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Commensurability of bilayer and trilayer moiré superlattices 

In a hexagonal lattice, all points of the same kind in the lattice can be reached by a translation 

along 𝑚𝒂𝟏 + 𝑛𝒂𝟐, where 𝑚 and 𝑛 are integers and 𝒂𝟏 = 𝑎 (1/2, √3/2)
𝑻
and 𝒂𝟐 =

𝑎 (−1/2, √3/2)
𝑻
 are the lattice vectors with lattice constant 𝑎 = 2 𝜆SPP/√3  ≈ 0.9 µm. In 

twisted bilayer graphene, periodic superlattices are achieved by rotating one layer of graphene 

over another layer, so that two atomic sites overlap:  

𝑘𝒂𝟏 + 𝑙𝒂2 → 𝑚𝒂𝟏 + 𝑛𝒂𝟐, 𝑘, 𝑙, 𝑚, 𝑛 ∈ ℤ. (S1) 

Solutions of all commensurate structures have been derived in Ref. [1–5]. Here, we apply these 

solutions to moiré skyrmion lattices. Following Ref. [4], twist angles of commensurate 

structures with 0 < 𝜙 <  π/3 are given by 

cos ϕ(𝑚, 𝑟)  =
3𝑚2 + 3𝑚𝑟 + 𝑟2/2

3𝑚2 + 3𝑚𝑟 + 𝑟2
, (S2) 

where 𝑟 = 𝑛 − 𝑚 and 𝑚 are coprime positive integers. That is, the twist corresponds to the 

rotation of the lattice site at 𝑛𝒂𝟏 + 𝑚𝒂𝟐 to the lattice site 𝑚𝒂𝟏 + 𝑛𝒂𝟐 (see eq. 1), as depicted 

in Fig. 2a for 𝑛 = 3 and 𝑚 = 2. Thereby it is important to note the symmetry of the twist angle 

around 30° and all other axes reached by additional rotations of 60°. The primitive vectors of 

the resultant superlattice (see Fig. 2) are given by  

[
𝒕𝟏

𝒕𝟐
] = 𝑴(𝑚, 𝑟) [

𝒂𝟏

𝒂𝟐
], where (S3) 

𝑴(𝑚, 𝑟) = { 
[

𝑚 𝑚 + 𝑟
−(𝑚 + 𝑟) 2𝑚 + 𝑟] ,           if gcd(𝑟, 3) = 1

[
𝑚 + 𝑟/3 𝑟/3

−𝑟/3 𝑚 + 2𝑟/3
] , if gcd(𝑟, 3) = 3

 (S4) 

with the greatest common divisor gcd. The moiré periodicity is defined by 𝐿 =
𝑎/[2 sin(ϕ/2 )] and equals the length of the superlattice vectors if  𝑟 = 1. In this case the 

moiré period falls onto a lattice site and the lattice can repeat itself within a minimum distance 

||𝒕𝟏,𝟐|| = 𝐿. This property simplifies the observation of multiple moiré unit cells within a small 

section of the lattice. 
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In trilayer moiré superlattices periodicity is achieved by a commensurate interference of the 

moiré periodicity between L1 and L2 with the moiré lattice created by L1 and L3, or L2 and 

L3, respectively.  

This means that the TMSL is periodic if two twist angles out of {𝜙12, 𝜙23, 𝜙13} are chosen to 

be bilayer commensurate angles that fulfill equation S2.  

When 𝜙12 and 𝜙23 are commensurate, the periodic superlattice between L1 and L2 is 

modulated by 𝜙23. We assume a virtual fourth layer that is twisted by 𝜙34 = 𝜙12. This creates 

another superlattice between L3 and L4 that is identical to the superlattice between L1 and L2. 

The two superlattices are twisted relative to each other by 𝜙13 and form a superordinate lattice 

that becomes periodic with the mapping  

𝑘𝒕𝟏 + 𝑙𝒕2 → 𝑚𝒕𝟏 + 𝑛𝒕𝟐, 𝑘, 𝑙, 𝑚, 𝑛 ∈ ℤ. (S6) 

Since this equation yields the same results as eq. S1, the four-layer – and therefore also the 

trilayer moiré superlattice - are periodic if 𝜙13 fulfills eq. S3. Consequently, the trilayer 

superlattice vectors are given by 

[
𝒕𝟏

𝒕𝟐
] =  𝑴(𝑚2, 𝑟2) 𝑴(𝑚1, 𝑟1) [

𝒂𝟏

𝒂𝟐
], (S5) 

where (𝑚1, 𝑟1) and (𝑚2, 𝑟2) correspond to 𝜙12 and 𝜙13, respectively. In such a periodic trilayer 

lattice, all three layers have a lattice site at the center of the super unit cells. Therefore, also L2 

and L3 constitute a periodic bilayer superlattice, but this one is created with an additional 

rotation of L2 by 𝜙12, which means that 𝜙23 does not need to be a bilayer commensurate angle.  

The reasoning can also be applied when the two other twist angle pairs are chosen to be bilayer 

commensurate angles. By inserting the virtual fourth layer between L1 and L2, the two 

superlattices form between L1 and L4, as well as L2 and L3 with 𝜙14 = 𝜙23 and a relative 

twist between the two superlattices of 𝜙12. Therefore, the trilayer superlattice also becomes 

periodic when 𝜙23 and 𝜙12 are bilayer commensurate angles. Analogously, the addition of the 

fourth layer before L1 forms two superlattices between L4 and L1, as well as L2 and L3 with 

twist angle 𝜙41 = 𝜙23. In this case, the trilayer superlattice is periodic by using the bilayer 

commensurate twist angle pair 𝜙23 and 𝜙13. 

Surface plasmon waves in the plane wave approximation 

In the limit of an infinitely long boundary line that is excited using a continuous wave laser 

source, the electric field of the launched SPP wave at the perpendicular distance 𝑟 to the 

boundary is given by  

𝑬𝐒𝐏𝐏(𝑟, 𝑡) ≈ 𝐸𝐿(𝒆̂ ⋅ 𝒏̂) (
𝑖𝛾𝒏̂ − 𝛼𝒛̂ 

𝑘0
) 𝑒𝑖(𝛼𝑟−𝜔0𝑡), (S1) 

where 𝒏̂ is the unit normal vector of the boundary and 𝒆̂ is the polarization vector of the 

incident light [6]. 𝛼𝑆𝑃𝑃 is the in-plane and 𝛾 = √𝛼2 − 𝑘0
2 the out-of-plane component of the 

SPP electric field wave number with the vacuum wave number 𝑘0 =  2𝜋/𝜆0 of the excitation 

laser with wavelength 𝜆0 and angular frequency 𝜔0. In the plane wave approximation, damping 

of the plasmon wave is neglected and the in-plane wave vector is purely real: 𝛼𝑆𝑃𝑃 = 2𝜋/𝜆𝑆𝑃𝑃. 

Additionally, it is assumed that the SPP waves propagate through other boundaries without 

being reflected or losing energy by radiating light. The electric field distribution of structures 

with multiple boundaries is then simply calculated by summing up the electric field of the 

plasmon wave of each boundary. This ideal approximation is used for the electric field 

distributions of Fig. 2 and 3. 
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Details on disturbance fields  

We set the disturbance field to consist of 𝑁 SPP plane waves in the form of 

𝑬𝑽(𝑟) = ∑ 𝐸𝑗

𝑖𝛾𝑗𝒏̂𝒋 − 𝛼𝑗𝒛̂ 

𝑘0
𝐺𝑎(𝑟)𝑒𝑖(𝛼𝑗𝑟+𝜙𝑗)

𝑁

𝑗=0

,  

where 𝑟 is the distance along the propagation direction and 𝐺𝑎(𝑟) adds a centered Gaussian 

pulse shape with temporal width ΔtSPP. 

𝐺𝑎(𝑟) = exp (−
4 𝑅𝑒(𝛼𝑗)𝑟

𝜔0
2Δ𝑡𝑆𝑃𝑃

2 ).  

In our test, we choose 𝑁 = 50 waves with randomly distributed amplitude 𝐸𝑗, phase 𝜙𝑗, 

propagation constant 𝛼𝑗, and propagation direction  𝒏̂𝒋. 𝐸𝑗 is chosen to be normally distributed 

with μ = 1 and σ = 1 and 𝛼𝑗 is chosen to be normally distributed with 𝜇 = 𝛼𝑆𝑃𝑃 and 𝜎 =

𝛼𝑆𝑃𝑃/10. The distribution of the propagation constant 𝛼𝑗 of the SPP waves must be rather 

narrow around 𝛼𝑆𝑃𝑃, since perturbating waves with other propagation constants could be easily 

removed via Fourier filtering. The angle of the in-plane propagation direction  𝒏̂𝒋 and the phase 

𝜙𝑗 are uniformly distributed within the half-open interval [0, 2π). Here we assume an excitation 

of these perturbating waves from the same light source, so that they all have the same frequency 

𝜔0. In this case, the confinement of the waves 𝛾𝑗  is calculated using 𝛾𝑗 = √𝛼𝑗
2 − 𝑘0

2.  

Robustness of skyrmion bags with different size 

We classify the topology of a disturbed field as correct, if the topological charges of the 

skyrmion bag fulfill 0.97 < 𝑆𝑏𝑎𝑔/(𝑁 − 1) < 1.01 and  0.97 < 𝑆𝑐𝑙𝑢𝑠𝑡𝑒𝑟/𝑁 < 1.01. In case of 

the skyrmion lattice (see Fig. 5b and c) the topology is classified as correct if the seven 

skyrmions in the center of the skyrmion lattice all fulfill 0.97 < 𝑆 < 1.03. 

In the following we present the results of the analysis of the skyrmion bag robustness for 

skyrmion bags harboring 1, 2, 3, 4, 9, 10, 12, 14, and 19 skyrmions. The resulting optimal twist 

angles are listed in Table S1. 

 
𝑁 1 2 3 4 7 10 12 14 19 

Bilayer, plane wave 30° 24.5° 21.375° 18.75° 14.75° 13.25° 11.7° 10.4° 9.25° 

Bilayer, Huygens 30° 24.5° 22.6° 20.3°  16.7° 14.65° 13° 11.375° 9.7° 

Trlayer, plane wave 20° 18.5° 15° 13.125 9.75° 8.7° 7.6° 6.75° 6° 

Trilayer, Huygens 20° 19.5° 15.75° 14.25° 9.125° 7.7° 6.5° 5.65° 4.9° 

Tab. S1. Ideal twist angles for bilayer and trilayer moiré skyrmion lattices that create skyrmion bags 

of size 𝑵. The results are obtained from the calculations presented in Fig. S1-S3. 

 



4 
 

 

Figure S1 | Robustness of skyrmion bags with 𝑵 = 𝟏, 𝟐, 𝟑 as a function of the twist angles. The results are 

presented for bilayer and trilayer structures, as well as initial fields that are calculated using the plane wave and 

the Huygens method. The strength of the perturbational fields are given by 𝑔. 
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Figure S2 | Robustness of skyrmion bags with 𝑵 = 𝟒, 𝟕, 𝟏𝟎 as a function of the twist angles. The results are 

presented for bilayer and trilayer structures, as well as initial fields that are calculated using the plane wave and 

the Huygens method. The strength of the perturbational fields are given by 𝑔. 
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Figure S3 | Robustness of skyrmion bags with 𝑵 = 𝟏𝟐, 𝟏𝟒, 𝟏𝟗 as a function of the twist angles. The results 

are presented for bilayer and trilayer structures, as well as initial fields that are calculated using the plane wave 

and the Huygens method. The strength of the perturbational fields are given by g. 
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