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Abstract: Gesture recognition plays a significant role in
human-machine interaction (HMI) system. This paper pro-
poses a gesture-controlled reconfigurable metasurface sys-
tem based on surface electromyography (SEMG) for real-
time beam deflection and polarization conversion. By rec-
ognizing the sEMG signals of user gestures through a pre-
trained convolutional neural network (CNN) model, the sys-
tem dynamically modulates the metasurface, enabling pre-
cise control of the deflection direction and polarization state
of electromagnetic waves. Experimental results demon-
strate that the proposed system achieves high-precision
electromagnetic wave manipulation, in response to differ-
ent gestures. This system has significant potential applica-
tions in intelligent device control, virtual reality systems,
and wireless communication technology, and is expected
to contribute to the advancement and innovation of HMI
technology by integration of more advanced metasurfaces
and sEMG processing technologies.
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1 Introduction

In recent years, the field of human-machine interaction
(HMI) has undergone significant advancements, driven
by the integration of cutting-edge technologies such as
machine learning, computer vision, and advanced sensor
systems [1]-[4]. One of the most promising areas within
this domain is the development of gesture control systems,
which allow users to interact with devices and environ-
ments through intuitive hand movements. This technol-
ogy has found widespread applications in various sectors,
including virtual reality, smart homes, and healthcare, sig-
nificantly enhancing user experience and system efficiency
(51-9].

Metasurfaces, as an emerging class of artificial materi-
als, have garnered considerable attention due to their natu-
ral benefits of low cost, low profile and the strong capabil-
ity to manipulate electromagnetic waves in unprecedented
ways [10]-[13]. By engineering the geometric properties of
subwavelength structures on a surface, metasurfaces can
achieve functionalities that surpass those of conventional
materials, such as anomalous reflection [14], [15], absorp-
tion [16], [17], polarization conversion [18]-[21], radar cross
section (RCS) reduction [22], [23], near-field focusing and
spectrum shifting [24], [25]. These unique properties have
led to a surge of interest in leveraging metasurfaces for
applications ranging from wireless communication sys-
tems [26]-[30], radar sensing systems to optical systems
[31]-[35].

The integration of gesture control with metasur-
faces presents an exciting opportunity to create intelli-
gent metasurfaces platforms that can dynamically respond
to user inputs [36], [37]. Gesture controlled metasurfaces
have the potential to revolutionize various industries by
enabling users to manipulate the properties of electro-
magnetic waves in real-time through simple hand ges-
tures. For instance, in the communication systems, ges-
ture control could allow for dynamic reconfiguration of
antenna beams, enhancing signal strength and directional-
ity based on user needs. Similarly, in the field of virtual and
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augmented reality, gesture-controlled metasurfaces could
provide users with more intuitive and immersive interac-
tion experiences.

Many gesture recognition methods have been stud-
ied in various platforms, such as computer vision meth-
ods [38]-[42], radio frequency methods [43]-[45], wearable
device methods [46]-[49]. Computer vision methods use a
camera to capture gesture images or video and perform ges-
ture recognition through image processing and deep learn-
ing algorithms. Radio frequency methods use radio waves
(e.g., radar or Wi-Fi) to capture hand or body movements
and recognize gestures by analyzing changes in reflected
signals. And wearable device methods use sensors worn
on the user’s body to capture hand or body movements
and physiological signals, and perform gesture recogni-
tion through pattern recognition algorithms. However, com-
puter vision methods are affected by environmental factors
such as lighting conditions and background complexity, and
camera capture of user images can raise privacy concerns.
Radio frequency methods have relatively low spatial resolu-
tion, which makes it difficult to capture subtle gesture move-
ments, and are susceptible to interference from other wire-
less devices. Wearable device methods can effectively solve
these problems and become an effective method for gesture
recognition. The surface electromyography (SEMG) signals,

sEMG Signal Acquisition
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as a special kind of physiological electrical signals, can effec-
tively reflect the behavioral intentions of the human body,
and are natural, direct, and non-invasive, providing a reli-
able source of data for gesture recognition, which is well
suited to the field of HMI [50]-[55].

In this paper, a gesture-controlled reconfigurable meta-
surface system based on SEMG for real-time beam deflec-
tion and polarization conversion is proposed as shown in
Figure 1. By collecting the SEMG signals with an armband
and recognizing the sSEMG signals of the user’s gestures
with a pre-trained convolutional neural network (CNN)
model, dynamic modulation of the metasurface to control
the deflection direction and polarization state of the elec-
tromagnetic waves can be realized. Distinct from conven-
tional CNN architectures, this paper innovatively incorpo-
rates batch normalization layers, rectified linear unit (ReLU)
activation layers, and dropout layers, along with a piecewise
learning rate strategy. These enhancements significantly
improve the model performance in eliminating the tedious
process of manual feature extraction and reducing the risk
of overlooking valuable information in the signals, which
results in high classification accuracy, strong robustness
against windowing errors and signal strength variations. In
the metasurface design, an innovative 2-bit reconfigurable
metasurface using only 3 PIN diodes is proposed to balance
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Figure 1: Schematic diagram of the proposed gesture-controlled reconfigurable metasurface system. It comprises a SEMG armband, a computer,
an FPGA, and a 2-bit reconfigurable metasurface. By performing different gestures, the metasurface can realize polarization conversion and beam

deflection functions dynamically.
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the design complexity and phase quantization error. Addi-
tionally, visualized wireless communication experiments to
transmit an image with QPSK modulation to receivers at dif-
ferent positions or receivers of different polarized antennas
are designed to demonstrate the proposed real-time system.
The comprehensive exploration of this new system of con-
trolling electromagnetic waves by gesture SEMG signals har-
nesses the unique properties of metasurfaces and the intu-
itiveness of gesture control, which creates innovative sys-
tems that push the boundaries in terms of user interaction
and electromagnetic wave manipulation, highlighting their
potentials as next-generation material platforms for HMI
systems. Furthermore, the system represents a pioneer-
ing integration of cutting-edge technologies from multiple
disciplines, including biomedical engineering (SEMG signal
acquisition and processing), artificial intelligence (gesture
recognition algorithms), and electromagnetics (metasurface
design and control), achieving interdisciplinary collabora-
tion and innovation.

2 Results

2.1 sEMG gesture recognition

The SEMG signals represent the integrated output of super-
ficial muscle electromyography signals and the electrical
activity observed on the nerve trunk at the skin surface. This
combined signal can, to some extent, reflect neuromuscular
activity. In comparison to needle-electrode electromyogra-
phy, SEMG offers the benefits of being non-invasive, simple
to operate in terms of measurement, and requiring mini-
mal effort to perform. The SEMG-based acquisition device
measures the electrical signals generated by muscles dur-
ing activity through electrodes placed on the skin surface,
which is a widely used tool in the fields of medicine, reha-
bilitation, sports science, and HMI.

The sEMG PRO armband, developed by Sichiray Tech-
nology Co., Ltd., is utilized for the acquisition of SEMG sig-
nals in this work. The armband is designed to be worn on
the forearm and comprises eight channels to collect, amplify
and filter the superficial muscle electromyography signals.
Meanwhile, the armband is also equipped with software to
extract SEMG data after windowing segmentation from the
device directly. Typical original SEMG signal amplitude is in
the range of 0—5,000 uV, and the SEMG PRO armband used in
this work has an output voltage of 0-3.3 V, after an electrode
amplification of around 2,000 times, a biasing voltage, and
an internal ADC with 12-bit resolution. Due to the presence
of a bias voltage, when the arm is relaxed, the output value
remains around a DC value with random noise.
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Figure 2a illustrates the position of the armband worn
and the signal processing flow when the SEMG PRO arm-
band is employed to collect the SEMG data. Additionally, it
depicts eight gestures, defined as gestures 1-8, which are
selected for real-time manipulation of metasurface func-
tions in this paper. Figure 2b gives the waveforms and win-
dowing segmentation of the eight channels of SEMG sig-
nals acquired when performing gesture 1. Varying signal
intensities across different channels are primarily due to
differences in muscle activity levels at various locations
on the arm. We use a single-channel example to illustrate
the differences in the acquired signal at varying muscle
activity levels, namely, idle state (no motion) and motion
state, as shown in Figure 2c. By carefully processing SEMG
signals and extract their features, the hand gesture can be
recognized.

In the field of gesture recognition, traditional machine
learning methods often rely on complex manual feature
extraction processes. These processes are not only time-
consuming and labor-intensive, but also difficult to com-
prehensively capture the complex features present in SEMG
signals. As a type of bioelectrical signal, the morphology
and frequency characteristics of SEMG signals vary consid-
erably depending on the specific muscle activity involved.
These variations contain a wealth of information that can
be utilized to recognize a range of gestures. Deep learning
model, particularly CNN, is capable of automatically extract-
ing features from raw data through multilayer neural net-
works, thereby reducing the reliance on manual feature
design. Concurrently, CNN demonstrates efficacy in process-
ing high-dimensional data and complex pattern recognition
tasks. Consequently, CNN has emerged as a highly effec-
tive tool in the field of gesture recognition, demonstrating
superior performance in terms of automation, accuracy,
and the handling of complex data compared to traditional
methods.

The CNN architecture utilized in this work is illustrated
in Figure 3a. The CNN model comprises an input layer, three
groups of convolutional layers, batch normalization layers,
ReLu activation layers and pooling layers for feature extrac-
tion. It also includes a dropout layer, a fully connected layer,
and a softmax layer for gesture classification. The input
layer receives the SEMG signal data, and the convolutional
layer extracts local features from the input data by apply-
ing multiple convolutional kernels. The inclusion of batch
normalization layers and ReLu activation layers serve to
accelerate the training process and introduce nonlineari-
ties. The maximum pooling layer performs downsampling
to reduce the number of features and retain those that are
most pertinent. The dropout layer randomly discards some
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Figure 2: SEMG signals acquisition and processing. (a) The position of the armband worn, signal processing process of the armband worn and 8
predefined gestures to be recognized. (b) Waveforms and windowing segmentation of the eight-channel of SEMG signals of gesture 1. (c) The detailed

specification of the SEMG.

neurons with a probability of 0.5, thereby reducing the risk
of overfitting. The next component of the network is a fully
connected layer with an output layer size of eight, repre-
senting the eight distinct gesture categories. Subsequently,
the output is transformed into a probability distribution
through the application of a Softmax layer. The entire net-
work is trained using the Adam optimizer with an initial
learning rate of 0.001, and the model performance is fur-
ther optimized through the implementation of a segmented
learning rate tuning strategy.

The sEMG signal data for the eight gestures is collected
using a SEMG PRO armband. Each gesture is performed
for a duration of 5 s, followed by a three-second relaxation
period. Each gesture is repeated 24 times. The dataset com-
prises 960 samples, 120 for each gesture, obtained through
the software provided with the SEMG PRO armband. Subse-
quently, the dataset is employed for the training and evalu-
ation of the proposed CNN model. Figure 3b and c illustrate
the confusion matrix and the accuracy of the trained model,
respectively, showing that the proposed CNN model can
achieve 98.54 % accuracy after 100 iterations.

The sEMG signals typically precede limb movements by
30-150 ms. During SEMG data acquisition, we ensure that
recording begins only after the gesture has been executed to
maximize the inclusion of valid data within the window and
minimize windowing error. If a windowing error presents
by accident, resulting in the capture of invalid data, such
occurrences are expected to represent only a very small
fraction of the total dataset. To simulate the effect of win-
dowing error, we intentionally introduced invalid signals by
replacing the first 1 %, 3 %, and 5 % of the samples for each
gesture in the dataset with invalid data, effectively mimick-
ing potential windowing errors. The model’s training accu-
racy, as shown in Figure 3d, decreased by 0.48 %, 1.32 %,
and 2.58 %, respectively, compared to the original accu-
racy, which demonstrates the proposed algorithm exhibit-
ing strong robustness against windowing error. The detect-
ing error for different signal strengths is also studied by
artificially amplifying or reducing the signal strengths and
subsequently input the signal into the recognition model,
and the results are shown in Figure 3e. When the variation
of signal strengths does not exceed plus or minus 10 %, the
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Figure 3: Construction and training results of the CNN. (a) CNN structure of recognition model. (b) The confusion matrix of model. (c) The accuracy of
model. (d) Model accuracy with different windowing errors. (e) Model accuracy under varying signal strengths.

recognition accuracy is still higher than 90 %, which demon-
strates that the proposed algorithm also exhibits strong
robustness against signal strengths variations.

2.2 Design of the 2-bit reconfigurable
metasurface

The designed metasurface unit cell and its simulated per-
formance are shown in Figure 4. Figure 4a depicts the

three-dimensional structure of the 2-bit reconfigurable
metasurface cell, which consists of three layers of metal,
two layers of substrate and four metallic vias. These vias
are designed to facilitate the connection between the three
metal layers. Both substrates are composed of F4b material
(e, = 247, tan 6 = 0.002), with a thickness of 3mm and
1 mm, respectively. The top surface features a square metal
patch, asillustrated in Figure 4h, which is used toreceive the
incident wave and rescatter it into freespace. The bottom
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Figure 4: Design of 2-bit reconfigurable metasurface unit cell. (a) Exploded view of the metasurface unit cell. (b) Top view of metasurface unit cell.

(c) Bottom view of metasurface unit cell. (d) Simulated reflection magnitud
incidences.

layer is a 2-bit reflective phase shifter, with two bias lines
for modifying the reflective phase state, as illustrated in
Figure 4c. Three diodes (MA4AGFCP910), designated as PIN
1, PIN 2, and PIN 3, have been integrated on the phase
shifter. Two bias lines are used to independently control the
three diodes, and the RLC lumped element design blocks
radio frequency signal and allows direct circuit signal to
pass through, with R = 47Q, L = 68 pF, and C = 33nH.
The middle metal layer serves the function of a common
grounding layer for top and bottom layers. By dividing
the unit structure into a radiation part and a phase shift
part, the PIN diodes can be placed on the bottom layer
of the metasurface to minimize the unnecessary scattering

e and phase responses of the unit cell for both x-polarized and y-polarized

effects, enhance system reliability, and simplify the design
process.

The unit cell is modeled and simulated using simulation
software HFSS. To realize a 2-bit reflection phase shift, four
distinct coding states, designated as “A”, “B”, “C” and “D”, are
defined. Table 1 illustrates the correspondences between
the operational states of the diodes and the four encoding
states. Figure 4d depicts the simulated amplitude and phase
response of the unit cell. The results demonstrate that the
reflection loss of the y-polarized incident wave is less than
1.5 dB within working frequency range of 3.85-3.90 GHz.
Additionally, we are able to find the phase difference of adja-
cent states is approximately 90°. In the case of x-polarized
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Table 1: Correspondence between states and PIN diodes.

State A B C D
PIN1, PIN2 OFF OFF ON ON
PIN3 OFF ON OFF ON

incident wave, the reflection loss is less than 0.6 dB, and the
reflection phases of the four states are roughly equal.

In accordance with the metasurface unit cell design out-
lined above, a metasurface array is constructed consisting
of 8 x 8 elements. Each metasurface element is controlled
by two bias circuits that can switch between the four coding
states of “A”, “B”, “C” and “D” to achieve beam deflection and
polarization conversion functions.

Figure 5 illustrates the full-wave simulated beam
deflection and polarization conversion function results.
Figure 5a and b illustrate the coding matrices of the meta-
surface for different deflection angles, accompanied by the
corresponding far-field simulation patterns. The four dif-
ferent phase gradients (0°, 90°, 180°, and 270°) provided by
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the coding matrices result in gradually deflected scattering
patterns, which are shifted from 0° to 30° in approximately
10° steps at 3.80 GHz, with working frequency ranges from
3.73 to 3.83 GHz. By adjusting among the “A”, “B”, “C”, and
“D” states, we can realize reconfigurable beam deflection
effectively. Figure 5c illustrates the coding matrices for the
polarization conversion function, while Figure 5d shows the
simulation results. According to the phase characteristics
in Figure 4d, it can be observed that the y-direction phase
response is approximately 90° in advance of that in the
x-direction when all metasurface cells are set to the “B”
coding state. Consequently, the linearly polarized (LP) inci-
dent wave is converted into left-handed circularly polarized
(LHCP) wave, and the axial ratio (AR) is less than 3 dB from
3.75 to 3.82 GHz. When all elements are set to the “A” cod-
ing state, it is clear that the y-direction phase response is
delayed by around 90° relative to the x-direction. Thus, the
LP incident wave is transformed to right-handed circularly
polarized (RHCP) wave, and the AR of the “A” arrange-
ment is also less than 3 dB, while the frequency range is
3.88-3.92 GHz.
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Figure 5: Coding matrices and simulation results of beam deflection with y-polarized incidence and polarization conversion with 45° LP incidence
wave. (a) Coding matrices of the metasurface at varying deflection angles: 0°,10°, 20° and 30°. (b) Far-field patterns simulation results for 0°, 10°, 20°
and 30°. (c) Coding matrices for converting 45° LP wave to LHCP and RHCP wave. (d) Simulated results of AR for the reflected LHCP and RHCP wave.
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2.3 Experimental verification

One able-bodied male subject (age 26) participated in the
experiment. Informed consent was obtained prior to the
start of the study. Figure 6 shows the fabricated metasurface
prototype and experimental set-up. A 2-bit reconfigurable
metasurface comprising 8 X 8 cells is fabricated and tested,
as illustrated in Figure 6a. The 192 PIN diodes integrated in
the metasurface can be individually regulated by applying
the bias voltages. The coding matrices for the various func-
tions are pre-stored in the FPGA platform’s memory.

Figure 6b illustrates the experimental configuration of
the gesture-controlled reconfigurable metasurface system
for beam deflection and polarization conversion functions.
The sEMG signals are captured by the sSEMG PRO armband
and the pre-trained CNN is stored in a laptop computer,
respectively. Upon recognition of the captured gesture SEMG
signals by the CNN, the laptop computer loads the coding
matrix corresponding to the gesture onto the metasurface
through the FPGA in order to control the diode states. For
reflection coefficient, T,, ¢,, T, and q’)y are used to represent
its amplitude and phase. The AR of the scattered wave can
be obtained through the calculation of

|T,[* + |Ty|2 ++/a

|Tx|2 + |Ty|2 —Va

AR = @

Top View

(b)

Reflector

Figure 6: Fabrication of metasurface prototype and experimental setup.
(a) Physical photographs of the 2-bit metasurface prototype.

(b) Photograph of measuring setup for beam deflection and polarization
conversion by gesture control of metasurface.
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Figure 7 plots the measured results for different ges-
tures. Figure 7a illustrates the results of the gesture-
controlled beam deflection function. At 3.83 GHz, the deflec-
tion angles of —30° to +30° correspond to six different
control gestures at 10° intervals. The deviations of the mea-
sured direction of the maximum beam amplitude from
the simulated results are 3°, 0°, —3°, 0°, —1°, 1°, and —2°,
respectively, which are very small. Figure 7b illustrates
the results of the gesture-controlled polarization conver-
sion function. Following the recognition of gesture 1, the
AR of the LP to LHCP is found to be less than 3 dB from
3.82 to 3.85 GHz. Similarly, following the recognition of ges-
ture 8, the AR of the LP to RHCP conversion function is
observed to be less than 3 dB from 3.68 to 3.82 GHz. The
minor discrepancies between the measured and simulated
results may be attributed to the fabrication errors and the
influence of the testing environment. The measurements
show that the conversion functions of LP to LHCP and
RHCP can be achieved through the switch between gestures
1and 8.

Based on the actual measurements of the metasurface
above, a visualized wireless communication experiment
to transmit an image to receivers at different locations is
designed to investigate the manipulation of beam deflection
direction through the use of different gestures. Figure 8a
shows that when the gesture 4 is performed, the receiver
located at 28° can demodulate the corresponding QPSK sig-
nal with a good constellation and display the transmitted
image well, while the receiver located at —27° receives a sig-
nal with very low power that below the detecting threshold,
which demonstrates the scattering beam is scattered to 28°
when gesture 4 is present. Similarly, Figure 8b demonstrates
the scattering beam is scattered to —27° when gesture 7 is
present. A visualized polarization conversion transmission
experiment is also designed to demonstrate the gesture-
controlled polarization conversion function. The experi-
mental scenario and results are shown in Figure 9, where
the LP transmitting antenna is incident at 45° and trans-
mits the images to the LHCP receiving antenna (LRx) and
the RHCP receiving antenna (RRx), respectively, in order
to investigate the manipulation of the metasurface’s polar-
ization conversion function through the use of different
gestures. Figure 9a shows that when gesture 1is performed,
the LRx receives the modulated QPSK signal with a good
constellation diagram and displays the demodulated image
well. Figure 9b shows that when gesture 8 is recognized,
the metasurface converts the incident LP wave into a RHCP
wave, which is received by the RRx. The two experimental
results vividly demonstrate that the proposed system can
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Figure 7: Experimental results. (a) Results of scattering patterns of the gesture-controlled beam deflection function from —30° to 30°. (b) Results of

AR of the gesture-controlled polarization conversion function.

manipulate the metasurface to achieve the beam deflection
function and polarization conversion function through dif-
ferent gestures.

3 Discussion

We propose a gesture-controlled reconfigurable metasur-
face system based on SEMG to achieve real-time beam
deflection and polarization conversion. By using an opti-
mized CNN architecture and an innovatively designed
metasurface, the proposed system is able to dynamically
modulate electromagnetic waves. The experimental results
demonstrate that the system can achieve high-precision
electromagnetic wave modulation in response to differ-
ent gestures. The system has considerable potential for

application in a number of fields, including wireless com-
munication, smart home and health monitoring, which is
anticipated to contribute to the advancement and innova-
tion of HMI technology.

4 Methods

The beam deflection function and polarization conversion
function measurements are conducted in a microwave
chamber, as depicted in Figure 6. For the beam deflec-
tion function measurement, the metasurface is placed on a
rotatable platform. The transmitting antenna is fixed at a
distance of 1.5 m in front of the metasurface simulating the
incidence of a plane wave while the far-field area holds
the receiving antenna, both of which are y-polarization.
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Scattering patterns are obtained using a vector network
analyzer (Keysight P9375A). The setup for measuring the
polarization conversion function is analogous to that used
for beam deflection, with the exception that the trans-
mitting antenna has a ¢, = 45° rotation in the z direc-
tion, and the receiving antenna is oriented along x and y
directions.

Figure 8 illustrates the experimental setup of the visu-
alized wireless communication experiment of beam deflec-
tion function. The acquisition and recognition of hand ges-
tures are conducted via the sEMG PRO armband and a
pre-trained CNN. An image is converted into a sequence
of bits and then QPSK modulation is performed. The mod-
ulated image signal is transmitted towards the metasur-
face via the Universal Software Radio Peripheral (USRP,
NI USRP-2943R) and the transmitter antenna. The deflec-
tion of the beam is contingent upon the specific gesture
employed. Two different antennas, Rx1 and Rx2, are located
at 28° and —27° to pick up the signals scattered by the
metasurface, respectively. These signals are then sent to
USRP for QPSK demodulation and image displaying. Figure 9
illustrates the experimental setup of the visualized wire-
less communication experiment of polarization conver-
sion function. The experimental setup is the same as the
beam deflection function, except that the LP transmitting
antenna isincident at 45° and the receiver uses LHCP receiv-
ing antenna (LRx) and the RHCP receiving antenna (RRx),
respectively.
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