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Commensurability of bilayer and trilayer moiré superlattices

In a hexagonal lattice, all points of the same kind in the lattice can be reached by a translation
. T

along may +na,, where m and n are integers and a; =a (1/2,v/3/2) and a, =

T . . .
a(—1/2,4/3/2) are the lattice vectors with lattice constant a = 2 Agpp/V3 ~ 0.9 pm. In
twisted bilayer graphene, periodic superlattices are achieved by rotating one layer of graphene
over another layer, so that two atomic sites overlap:

ka, + la, - ma, + na,, k,l, mn €Z. (S1)

Solutions of all commensurate structures have been derived in Ref. [1-5]. Here, we apply these
solutions to moiré skyrmion lattices. Following Ref. [4], twist angles of commensurate
structures with 0 < ¢ < m/3 are given by

3m? + 3mr +12/2
3m2+3mr+1r2’

where r = n —m and m are coprime positive integers. That is, the twist corresponds to the
rotation of the lattice site at na,; + ma, to the lattice site ma; + na, (see eq. 1), as depicted
in Fig. 2a for n = 3 and m = 2. Thereby it is important to note the symmetry of the twist angle
around 30° and all other axes reached by additional rotations of 60°. The primitive vectors of
the resultant superlattice (see Fig. 2) are given by

(S2)
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with the greatest common divisor gcd. The moiré periodicity is defined by L =
a/[2sin(¢d/2)] and equals the length of the superlattice vectors if r = 1. In this case the
moiré period falls onto a lattice site and the lattice can repeat itself within a minimum distance
[|t12]] = L. This property simplifies the observation of multiple moiré unit cells within a small
section of the lattice.



In trilayer moiré superlattices periodicity is achieved by a commensurate interference of the
moiré periodicity between L1 and L2 with the moiré lattice created by L1 and L3, or L2 and
L3, respectively.

This means that the TMSL is periodic if two twist angles out of {¢,,, ¢,3, P13} are chosen to
be bilayer commensurate angles that fulfill equation S2.

When ¢,, and ¢,; are commensurate, the periodic superlattice between L1 and L2 is
modulated by ¢,5. We assume a virtual fourth layer that is twisted by ¢3, = ¢1,. This creates
another superlattice between L3 and L4 that is identical to the superlattice between L1 and L2.
The two superlattices are twisted relative to each other by ¢,5 and form a superordinate lattice
that becomes periodic with the mapping

ktl + ltz s mt1 + ntz, k, l, m,ne Z. (S6)
Since this equation yields the same results as eq. S1, the four-layer — and therefore also the
trilayer moiré superlattice - are periodic if ¢3 fulfills eq. S3. Consequently, the trilayer
superlattice vectors are given by

a
(] = MOnam) MOm, ) [g] (35)

where (m, ;) and (m,, ;) correspond to ¢, and ¢, respectively. In such a periodic trilayer
lattice, all three layers have a lattice site at the center of the super unit cells. Therefore, also L2
and L3 constitute a periodic bilayer superlattice, but this one is created with an additional
rotation of L2 by ¢,,, which means that ¢, does not need to be a bilayer commensurate angle.
The reasoning can also be applied when the two other twist angle pairs are chosen to be bilayer
commensurate angles. By inserting the virtual fourth layer between L1 and L2, the two
superlattices form between L1 and L4, as well as L2 and L3 with ¢, = ¢,5 and a relative
twist between the two superlattices of ¢,,. Therefore, the trilayer superlattice also becomes
periodic when ¢,5 and ¢, are bilayer commensurate angles. Analogously, the addition of the
fourth layer before L1 forms two superlattices between L4 and L1, as well as L2 and L3 with
twist angle ¢,; = ¢,5. In this case, the trilayer superlattice is periodic by using the bilayer
commensurate twist angle pair ¢, and ¢ 5.

Surface plasmon waves in the plane wave approximation

In the limit of an infinitely long boundary line that is excited using a continuous wave laser
source, the electric field of the launched SPP wave at the perpendicular distance r to the
boundary is given by
iyn—az\ .
Espo(r, ) = B, (2 - ) (1) effer-ou), (s
0
where 1 is the unit normal vector of the boundary and & is the polarization vector of the

incident light [6]. aspp is the in-plane and y = \/a? — k7 the out-of-plane component of the
SPP electric field wave number with the vacuum wave number k, = 21 /A, of the excitation
laser with wavelength 1, and angular frequency w,. In the plane wave approximation, damping
of the plasmon wave is neglected and the in-plane wave vector is purely real: aspp = 27/ Agpp.
Additionally, it is assumed that the SPP waves propagate through other boundaries without
being reflected or losing energy by radiating light. The electric field distribution of structures
with multiple boundaries is then simply calculated by summing up the electric field of the
plasmon wave of each boundary. This ideal approximation is used for the electric field
distributions of Fig. 2 and 3.



Details on disturbance fields

We set the disturbance field to consist of N SPP plane waves in the form of
S iy — a2
By() = ) B Gy el to,
- 0
j=0

where r is the distance along the propagation direction and G, (r) adds a centered Gaussian
pulse shape with temporal width Atgpp.

2 A2
wyAtspp

G,(r) =exp (—

In our test, we choose N = 50 waves with randomly distributed amplitude Ej, phase ¢;,
propagation constant a;, and propagation direction #;. E; is chosen to be normally distributed
with u = 1 and 6 = 1 and q; is chosen to be normally distributed with u = agpp and o =
aspp/10. The distribution of the propagation constant a; of the SPP waves must be rather
narrow around aspp, Since perturbating waves with other propagation constants could be easily
removed via Fourier filtering. The angle of the in-plane propagation direction #; and the phase
¢; are uniformly distributed within the half-open interval [0, 2r). Here we assume an excitation
of these perturbating waves from the same light source, so that they all have the same frequency

wy. In this case, the confinement of the waves y; is calculated using y; = /ajz — k2.

Robustness of skyrmion bags with different size

We classify the topology of a disturbed field as correct, if the topological charges of the
skyrmion bag fulfill 0.97 < Sp,4,/(N — 1) < 1.01and 0.97 < Scyyseer/N < 1.01. In case of
the skyrmion lattice (see Fig. 5b and c) the topology is classified as correct if the seven
skyrmions in the center of the skyrmion lattice all fulfill 0.97 < § < 1.03.

In the following we present the results of the analysis of the skyrmion bag robustness for
skyrmion bags harboring 1, 2, 3, 4, 9, 10, 12, 14, and 19 skyrmions. The resulting optimal twist
angles are listed in Table S1.

N 1 2 3 4 7 10 12 14 19
Bilayer, plane wave 30° 24.5° 21.375° 18.75° 14.75° 13.25° 11.7° 10.4°  9.25°
Bilayer, Huygens 30° 24.5° 22.6° 20.3° 16.7° 14.65° 13° 11.375° 9.7°
Trlayer, plane wave 20° 18.5° 15° 13.125 9.75° 8.7° 7.6° 6.75° 6°
Trilayer, Huygens 20° 19.5° 15.75° 14.25° 9.125° 7.7° 6.5° 5.65° 4.9°
Tab. S1. Ideal twist angles for bilayer and trilayer moiré skyrmion lattices that create skyrmion bags

of size N. The results are obtained from the calculations presented in Fig. S1-S3.
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Figure S1 | Robustness of skyrmion bags with N = 1,2, 3 as a function of the twist angles. The results are
presented for bilayer and trilayer structures, as well as initial fields that are calculated using the plane wave and
the Huygens method. The strength of the perturbational fields are given by g.
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Figure S2 | Robustness of skyrmion bags with N = 4, 7,10 as a function of the twist angles. The results are
presented for bilayer and trilayer structures, as well as initial fields that are calculated using the plane wave and
the Huygens method. The strength of the perturbational fields are given by g.
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Figure S3 | Robustness of skyrmion bags with N = 12,14, 19 as a function of the twist angles. The results
are presented for bilayer and trilayer structures, as well as initial fields that are calculated using the plane wave
and the Huygens method. The strength of the perturbational fields are given by g.



References

(1]

(2]

(3]

(4]

(5]

(6]

P. Zeller and S. Glinther, ‘What are the possible moiré patterns of graphene on hexagonally
packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a
geometric construction’, New J Phys, vol. 16, no. 8, p. 083028, Aug. 2014, doi: 10.1088/1367-
2630/16/8/083028.

S. Shallcross, S. Sharma, E. Kandelaki, and O. A. Pankratov, ‘Electronic structure of
turbostratic graphene’, Phys Rev B Condens Matter Mater Phys, vol. 81, no. 16, p. 165105,
Apr. 2010, doi: 10.1103/PHYSREVB.81.165105/FIGURES/10/MEDIUM.

M. Le Ster, T. Markl, and S. A. Brown, ‘Moiré patterns: a simple analytical model’, 2d Mater,
vol. 7, no. 1, p. 011005, Nov. 2019, doi: 10.1088/2053-1583/AB5470.

J. M. B. L. dos Santos, N. M. R. Peres, and A. H. C. Neto, ‘Continuum model of the twisted
graphene bilayer’, Phys Rev B, vol. 86, no. 15, p. 155449, Oct. 2012, doi:
10.1103/PhysRevB.86.155449.

J. M. Campanera, G. Savini, |. Suarez-Martinez, and M. I. Heggie, ‘Density functional
calculations on the intricacies of Moiré patterns on graphite’, Phys Rev B Condens Matter
Mater Phys, vol. 75, no. 23, p. 235449, Jun. 2007, doi: 10.1103/PHYSREVB.75.235449.

T. J. Davis, B. Frank, D. Podbiel, P. Kahl, F. J. Meyer Zu Heringdorf, and H. Giessen,
‘Subfemtosecond and Nanometer Plasmon Dynamics with Photoelectron Microscopy: Theory
and Efficient Simulations’, ACS Photonics, vol. 4, no. 10, pp. 2461-2469, Oct. 2017, doi:
10.1021/ACSPHOTONICS.7B00676.



