06, 𝜂̃ ≈ 1.05−
0.03, and 𝜖 ≈ −0.04+ 1.23∕ (colored dashed lines).

Assuming that these scalings would hold true for larger

values of𝑤0, they would predict efficiencies as high as 𝜂 ≈
0.5 up to ≈ 10 (where the overlap with the input field is

as low as 𝜖 ≈ 0.08), and signal-to-background ratios larger

than 𝜂̃ ≳ 0.5 up to ≈ 20 (where 𝜖 ≈ 0.02).

4.2 Losses and imperfections

Up to now, the presence of experimental losses and imper-

fections has been modeled by the addition of a detrimental

broadeningΓ′ ≈ 5.75Γ0, whose valuewas chosen to qualita-

tively capture some key properties of state-of-the-art exper-

iments with color centers in diamond. While our studies up

to now represent an optimistic scenario, herewe investigate

the performance of the metalens as the broadening rate

Γ′ increases, or when the atoms are subject to increasing

spatial disorder.

First, we study the resistance to increasing levels of

broadening Γ′, which we compare with the maximum

cooperative decay rate Γmax
coop

= Γcoop(dx,y = dmin ) ≈ 225Γ0

allowed in the system. To this aim, it is instructive to focus on

the single building blocks of the metalens. In Figure 8a, we

show the relation between the phase 𝜙3L (on the horizontal
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Figure 8: Resistance to nonradiative losses. (a) Transmission of a three-layer array, given increasing levels of Γ′. Similarly to Figure 4b, we use our

definition of dx,y,y to associate a unique transmittance |t3L|2 (color scheme) to any target phase 𝜙3L (horizontal axis). We then vary Γ′ (vertical axis)

to track the change in the transmittance. We notice that an almost identical plot is obtained when numerically optimizing the choices of

dx,y,z ≥ dmin = 0.03𝜆0 to maximize transmittance, proving the validity of our scheme. The black, dashed line highlights the particular case Γ′ = 5.75Γ0.

The black areas (bounded by dotted, white lines) identify regions of the parameter space that cannot be obtained with any choice of dx,y,z. (b) Efficiency

as a function of Γ′, given an atomic metalens with focal length f = 20𝜆0, radius Rlens = 10𝜆0, and construction parametersΔR ≈ 2𝜆0∕3, 𝜙0 ≈ −2.06,
and 𝛼 ≈ 0.2, illuminated by a Gaussian beam with𝑤0 = 4𝜆0. The lines show the efficiency 𝜂 (blue), signal-to-background ratio 𝜂̃ (green), input-field

overlap 𝜖 (orange), and base-line efficiency 𝜂in = |⟨E f |Ein⟩|2 (black, dashed line). The colored, dotted lines represent the values at Γ′ = 0, while the

colored points show the case of Γ′ = 5.75Γ0. The black, dotted line depicts a threshold value of 0.9, while the shaded, gray region portrays the regime

where some phases cannot be engineered anymore, corresponding to the appearance of black areas in subfigure (a). Finally, the blue asterisks show

the efficiencies in case the structural parametersΔR, 𝜙0, and 𝛼 are changed to be optimal for the corresponding value of Γ′.

axis) and transmittance |t3L|2 (color scheme), when

considering increasing values of Γ′ (vertical axis, in

log scale). This corresponds to the extension of Figure 4b

(which coincides with the black dashed line in Figure 8a) to

arbitrary values ofΓ′. Notably, whenΓ′ ≳ 0.15Γmax
coop

≈ 30Γ0,

some phases cannot be realized anymore (black areas in

the plot). We recall that the addition of further atomic

layers is expected to drastically increase the resistance

to losses, although presenting the drawback of adding

more atomic emitters, and increasing the overall thickness

of the metalens. Reducing the minimum lattice constant

dmin would similarly work, by increasing the maximum

cooperative rate Γmax
coop

.

To get further insights, it is instructive to explicitly focus

on the illustrative atomic metalens of Figure 6, with focal

length f = 20𝜆0, radius Rlens = 10𝜆0, and parametersΔR ≈
2𝜆0∕3,𝜙0 ≃ −2.06, and 𝛼 ≈ 0.2. In Figure 8b, we discuss the

overall response of this metalens, for broadening levels up

to Γ′ ≃ 3 × 102Γmax
coop

≈ 105Γ0. The blue line depicts the effi-

ciency 𝜂, the orange line the input-field overlap 𝜖, and the

green line the signal-to-background ratio 𝜂̃. Roughly, the sys-

tem becomes ineffective above the thresholdΓ′ ≳ ⟨Γ j
coop

⟩ ≈
0.5Γmax

coop
≈ 102Γ0. Notably, the efficiency remains acceptable

𝜂 ≳ 0.7 as long as Γ′ ≳ 60Γ0 although, in principle, this

corresponds to a regime where some phases around |𝜙| ∼
𝜋 cannot be engineered anymore (gray, shaded region). At

the same time, the signal-to-background ratio 𝜂̃ remains

relatively high up to much higher losses, so that 𝜂̃ ≳ 0.9

up toΓ′ ≈ 0.8Γmax
coop

≈ 102Γ0 and 𝜂̃ ≳ 0.5 up toΓ′ ≈ 5Γmax
coop

≈
103Γ0. We note that these efficiencies are calculated for

a fixed choice of ΔR, 𝜙0, and 𝛼, which are optimal only

for Γ′ = 5.75Γ0. This reasoning well describes a situation

where the amount of losses is unknown. On the other hand,

higher efficiencies (blue asterisk in Figure 8b) are obtained

by choosing optimal parameters tailored on the broadening

Γ′, as computed via particle-swarm optimization [50].

Finally, we discuss the effect of disorder in the atomic

positions, defined by randomly displacing each atomic emit-

ter inside a 3D sphere of radius 𝛿d, with a uniform distri-

bution. In Figure 9, we represent with colored points the

same quantities of Figure 8b, as a function of increasing

disorder 𝛿d. As intuitively expected, when the displacement

is comparable to dmin, then the efficiency is strongly under-

mined, with 𝜂 ∼ 0. In that regime, the transmitted light is so

randomly altered, that it does not overlap anymore with the

input field either, and one gets 𝜖 ∼ 0. Nonetheless, we notice

that the signal-to-background ratio exhibits more robust

properties, with 𝜂̃ ≳ 0.6 up to 𝛿d ∼ 0.7dmin. We relate these
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Figure 9: Resistance to additional position disorder. The data are

calculated for the atomic metalens with focal length f = 20𝜆0, radius

Rlens ≃ 9𝜆0, and construction parametersΔR ≈ 2𝜆0∕3, 𝜙0 ≈ −2.06, and
𝛼 ≈ 0.2, illuminated by a Gaussian beam with𝑤0 = 4𝜆0. The horizontal

axis represents the random displacement radius 𝛿d in units of

the minimum lattice constant dmin. The points represent the average

efficiency (𝜂, blue), signal-to-background ratio (𝜂̃, green), and overlap

with the input beam (𝜖, orange). Each point is calculated by averaging

over 10 random configurations, and the error bars represent one

standard deviation. The simulation is performed for the lossy case

Γ′ = 5.75Γ0. The lines represent the theoretical prediction when

replacing the random displacement with the additional inelastic rate

∼2.5Γ′
dis
(𝛿d, dmin ) = 2.5(𝜋∕2)(𝛿d∕dmin )2Γmax

coop
, where the numerically

inferred prefactor stems from the additional complexity of the metalens,

compared to stacks of infinite arrays.

results to the overall drop of transmitted light that occurs in

the disordered regime.

As detailed in Appendix A.2, small displacements

in a 2D array (or in a stack of arrays) can be well

described by a supplementary broadening Γ′
dis
(𝛿d, dx,y ) ≈[

𝜋𝛿d2∕(2dxdy )
]
Γcoop(dx,y ), whose scaling ensures the

dependence of the optical response only on the relative

displacement 𝛿d∕
√
dxdy. For the more complex case of

an atomic metalens, we numerically find that the position

disorder can be still characterized by a supplementary

rate ∼2.5Γ′
dis
(𝛿d, dmin), where the empirical prefactor can

be attributed to the more fragile interference patterns

involved in the metalens response, as well as to the attempt

of capturing the overall behavior of different rings with

only one unique rate, calculated for dx,y = dmin. To show

this, we consider ametalens with perfect spatial positioning

but with an additional broadening rate ∼2.5Γ′
dis
(𝛿d, dmin ),

andwe then use the results of Figure 8b to obtain the curves

shown in Figure 9. As long as the displacement is small

(solid part of the curves), these approximated predictions

are in good agreement with the numerical points.

5 Discussion

Complete wavefront shaping requires the simultaneous

achievement of high transmittance and full phase control.

Usually, metamaterials achieve these requirements by engi-

neering the local properties of the individual scatterers,

such as, for example, the shape of nanoresonators. Solid-

state, atom-like emitters, however, do not provide the

same manufacturing flexibility, and theoretical proposals

of atom-based metasurfaces rely on external drives with

subwavelength intensity profiles to locally change the emit-

ter properties [28]–[30], [37]. Still, the possibility of engi-

neering a complex optical response by solely implanting

atomic-scale scatterers in a solid-state environment repre-

sents an interesting perspective on device integration and

miniaturizability [95], especiallywhen considering the thick

substrate that is usually required by standard metasurfaces

(typically ∼1 mm [34]).

In this work, we showed that stacks of two or more

consecutive arrays of solid-state emitters can be engineered

to fulfill the necessary requirements of transmittance and

phase control, by only choosing proper lattice constants

that ensure their correct collective response. Via large-scale

numerical simulations [50], we argued that these elements

can be combined as the building blocks of a metalens,

whose efficiency is robust to losses and other imperfections,

due to the collective enhancement of the optical response.

This is achieved within a maximum thickness of ∼2𝜆0∕3,
which might be potentially reduced even further, by prop-

erly addressing the more complicated regime of evanescent

interactions. Notably, the perfect tunability of these building

blocks and the possibility of their combination can in princi-

ple guarantee arbitrary wavefront shaping, which suggests

the extension of this mechanism to more articulated appli-

cations, such as phase-only holograms [96].

The core design of our atomic metalens is based on an

analyticmap between any discretized phase pattern and the

corresponding set of lattice constants. Although this scheme

is intrinsically scalable, the design is complete only up to

threemacroscopic free variables, given by the overall phase

shift 𝜙0 of the metalens, the discretization size of the rings

ΔR, and the fraction 𝛼 of “buffer zones”. The scalability

of this optimization step is not trivial, as it involves large-

scale coupled-dipole simulations. To facilitate it, one pos-

sible strategy would consist of investigating whether each

ring made of discrete atoms could be modeled by smooth,

flat mirrors, with proper transmission and reflection coeffi-

cients. This would enable simulation via optical commercial

software, with a computational complexity decoupled from

the number of dipoles [97]–[101]. Alternatively, it would be
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interesting to explore if a target, collective optical response

could be obtained with far fewer emitters, by inverse-

designing their positions through proper optimization algo-

rithms [102]. Some preliminary numerical simulations sug-

gest that adjoint methods might be a promising path in this

direction [103].

With our scheme, the total efficiency is protected by

the collective response, even if the losses of the individual

scatterers are non-negligible Γ′ ≫ Γ0. Similar considera-

tions apply beyond the case of atom-like emitters, to any set

of optical scatterers with a well-defined resonant, dipolar

response, and a ratio between scattering and total cross

section equating Γ0∕
(
Γ0 + Γ′) [36]. This would be the case

of plasmonic nanoparticles, for example, which are indeed

known to become more resistant to their intrinsic losses

when collectively (i.e., nonlocally) responding to light in a

2D, subwavelength array [104]. Our work, based on the idea

of combining different arrays together, can then provide

additional insights and tools to the context of nonlocalmeta-

surfaces [105].

Finally, it is interesting to mention some specific

features of color centers in diamond, whose two-level

nature provides nontrivial properties both at the classi-

cal and at the quantum level. For example, an atomic

metalens based on SiVs would be extremely narrowband

and polarization sensitive, finding possible applications

in terms of spectral filtering [106]–[108], tunability [109],

or polarization control [110], [111]. Furthermore, color

centers are highly saturable objects, due to their intrin-

sic nonlinearity, and this behavior would automatically

limit the metalens response up to a threshold intensity

of light.

At the quantum level, it is known that color centers can

be embedded inside ametasurface to enhance some of their

functionalities, for example as single-photon sources [112].

It would be interesting to explore if enhanced, collective

properties of an ensemble of color centers could be more

easily designed by engineering the emitters to act as a non-

local metasurface. Some evidence exist, for example, that

stacks of two atomic arrays can exhibit enhanced nonlin-

ear correlations [86]. More generally, a metasurface based

on color centers could provide a possible playground for

the emerging contexts of quantum metasurfaces [113] and

quantum holography [114], [115].

Methods: We numerically simulate the optical response

of the system by solving the coupled-dipole equations of

Eqs. (2) and (4), whose computational time scales as ∼ N3,

where N is the number of atomic dipoles. The input Gaus-

sian beam must have a waist 𝑤0 much smaller than the

radius Rlens of the atomic metalens, to avoid scattering from

the edges or a non-negligible fraction of light passing outside

the lens. Due to the paraxial approximation, however, this

imposes the constraint 𝜆0 ≪ 𝑤0 ≪ Rlens. Furthermore, to

counteract the effects of the broadening Γ′, one must work

with small lattice constants down to dmin ≈ 0.03λ0, thus
explaining the necessity of simulating up to N ∼ 5 × 105

atomic dipoles. To accomplish this task, we exploit the fact

that the system is symmetric for x̂→−x̂ and ŷ→−ŷ, which
implies that the each dipole dj is equal to those of the atoms

at themirrored positions. The actual degrees of freedom are

given by the number of atoms satisfying xj ≥ 0 and yj ≥ 0,

which are roughly Ñ ∼ N∕4. The coupled dipole equations
can be then simplified by accounting only for these atoms,

and then considering as if each of them scattered light from

the mirrored positions as well. A supplementary problem

is the amount of Random Access Memory (RAM) needed

to perform the simulation. We design the code in such a

way that the maximum allocation of memory is given by

the construction of the Ñ × Ñ Green’s function matrix. By

defining it as a matrix of Complex{Float32} (64 bit) rather

than the customComplex{Float64} (128 bit), we cut themem-

ory consumption to ∼200 – 300 GB of RAM. We checked

that we were still working with enough numerical preci-

sion, by comparing the simulations of smaller systems, per-

formed with both choices of the variable definition. Finally,

the overall computational time was sped up by using the

native, multicore implementation of linear algebra in Julia

as well as its vectorized treatment of tensor operations [92],

while other relevant computations were split over multiple

threads. More information is available in the Github repos-

itory provided at Ref. [50].
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Appendix A: Coherent scattering

by silicon vacancy centers

In this appendix, we explain more in detail our model of

SiV centers in diamond as two-level, dipole emitters. We

stress that similar considerations apply to other group IV

color centers [60]. The Zero-Phonon-Line (ZPL) of a SiV is

centered around 2𝜋c∕𝜔0 ≈ 737 nm and is composed of four

resonances, associated to the spin–orbit splitting into two

ground ||g±⟩ and two excited states ||e±⟩ [116]. At cryogenic
temperatures ∼4 K, these resonances become spectrally

resolved [117], and one can target the brightest spectral line

(between the lowest ground ||g−⟩ and the lowest excited

state ||e−⟩) to obtain an effective two-level emitter, with a

well-defined dipole moment aligned along the axis between

the silicon atomand the carbon vacancy [116]. Although part

of the initial population can be in ||g+⟩ rather than ||g−⟩,
in principle this problem can be solved by optical pumping

[117], or by further lowering the temperature [118]. At the

same time, the inelastic excitation of ||e+⟩ from ||e−⟩, via
phonon coupling, is strongly suppressed already at ∼4 K

[117]. Still, the target excited state ||e−⟩ can inelasticaly decay
into the upper ground state ||g+⟩ or nonradiatively decay

out of the ZPL, eventually returning to ||g−⟩ by phononic

relaxation [118], [119].

In viewof all these considerations,wemodel the system

by considering that the lifetime 𝜏 of the excited state ||e−⟩
defines a transform-limited linewidth 1∕𝜏 = Γ0 + Γ′

inel
+

Γ′
nr
composed of several terms [117]. First, we identify the

elastic, radiative component Γ0 = k3
0
|0|2∕(3𝜋𝜖ℏ), which

describes the radiative decay into ||g−⟩, with 0 associ-

ated to the corresponding dipole matrix element. Second,

we include the inelastic Γ′
inel

and nonradiative Γ′
nr

pro-

cesses by considering that, at ∼4 K, they should account for
roughly half of the photonic decay [120], leading to Γ′

inel
+

Γ′
nr
≈ Γ0. On top of that, the linewidth of the target reso-

nance can undergo homogeneous broadening, which can

be caused by nonradiative decay [117], or phonon-induced

dephasing [118] and depolarization [117]. In our model, we

group these phenomena into an additional rate Γ′
hom

≲ Γ0,

whose value qualitatively accounts for the fact that nearly

transform-limited linewidths have been observed at cryo-

genic temperatures (we also notice that encouraging paths

have been suggested to extend this property up to much

higher temperatures [121]). At the same time, we consider

the possibility that local properties (such as strain, or spec-

tral diffusion) randomly shift the resonance frequencies

of the individual emitters, thus resulting in an additional

inhomogeneous broadening. As detailed in Appendix A1,

we model this process with a supplementary rate Γ′
inhom

≈
2.75Γ0, where its value is inspired by the experimental

results of Ref. [120]. Finally, in Appendix A.2, we show that

small disorder in the positions of the solid-state emitters

can be similarly modeled by a supplementary inelastic rate,

where we take the value of Γ′
dis

≈ Γ0. Given the set of

parameters considered, this will roughly correspond to a

random displacement within a radius of ∼0.1 times the

average lattice constants. Overall, this defines the total,

additional broadening Γ′ = Γ′
inel

+ Γ′
nr
+ Γ′

hom
+ Γ′

inhom
+

Γ′
dis

≈ 5.75Γ0.

For each emitter, the quantityΓ0∕
(
Γ0 + Γ′) ≈ 0.15 then

estimates, on average, the fraction of resonant scattering

events that are coherent and elastic [122].

A.1 Inhomogeneous broadening

To model the presence of inhomogeneous broadening,

we assume that each atom of the array has a shifted

resonance frequency 𝜔̃i, randomly distributed

according to the probability distribution Pinhom(𝜔̃).
Here, for simplicity, we focus on a Lorentzian

distribution of full-width-half-maximum 2𝜎Lorentz, i.e.,

Pinhom(𝜔̃) = 𝜎Lorentz∕
[
𝜋
(
𝜎2
Lorentz

+ 𝜔̃2
)]
. The system is

still described by the coupled-dipole equations Eq. (4),

with the difference that each atom now exhibits the

shifted polarizability 𝛼′(Δ) = 𝛼0(Δ− 𝜔̃ j ). In our model,

we assume that we can average the atomic response

over disorder first, before solving the multiple-scattering

problem.We obtain an average atomic polarizability, which

reads

𝛼0 = ⟨𝛼′(𝜔̃)⟩ = −3𝜋𝜖

k3
0

∫

Γ0Pinhom(𝜔̃)
Δ− 𝜔̃+ iΓ0∕2

d𝜔̃

= −
(
3𝜋𝜖

k3
0

)
Γ0

Δ+ i
(
Γ0 + Γ′

inhom

)
∕2 ,

(A.1)

where we defined Γ′
inhom

= 2𝜎Lorentz.

In Figure A.1, we numerically check the soundness of

this assumption by evaluating the spectrum of transmission|t(Δ)|2 of a 2D square array of size L = 6.4𝜆0 and lattice

constant dx,y = 0.2𝜆0, illuminated by a Gaussian beam of

waist 𝑤0 = L∕4. Here, t(Δ) is calculated by projecting the
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Figure A.1: Effects of inhomogeneous broadening on a 2D atomic array.

Transmission spectrum of a finite 2D square lattice with transverse size

L = 6.4𝜆0 and lattice constants dx,y = 0.2𝜆0, illuminated by a Gaussian

beam of waist𝑤0 = L∕4. The blue points (green squares) are calculated
by solving the inhomogeneous version of the coupled-dipole

equations Eq. (4) with randomly shifted polarizabilities 𝛼0 → 𝛼′(𝜔̃i ),

and considering atomic resonance frequencies 𝜔̃i randomly sampled

from a Lorentzian (Gaussian) distribution of half-width-half-maximum

𝜎Lorentz = 2.5Γ0 (standard deviation 𝜎Gauss = 5Γ0). The red line shows the

analytic model of a nonradiative decay rate Γ′
inhom

= 5Γ0. The data are

averaged over∼100 randomly sampled configurations. Similar plots can
be derived when calculating the phase of transmission, or the reflection

properties.

output field of Eq. (2) onto the same mode as the input

beam [80], as also detailed in Appendix D. We compare

the analytic model of Γ′ = Γinhom = 5Γ0 (red line), with the

numerical results obtained by considering a Lorentzian dis-

tribution of resonant frequencieswith𝜎Lorentz = 2.5Γ0 (blue

points), observing a remarkable agreement. As a reference,

the green points show the case of resonances 𝜔̃i sampled

from a Gaussian distribution of standard deviation 𝜎Gauss =
5Γ0, whose qualitative similarity leads to the approximate

estimation Γ′
inhom

≈ 𝜎Gauss.

Rather than an exact model of a specific set of exper-

imental data, we aim to capture a reasonable, qualitative

description of the effects of inhomogeneous broadening. To

this aim, we consider the results of Ref. [120], where they

observe a set of 14 SiVs with the same polarization, which

exhibit frequencies spanning an interval of Δ𝜔 ≈ 9.5Γ0.

Assuming that these resonances are uniformly distributed

within that bandwidth, we consider a Gaussian distribution

with the same standard deviation, which leads to the rough

estimation of Γ′
inhom

≈ Δ𝜔∕
√
12 ≈ 2.75Γ0. We notice that

Lorentzian distributions do not have a well-defined stan-

dard deviation,which prompted us to consider the Gaussian

case.

A.2 Position disorder

Here, we discuss how small random displacements in the

positions of the atomic emitters can affect the optical

response. To this aim, we focus on a 2D, square array of

constant dxy, and we uniformly sample the displacement

within small spheres of radius 𝛿d.

Specifically, we aim to define an effective broadening

Γ′
dis
, which should describe the average transmission and

reflection of the array. To do so, we consider the reflection

r1L of an idealized infinite array, as expressed in Eq. (6), and

we assume that all the losses are contained into Γ′
dis
. At the

resonant conditionΔ = 𝜔coop, this allows to define

Γ′
dis

Γcoop

= 1|r1L(𝜔coop )| − 1. (A.2)

In Figure A.2, we thus consider a finite, square array of

size L and subwavelength lattice constants dxy < 𝜆0, illumi-

nated by an input Gaussian beam of waist 𝜆0 ≪ 𝑤0 ≪ L,

Figure A.2: Average inelastic scattering due to the disorder in the atomic

positions. For each value of the lattice constant dx = dy = dxy of a

square, 2D array, we randomly displace the atomic positions within

a sphere of radius 𝛿d. We then compute the average resonant reflection⟨r⟩ atΔ = 𝜔coop, upon illumination by an input Gaussian beam of waist

𝑤0 = L∕4 ≥ 𝜆0, where L is the size of the array. Each point is obtained by

averaging over 50 random sets of displaced positions. The value of L

varied to keep the number of atomic emitters to N = 500. For each

configuration, we define the inelastic rate from Eq. (A.2), as Γ′
dis
∕Γcoop =|⟨r⟩|−1 − 1, and we scan increasing radii of disorder 𝛿d. The black,

dashed line represents the empirical scaling of Eq. (A.3). The insets show

the average spectral behavior of reflection (circles) and transmission

(triangles) for the cases dxy = 0.25𝜆0 and 𝛿d ≈ 0.12dxy (up-left inset)

or dxy = 0.1𝜆0 and 𝛿d ≈ 0.34dxy (bottom-right inset). The black,

dashed curves represent the predictions of Eq. (A.3), which are in large

agreement.
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and we numerically compute the reflection r by projecting

onto the same Gaussian mode as the input [80]. For each

value of dxy, we randomly displace the positions uniformly

within a sphere of radius 𝛿d, and define the average reflec-

tion ⟨r⟩.
Using Eq. (A.2) as an operative definition, we are able

to estimate the value of Γ′
dis
from ⟨r⟩. We reasonably expect

that the optical response should be a function of the ratio

𝛿d∕dxy. Due to this reason, we plot Γ′
dis

as a function of

𝛿d∕dxy in log-log scale, which we numerically fit to obtain

the equation

Γ′
dis

≈ 𝜋

2

(
𝛿d

dxy

)2

Γcoop =
3

8

(
𝛿d𝜆0
d2
xy

)2

Γ0, (A.3)

which is represented by a black, dashed line. The numer-

ics confirm our intuition, proving that Eq. (A.3) describes

well the reflection properties, at least as long as 𝛿d ≲ 0.7dxy
and 𝛿d ≪ 𝜆0. From a similar analysis, we found that this

prediction can capture the spectral behavior of both the

reflection ⟨r(Δ)⟩ and the transmission ⟨t(Δ)⟩ coefficients as

a function of the detuning (e.g., see the insets of Figure A.2,

for the case with either dxy = 0.025𝜆0 and 𝛿d ≈ 0.12dxy or

dxy = 0.1𝜆0 and 𝛿d ≈ 0.34dxy). The result in Eq. (A.3) should

in principle be extendable to the case of rectangular arrays

with dx ≠ dy, by using the substitution rule d
2
xy

→ dxdy. We

also notice that this result extends the simplified scaling

Γ′
dis

∝ (𝛿d∕𝜆0 )2 mentioned in Ref. [17], to the case of arbi-

trary lattice constants. Finally, we report that the scaling in

Eq. (A.3) is confirmed by similar calculations performed on

M = 2, 3 square arrays in series.

Appendix B: Evanescent interaction

In this appendix, we further investigate the role of evanes-

cent interactions between 2D atomic arrays, with the goal

of justifying the assumption that they are negligible in our

regime of interest. We recall that we deal with rectangular,

2D arrays of constants dx,y ≤ 𝜆0, placed at a distance of

dz, and that the dipole matrix elements of the emitters are

 0 = 0x̂. The evanescent interaction ev
nm

results from the

evanescent diffraction orders of the field scattered by the

atomic layer at zm, when probed by the atoms at zn. For

Figure A.3: Strength of the evanescent interaction between two nearest neighbor layers of atoms. The color legend identifies the relative magnitude|ev
12
|∕|rad

12
| as a function of the lattice constant dx,y and distance dz. We recall that the radiative contribution has a constant magnitude of|rad

12
| = 1∕2, since in Eq. (5) we define the interactions in units of the cooperative rate Γcoop. The red color describes the region where the evanescent

field dominates, i.e., |ev
12
|∕|rad

12
| > 1. On the contrary, the black area is associated to negligible evanescent interaction |ev

12
|∕|rad

12
| < 0.01. In the two

panels, we explore the two branches of the path chosen for our scheme, reading (dy = dmin) ∪ (dmin ≤ dx < 𝜆0) (a) and (dx = dmin) ∪ (dmin ≤ dy < 𝜆0)

(b), where we recall that dmin ≈ 0.03𝜆0. The evanescent interaction is calculated from the full equation Eq. (A.4). The white, dotted line represents

the possible range of values dz(dx,y ) that guarantee high transmission and full phase control in a three-layer scheme. The white points show the actual

values that we used to design the lens of Figure 6, which all fall in a regime where ev
12
∼ 0. Finally, the white, solid lines show the approximated rule of

thumb dz=max dx,y∕π.
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subwavelength arrays, its value reads

ev
nm

=
∑

k
(a,b )
x y

≠0

𝜉ab
2k0

[
k2
0
−
(
k
(a,b)
xy

⋅ x̂
)2]

e−|m−n|dz∕𝜉ab , (A.4)

where the diffraction orders are labeled by the integer num-

bers (a, b), which identify the corresponding wavevector

k
(a,b)
xy

= 2𝜋(ax̂∕dx + bŷ∕dy ) and characteristic distance of

exponential suppression 𝜉ab = 1∕
√|k(a,b)

xy
|2 − k2

0
.

The evanescent interaction is stronger for nearest

neighbor layers, so we focus on ev
12
. Moreover, the lead-

ing contributions are given by the first two diffraction

orders (a, b) = (1, 0) and (a, b) = (0, 1), which are exponen-

tially suppressed by a factor of ∼1∕e2 roughly when dz =
2max(𝜉10, 𝜉01) ≈ max dx,y∕𝜋. The last step is valid for very
subwavelength arrays with max dx,y ≫ 𝜆0 and can serve as

a simple rule of thumb to roughly identify the regimewhere

ev
12
∼ 0.

Going beyond this rough estimate, in Figure A.3, we

numerically calculate the ratio of evanescent to radia-

tive interaction strength |ev
12
∕rad

12
|, as a function of

the lattice constants dx,y,z. Specifically, on the horizontal

axis, we vary the transverse constants along one of the

two paths (dy = dmin) ∪ (dmin ≤ dx < 𝜆0) (Figure A.3a) or

(dx = dmin) ∪ (dmin ≤ dy < 𝜆0) (Figure A.3b). The distance is

spanned on the vertical axis within the range dmin ≤ dz ≤

𝜆0∕2, while the white, dotted lines show the specific choice

dz(dx,y) that we used to define an atomic metalens. The

white, solid line shows the rule of thumb dz ≈ max dx,y∕𝜋.
As long as dy = dmin, dx ≲ 𝜆0∕4 or dx = dmin, dy ≲ 𝜆0∕4,
the evanescent interaction is completely negligible, being|ev

12
|∕|rad

12
| < 0.01 (black region). The specific sets of lattice

constants used to define the illustrative metalens in the

main text (white points) genuinely fall in that regime. By

comparing Figure A.3 with Figure 4a, we can infer that

almost all phases 𝜙3L can be engineered, except the small

range−0.03𝜋 ≲ 𝜙3L ≲ 0.06𝜋 around 𝜙3L ∼ 0. Two possible

ways exist to address this issue. First, one can think of

leaving the related ring empty (which would correspond

to approximating the phase with 𝜙3L = 0). Otherwise, one

can consider larger distances dz, given that t3L is invari-

ant (ignoring evanescent interactions) for dz → dz + a𝜆0∕2
(with a = 1, 2,…), while the effects of evanescent fields

rapidly diminish with increasing dz.

These conclusions apply for all sets of lattice constants,

excluding the limit of dy → 𝜆0. In that specific case, indeed,

the diffraction order with (a, b) = (0, 1) would give rise, in

Eq. (A.4), to a nominally infinite evanescent contribution

arising from the constructive interference between an infi-

nite number of atoms in each 2D layer, associated with an

infinite range 𝜉01 →∞ of interaction.

Appendix C: Buffer zones

Here, we describe in detail our definition of the buffer

zone between consecutive rings of an atomic metalens. This

scheme explicitly takes advantage of the fact that, in our

approach, often one of the two lattice constants dx,y does not

change between two consecutive rings. The full algorithm is

described below.

– Given each ring j, its first 0 ≤ 𝛼 < 1 fraction is

reserved as a buffer zone (green and orange regions of

Figure A.4), aimed to connect the array inside the j-th

ring with the previous, in a smoother way. Hereafter,

we describe how a generic j-th buffer (separating the

(j − 1)-th and the j-th ring) is constructed.

– First, the system checks if either d
j
x = d

j−1
x = dmin or

d
j
y = d

j−1
y = dmin is satisfied. If none of them is fulfilled,

then the algorithm ignores that buffer (as in the orange

regions of Figure A.4).

– Let us assume that one has d
j
y = d

j−1
y = dmin, as in

the green regions of Figure A.4. The opposite case is

Figure A.4: Example of “buffer zones” between two consecutive rings,

in the x̂, ŷ-plane. The blue points show the atomic positions, while each

ring is identified by a red line, as well as an ordinal number, still in red.

The first 𝛼 = 0.2 fraction of each ring is dedicated to the buffer zones,

which are represented by either green or orange regions. In particular,

the green areas describe the case where one of the two conditions

d
j
x = d

j−1
x = dmin or d

j
y = d

j−1
y = dmin are satisfied, which allows to

smoothly connect the neighboring rings. On the contrary, the case where

none of these two conditions is fulfilled is shown by the orange zones,

which are simply treated as normal parts of the corresponding ring.

The black and purple boxes identify two peculiar instances, as described

in the main text.
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a straightforward extension, which can be described

by simply reversing the references to the vertical and

horizontal coordinates.

– In this regime, the lattices are organized in columns

spaced by either d
j−1
x and d

j
x . The algorithm defines

xmax = max x j−1 + (3∕4)d j−1x , where xj−1 identify the

horizontal positions of the columns of the (j − 1)-th ring.

If there are columns of the j-th ring having xj > xmax,

then those columns are ignored in the following steps

(as in the black box of Figure A.4).

– At this point, the algorithm counts the number of

columns in either the j-th or the (j − 1)-th ring,

satisfying the condition 0 ≤ xj, j−1 ≤ xmax. Then, it iden-

tifies which of the two rings has less columns. For the

sake of simplicity, we will assume it to be the j-th ring,

but the algorithm deals with the opposite case in a

similar manner. For each column i of this ring, the code

searches the horizontally nearest column k among the

ones of the (j − 1)-th ring, i.e., the one minimizing the

quantity |xi
j
− xk

j−1|.
– Given this pair of columns, the algorithmconnects them

by drawing a straight line, and then placing atoms with

a vertical spacing d
j
y = d

j−1
y = dmin. For a line to be

drawn, the condition yi
j
> yk

j−1 must be fulfilled. When

the number of columns in the two original rings are

different, some columns must remain unconnected, as

highlighted by the purple box in Figure A.4.

– For what concerns the ẑ position, all the atoms of the

j-th buffer are associated to the lattice constant d
j
z,

meaning that the columns are “connected” only in the

x̂, ŷ-plane. We tested the idea of fully connecting them

in 3D, without noticing significant improvements in the

efficiencies.

Appendix D: Definition

of the efficiency

In our simulations of an atomic metalens, we consider a

finite ensemble of N , x̂-polarizable atomic emitters, with

resonant frequency 𝜔0 and embedded in a nonabsorbing,

bulk material of index n, so that the resonant wavevector

reads k0 = 2𝜋∕𝜆0 = n𝜔0∕c. The system is illuminated by

a resonant, x̂-polarized Gaussian beam of waist 𝑤0, which

reads Ein(R, z) = Egauss(R, z,𝑤0), with

Egauss(R, z,𝑤0 ) = E0
𝑤0

𝑤(z,𝑤0 )
exp

[
− |R|2
𝑤(z,𝑤0 )

2

+ ik0z+ i𝜑(|R|, z,𝑤0 )

]
x̂, (A.5)

where 𝑤(z,𝑤0 ) = 𝑤0

√
1+

[
2z∕

(
k0𝑤

2
0

)]2
is the

waist of the beam, while we have 𝜑(R, z,𝑤0 ) =
− arctan(2z∕

(
k0𝑤

2
0

)
)+ k0R

2∕[2𝜌(z,𝑤0 )], with radius

of curvature 𝜌(z,𝑤0 ) = z
[
1+ [k0𝑤

2
0
∕(2z)]2

]
. The total field

Eout(R, z) is given by Eqs. (2) and (4) and must be compared

to the theoretical output field that one would expect for an

ideal lens of focal length f [87]

E f (R, z) = Egauss(R, z− z f ,𝑤 f )e
ik0z f, (A.6)

where one has

𝑤0

𝑤 f

=  =

√
1+

(
k0𝑤

2
0

2 f

)2

, (A.7)

and

z f =
(
1−−2) f . (A.8)

Here,  is the so-called magnification of the lens

and ensures energy conservation in the form of Pin ∝
∫ dR|Ein|2 = ∫ dR|E f |2 = 𝜋|E0|2𝑤2

0
∕2. The ideal increase in

the beam intensity at the focal point (over the peak input

intensity |E0|2) is instead given by |E f (0, z f )|2∕|E0|2 = 2.

We can calculate the efficiency 𝜂 of the atomic metalens by

evaluating the overlap between this ideal solution and the

total field. In the paraxial limit, this reads 𝜂 = |||⟨E f |Eout⟩|||2,
where [7], [80]

⟨E f |Eout⟩ = ∫ℝ2E
∗
f
(R, z) ⋅ Eout(R, z)dR

∫ℝ2 |E f (R, z)|2dR
= t0 +

3i

(k0𝑤0 )
2

(
Γ0

Ω0

) N∑
j=1

[
E∗
f
(R j, z j )

E∗
0

]
p j

0

,

(A.9)

where we have

t0 = ⟨E f |Ein⟩ = k0𝑤0𝑤 f

k0

(
𝑤2

0
+𝑤2

f

)
∕2+ iz f

. (A.10)

Here, we recall that  0 = 0x̂ is the dipole matrix

element of the emitters, while we have the Rabi fre-

quency Ω0 = ∗
0
E0∕ℏ. With this definition, the value of

𝜂 describes the fraction of input power that is trans-

mitted into the desired spatial mode of light. We have

made use of the relation ∫ E
∗
f
(R, z) ⋅ ̄̄G(R− R j, z− z j )dR =

iE∗
f
(R j, z j )∕(2k0 ), which is true in the far field and as long as

the paraxial condition of𝑤 f ≳ 𝜆0 (or,more exactly, k0𝑤 f ≫

1) is satisfied [7], [38], [80]. Similarly, we define the overlap
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𝜖 = ||⟨Ein|Eout⟩||2 between the output and the input mode,

where

⟨Ein|Eout⟩ = 1+ 3i

(k0𝑤0 )
2

(
Γ0

Ω0

) N∑
j=1

[
E∗
in
(R j, z j )

E∗
0

]
p j

0

.

(A.11)

Appendix E: Spectral behavior

of the metalens

We described a method to engineer an atomic metalens,

designed to optimally focus resonant light Δ = 𝜔−𝜔0 =
0. Nonetheless, it is interesting to explore the bandwidth

where the efficiency remains high. To address this ques-

tion, we consider the illustrative example of the main

text, corresponding to a metalens with focal length f =
20𝜆0, radiusRlens = 10𝜆0, and constitutive parametersΔR ≈

Figure A.5: Spectral response of the atomic metalens, with focal length

f = 20𝜆0, radius Rlens = 10𝜆0, and parametersΔR ≈ 2𝜆0∕3,
𝜙0 ≃ −2.06, and 𝛼 ≈ 0.2. The curves represent the efficiency 𝜂 (blue),

signal-to-background ratio 𝜂̃ (green), and overlap 𝜖 (orange) with

the input beam. The dashed, black, horizontal line shows the value

of the overlap between the input and the ideal field 𝜂in = |⟨E f |Ein⟩|2.
The simulation is performed for the lossy case Γ′ = 5.75Γ0. The detuning

Δ = 𝜔−𝜔0 is expressed either in units of Γ0 (label below) or in units

of Γmax

coop
= Γcoop(dmin ) ≃ 225Γ0 (label above). The dark gray region

empirically corresponds to the regime where the atomic emitters

become transparent, which roughly readsΔ ≲ −2Γmax

coop
andΔ ≳ Γmax

coop
.

On the contrary, the white region corresponds to the bandwidth|Δ| ≤ ⟨Γ j

coop
⟩∕2, where the efficiency remains high 𝜂 ≳ 0.8.

Here, ⟨Γ j

coop
⟩ is the average decay rate within the rings, weighted by

the fraction of light power illuminating each ring.

2𝜆0∕3, 𝜙0 ≃ −2.06, and 𝛼 ≈ 0.2, which acts on an input

beam of waist𝑤0 = 4𝜆0.

Intuitively, we expect the largest bandwidth of non-

vanishing optical response to be of the same order of the

maximumcooperative decay rate allowed in our system, i.e.,

Γmax
coop

= Γcoop(dx,y = dmin ) ≃ 225Γ0. This intuition matches

well with what we numerically observe in Figure A.5,

where we plot the spectrum of efficiency 𝜂 (blue), signal-

to-background ratio 𝜂̃ (green), and overlap with the input

mode 𝜖 (orange). This is calculated when illuminating our

illustrative atomic metalens with a Gaussian beam of waist

𝑤0 = 4𝜆0, in the lossy regime of Γ′ = 5.75Γ0. As expected,

when |Δ∕Γmax
coop

| ≫ 1, the metalens shows the features of

a transparent system, i.e., Eout ∼ Ein, meaning that 𝜖 ∼
1, while the efficiency tends to the overlap between the

ideal and the input mode, i.e., 𝜂 ∼ 𝜂in = |⟨E f |Ein⟩|2 ≈ 0.4

(approximately marked with a dark gray region in the

plot).

On the contrary, the behavior inside the light-gray area

is irregular, but we can identify a bandwidth (white area)

of ∼ ±⟨Γ j
coop

⟩∕2 where the efficiency remains as high as

𝜂 ≳ 0.8. Here, we defined the average decay rate ⟨Γ j
coop

⟩ ≈
96Γ0 by calculating the decay rates Γ j

coop
within each ring

that compose the metalens, and then computing the mean

value, after weighting each element with the fraction of

input light that illuminates the area of the corresponding

ring. The value of these weights is illustrated by the colors

of the points in Figure 4b. Finally,we stress that the values of

Γmax
coop

and ⟨Γ j
coop

⟩ are related to our particular choice of dmin.
In general, we can identify a trade-off between the tight-

ness of the bandwidth and the resistance to losses, meaning

that some applications that require smaller bandwidths, but

can tolerate lower efficiencies, can opt for higher values

of dmin.
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