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1. Dependencies between the eigenmodes
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Fig. S1. Schematic of the propagation, reflection and tunneling of 2DSPs through a plasmonic nano-plate,

highlighting the excitation of the radiation modes.

In the main text, we used five eigenmodes to describe the interaction between two-dimensional
surface polaritons (2DSPs) [1-4] and radiation modes [5] in the 2D crystal region, and the plane
wave modes in the nano-plate region, as shown in Fig. S1. The real-space representations of the

eigenmodes are as follows [3, 4]:
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Detailed dependencies between the eigenmodes can be directly calculated by projecting one
eigenmode to another. Specifically, orthogonality of the radiation modes and the planewave modes

can be written as
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while non-orthogonal dependencies can be obtained as
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2. Full descriptions of 10 coupled integral equations

In Eq. (4) and (5) in the main text, we obtained 4 coupled integral equations written in different
vector spaces with different bases. However, Eq. (4) and (5) possess all required 10 equations that

can be extracted by applying the projection of Eq. (4) and (5) onto the eigenmodes of the system.

Specifically, we can project the two equations in Eq. (4) onto |u, ) and |l ) to obtain four

coupled equations as
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and project the remaining equations in Eq. (5) onto | p), |s ), and |a ) to have additional six

coupled equations such that
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3. First Born approximation
Under the first Born approximation (BA), all dependency between the eigenmodes are suppressed
when two momenta of the eigenmodes differ. Then, <uk§ ‘akz>,<lk§ ‘akz>, and <uk: ‘skz> in Eq.
(S3) become
<uk¢ ‘ak > ~ \/;(Lcos(kzh)+ isin (kzh)J[ﬁ(kZ —k.)+8(k, +k, )]
z pz

akz>z—\/;%[6(kz—k4)+§(kz+k§)], (S6)

U [s,,) = mcos(kh)[ 8(k, —k, )+ (k, +k.) .

One can readily find that the coupled integral equations in Eq. (S4) reduce to
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All remaining equations in Eq. (S5) except for the first and second lines become
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W, =—/7 2 W isthe complex conjugation of W, _, for any vi and vz. Equation (S8)

Vi<V,
P,

can be plugged into Eq. (S7), and this gives rise to four coupled equations for coefficients A, B, C,
and D such that
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where mij is defined by
1 k2
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Apparently, Eq. (S9) can be simplified to a matrix equation such that
M M
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with Mmn the 2 x 2 submatrix, and V and F the 4 x 1 column vectors defined as
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4. Reflection and tunneling coefficients
The four coefficients A, B, C, and D can be directly obtained from Eq. (S11), and then we plug

them into the first and second lines of Eq. (S5). Let us define a new matrix N such that
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Also, let nij be the elements of N. Then, after some manipulations, one can show that the first and

second lines of EqQ. (S5) can be rewritten as

(1+R)=(1-R)1,+T1,,
T=—(1-R)I,-TI,

where two coupling strengths I1 and I2 are defined as

with additional factors Pij given by
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Finally, we arrive at the reflection and tunneling coefficients as follows:
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5. Numerical results on the resonant tunneling of 2DSPs with lossy system
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The impact of system’s losses is numerically demonstrated in Fig. S2. To mimic the case of

graphene plasmon polaritons, we set Ao = 6 um. We can see that the loss in the 2D crystal plays an



important role in the amplitude of resonant tunneling, but it has minimal impact on the reflection
phase as it does not alter the resonance condition. On the other hand, at Ao = 6 um, the loss in the
gold nano-plates introduces a negligibly small change in both the resonant tunneling condition and
amplitude, suggesting that metallic loss of the gold nano-plates does not significantly affect the

tunneling (T) and reflection (R) coefficients.
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Fig. S2. Resonant tunneling of 2DSPs with losses, supplementing Fig. 4(a) in the main text. The loss of 2D
crystal is implemented by assuming the momentum relaxation time of 0.5 ps in the Kubo’s theory of
graphene’s conductivity [6, 7]. In our case, this is equivalent to the effective permittivity of —127.3 + 1.6i
with 0.3 nm thickness.
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