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Abstract: We present a study of hybrid light-matter excita-
tions in cavity QED materials using the Dicke—Ising model as
a theoretical framework. Leveraging linear response theory,
we derive the exact excitations of the system in the ther-
modynamic limit. Our results demonstrate that the cavity
can localize spin excitations, leading to the formation of
bound polaritons, where the cavity acts as an impurity of
the two-excitation band, localizing spin-wave pairs around
single-spin domains. We derive the condition for the exis-
tence of these bound states and discuss its satisfiability in
different regimes. Finally, we show that these effects persist
in finite systems using exact-diagonalization calculations.

Keywords: cavity QED materials; bound states; quantum
materials

1 Introduction

The control of quantum matter with quantum light is a
common pursuit in quantum optics. Initially, the focus was
on minimalistic matter such as single atoms and molecules.
Due to the weak light—matter coupling, it was realized that
photons need to be confined in cavities, giving rise to cavity
quantum electrodynamics (cQED) [1], [2]. This field has since
evolved to consider more complex forms of matter as well.
First, using the cavity as a probe for materials in cavity-
enhanced spectroscopy, and more recently, to push the
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boundaries of light-matter interaction to explore whether
quantum light, either a few photons or vacuum states, can
alter the properties of matter [3]-[5]. Seminal experimental
demonstrations modifying and controlling conductivity [6],
[7], magnetism [8], and the metal-to-insulator transition [9]
led to envisioning novel phenomenology emerging from
the hybridization of light and matter; such as modifica-
tions of chemical reactions [10]-[12], changes in the critical
temperature in superconductivity [13], [14], or alterations
in magnetism [15], [16], topology [17]-[22], ferroelectricity
[23]-[25], and transport in excitonic [26], molecular [27], and
disordered electronic systems [28]-[30].

Matter alterations can be underlain by the modifica-
tion of the ground (thermal) state, and/or from changes to
the excitation spectrum. The mixing of two near-resonant
energy levels gives rise to polaritons, hybrid states of light
and matter that exhibit properties of both constituents [31].
Here, we focus on a key scenario of excitation hybridization:
when a continuum couples to a discrete level it can give
rise to new discrete levels outside of the continuum, known
as bound states. In waveguide QED, the role of the contin-
uum is played by the electromagnetic modes of the waveg-
uide and a coupled emitter provides the discrete energy
level. The resulting bound state is spatially localized around
the emitter. These bound states have attracted significant
attention due to their ability to control light emission, such
as inhibiting or enhancing spontaneous emission [32]-[41].
They can also mediate long-range interactions between
emitters [42]-[54]. In cavity QED materials, light and matter
exchange their roles with respect to waveguide QED, as it
is common to consider a macroscopic material that hosts a
continuum of energy levels, in the form of bands, coupled to
a single cavity mode [17], [55]-[58].

In this paper, we discuss the emergence of bound polari-
tons in cavity QED materials. These are localized bound
states arising from the hybridization of the material energy
band with the cavity mode. For this purpose, we employ
the Dicke-Ising model, i.e., a spin-1/2 Ising chain coupled
transversally to the quantum field fluctuations of the cav-
ity, see Figure 1(a). It generalizes the Dicke model by intro-
ducing intrinsic (Ising) interactions among the two-level
systems, and it extends the Ising model by considering a
quantum transverse field. While it serves as a toy model
for a magnetic material coupled to a cavity, it can also be

8 Open Access. © 2025 the author(s), published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 International License.


https://doi.org/10.1515/nanoph-2024-0568
mailto:dzueco@unizar.es
https://orcid.org/0000-0003-4478-1948
mailto:jroman@unizar.es
mailto:fluis@unizar.es
https://orcid.org/0000-0003-2995-6615
https://orcid.org/0000-0001-6284-0521
mailto:a.gomez.leon@csic.es
https://orcid.org/0000-0002-3990-5259

2054 =— | Roman-Roche et al.: Bound polariton states in the Dicke-Ising model

(a)

wxl/

XFMS

0 1
1.0 00 02 04 06 08 1.0
A2/(Q))

02 04 06 08
A2/(Q))

Figure 1: Sketch (a) and phase diagram (b-d) of the Dicke-Ising model
in the (42/Q, w,) plane. (b) Number of photons, n,,, which is an order
parameter of the x-ferromagnetic superradiant (xFMS) phase for @, = 0.
(c) Longitudinal magnetization, m,, which is the order parameter of the
z-ferromagnetic normal (zFMN) phase. (d) Transverse magnetization, m,,
which is another order parameter of the xFMS phase for @, = 0.

experimentally realized with an array of superconducting
qubits coupled to a one-dimensional transmission-line res-
onator [59]. Crucially, it is exactly solvable in the thermo-
dynamic limit (N —» co with N the number of spins) and
its phase diagram is well known [60], [61]. Additionally,
using a linear response theory developed by us for cavity
QED materials, the excitations can be obtained exactly [62].
This allows us to determine the conditions for the existence
of bound polaritons and establish a connection with the
bound states in waveguide QED. We show the formation
of localized polaritonic bound states hybridizing spin-wave
pairs and the cavity photon near the band edges. The rea-
son for this is that the model, through a Jordan-Wigner
transformation, can be mapped onto an impurity model,
more specifically, a boson localized within the real space of
a continuum of fermions.

The rest of the paper is organized as follows. In
Section 2, the light—matter model is presented. Section 3 is
the main part of our work, where we solve the Dicke-Ising
model, including its equilibrium and linear response. Addi-
tionally, we prove the existence of bound polariton states.
We also perform exact diagonalization calculations for
finite systems. Tautologically, we conclude with the conclu-
sions. The microscopic theory of the light—-matter Hamilto-
nian is presented in Appendix A, and the calculation of the
dressed material response is presented in appendix B.
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2 Model

The light-matter Hamiltonian for a magnetic material cou-
pled to a uniform cavity mode reads

H=H —m ‘u(a+d)+Qd'a, @

with a, a’ bosonic annihilation and creation operators,
[a,a’]=1, and m; the magnetic dipole operators of the
material (see Appendix A for a derivation). Here, H_ is the
Hamiltonian of the bare magnetic material and 4/ \/_ =
ugB is the Zeeman coupling to the magnetic field of the
cavity, B = Bu. Importantly, we consider the material in the
thermodynamic limit for the number of magnetic dipoles,
N — 0. The cavity field intensity depends on the inverse
square root of the mode volume B ~ 1/ \/V . To ensure a
well-defined thermodynamic limit, we assume a finite den-
sity of dipoles in the cavity, p = N/V = cst. Accordingly, we
find that B ~ 1/4/N for N — co.

We will consider a toy model of a magnetic material,
the spin-1/2 Ising chain in transverse field, with transverse
coupling to the cavity, such that

N N
w
Hm_fng ]2616}+1 2
j j
and 1
—m;-u= ¥, 3)
Hp J
with 0';.’ the Pauli matrices, [a o’ ] =6 Zeaﬂyaiy and

€4p, the Levi-Civita symbol. The full light-matter model
is termed the (transverse) Dicke-Ising model [59]-[61],
[63]-[66]. For vanishing transverse field, the model has
a Z, X Z, symmetry. The first symmetry corresponds to
a spin flip, a}z. - —a]Z., and in the bare Ising model, it is
spontaneously broken in a second-order phase transition
from a paramagnetic to a ferromagnetic phase. The sec-
ond symmetry corresponds to a simultaneous cavity field
and spin flip, a » —a and 0'}‘ — —o”%, and in the bare Dicke
model, it is spontaneously broken in a second-order phase
transition from a paramagnetic normal to a ferromagnetic
superradiant phase. Their combination gives rise to a first-
order phase transition in the Dicke-Ising model between
two symmetry-broken phases: an x-ferromagnetic superra-
diant (xFMS) phase for large g2/Q and a z-ferromagnetic
normal (zFMN) phase for large J. A nonzero classical trans-
verse field breaks the Dicke symmetry, but the model still
features a first-order phase transition between the xFMS
phase where the order direction is fixed by the classical
field to a symmetry-broken zFMN phase. Alternatively, the
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Ising chain with longitudinal coupling to the cavity has been
studied in Ref. [67]. The model defined by Egs. (1) and (2) is
sketched in Figure 1(a).

3 Exact solution in the
thermodynamic limit

Following [62], the equilibrium and linear response prop-
erties of model (1) can be computed exactly in the ther-
modynamic limit, N — co. This is essentially because the
cavity mediates collective all-to-all interactions between
the spins, which can be treated exactly with a mean-field
approach.

3.1 Ground state phase diagram

The equilibrium properties are obtained by solving the
mean-field effective Hamiltonian [68]

Za —]ZG ]+1+—m 4)

MF _
Heff -

with @, = w, — 44%/Qm,andm, = N‘lzl}f (o), variation-
ally with respect to m,. Then, photonic observables can be
computed from the relation (a) = \/ﬁ A/Qm,. Equation (4)
corresponds to the Ising chain in a transverse field. The
transverse field is a combination of the external field and
the cavity-induced mean field. It is now clear that adding a
longitudinal field would make Hi_‘"ffF analytically intractable,
as the resulting mean-field effective Hamiltonian would
correspond to the Ising model with both transverse and
longitudinal fields. In the thermodynamic limit, N — oo, the
ground-state energy per spin is given by [69], Chap. 10]

22 dk .
am _i 2k ©)

-

éo(mx)

with

& = \/(z ) + @ — 4], cos k. 6)

Solving variationally allows us to compute the equilib-
rium value of m, numerically and subsequently the longitu-
dinal magnetization as [70]
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and the number of photons per spin as

me.

The zero-temperature phase diagram is presented in
Figure 1. The transverse magnetization, m,, acts as an order
parameter for the zZFMN phase. For w, = 0, the longitudinal
magnetization, m,, and the photon number, Nyp, act as order
parameters for the xFMS phase. An analysis of e,(m,) in
this case reveals that the system undergoes a first-order
phase transition at A* /(Q]) ~ 0.837. In the opposite case
of vanishing light-matter coupling, 4 = 0, the Ising chain
in transverse field is known to undergo a second-order
phase transition at w, /] = 2. In previous solutions of the
Dicke-Ising model, the transverse field is set in a direction
perpendicular to both the intrinsic interaction and the cav-
ity field, which would be the y direction in our case [60],
[61]. Although this difference is subtle, it implies that m,
is always an order parameter of the xFMS phase. Then, a
Landau analysis of the ground-state energy in terms of its
series expansion in powers of m, reveals the existence of
a tricritical point splitting the critical line into a regime
of second-order criticality for large w, and small 4 and a
regime of first-order criticality for small @, and large A [61].
In the present case, where the classical transverse field and
the cavity fields are aligned, the Landau analysis is not pos-
sible. Nevertheless, a visual inspection of the landscape of
energy minima of e;(m,) reveals the existence of a tricritical
point at A%/(Q)) ~ 0.225 and w, /] = 1.427.

®)

nph =

3.2 Linear response theory

The response functions of the hybrid system are given by
retarded Green functions [71], Chap. 7]. The retarded Green
function for operators A and B is defined as

G, 5(t,t') = —i0(¢ — t')([A(0), B(t)]). )

We will be particularly concerned with the photonic
propagator

D(t) = G; o+ (60), (10)
and the matter response function
10 = =26, ¢ (0, an

for the coupling operator C, = 27 0}‘. In the thermody-
namic limit, these are given by

D(®) = Dy(w) — A*Dy(@) y(w)Dy(w), 12)

and -
Xol®)

— 13
1+ Vipg(w) 7 (o) )

(o) =
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with )
242 Q
Viglw) =~ ———, (14)
nd Q (0 +i0) — O
Here, D, is the bare photonic propagator
Dyl@w)= — + (15)
T w0 -

and y, is the matter response function for the mean-field
effective matter Hamiltonian of Eq. (4), i.e.,

Folt) = -0O(CL0, GOy 16)

Note that in the cases where m, =0, Hé"lffF =H,_, and
thus ¥, = x, is the bare matter response function.
At zero temperature and in the continuum limit, ¥, is
given by (see Appendix B for details)
v
dk sin” k

~ _ 2 ax
2@ =32 [ & w+ 07 — 422

(17

Interestingly, we find that ¥, has poles at w = 2€,. This
stems from the fact that the coupling operator, C,, creates
and destroys excitations in pairs of opposite momentum

¢ =N-2Y (& + (&~ &)77
k

+ ity Dy (727; - 77—k}7k> )e 18)
where 7, and )7;{ are the annihilation and creation oper-
ators of the Bogoliuvov fermions that constitute the ele-
mentary excitations of the effective Ising model (4) after a
Jordan—-Wigner fermionization [69], Chap. 10]. Here, @I, =
cos(f,/2) and 0, =sin(f,/2) are the Bogoliubov coeffi-
cients, with _

tan @, = @Lclo(sk'

2]

Thus, y and D will reflect how the zero-momentum
sector of the two-excitation band (a double-energy replica
of the single-excitation band) of the Ising model hybridizes
with the cavity photon. The fact that excitations are created
in pairs of opposite momenta allows one to probe the full
band, despite the collective nature of C,.

This feature brings novel phenomenology that we sum-
marize in Figure 2, where the cavity response (12) is plotted
for different scenarios. In all panels, we set 4] = €, such
that the two-excitation band is in resonance with the cavity
frequency. Figure 2(a) shows the case of vanishing classical
field, w, = 0. In this case, the model is nondispersive in
the normal phase, as the only source of transverse field is
the effective mean field. Instead of a band, the model has
a collection of degenerate excitations with energy 2j that

(19)
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Figure 2: Cavity response, D, of the Dicke model as a function of the
collective coupling, 4, for different values of the classical transverse field,
,. The yellow dashed lines correspond to a fit of the polaritons with a
two-oscillator model (see Eq. (20)). The top right insets show the
magnetization. The dotted lines mark the edges of the band of the
mean-field effective Hamiltonian (4). The Ising interaction is set to

4/ =Q.

are linear combinations of domain walls [72]. Accordingly,
the zero-momentum sector of the two-excitation band is a
degenerate collection of the double excitations that corre-
spond to single-spin flips. This is a typical situation where
the cavity is coupled to a collective mode hybridizing with
the cavity photon, forming polaritons whose energy can
be fitted by a model of two coupled quantum harmonic
oscillators of frequencies €2 and 4]:

20 =4+ Q* + \/(4]2 - QZ)Z +3224]Q. (20)

At the first-order phase transition, the effective mean
field acquires a nonzero value, opening the band. The lower
polariton hardens to become the cavity photon in the deep
superradiant regime [73].

Figure 2(b)-(d) shows the case of nonzero classical
field, w, # 0. Then, the Ising band (6) is already open in
the normal phase and we can understand the model as an
impurity model, where the impurity role is played by the
cavity.

Before proceeding with the discussion, it is important to
distinguish between the two Hamiltonians that we have pre-
sented so far, the original Dicke—Ising Hamiltonian defined
in Eqgs. (1)-(3) and the mean-field effective Hamiltonian of
Eq. (4), which is useful for calculations of equilibrium and
linear response properties, as we have shown. We have
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defined Bogoliubov fermions in Eq. (18) as the fermions that
diagonalize the mean-field effective Hamiltonian. It is also
possible, however, to diagonalize the original Ising model (2)
and write the Dicke-Ising model in terms of the correspond-
ing Bogoliubov fermions y; and y; (written without ~ in
contrast with those of Eq. (18)). For the following argument,
we focus on the full Dicke—Ising Hamiltonian, such that the
cavity appears explicitly.

The original collective coupling of the spins to the cav-
ity translates into a momentum-dependent coupling of the
Bogoliubov fermions that diagonalize the bare Ising model
to the cavity (Cf. Eq. (18)). Furthermore, it is possible to move
from a momentum to a real-space representation with a
Fourier transform and express C, in terms of the domain-
wall operators of the bare Ising model

C 0 L Mo (Vs = V). @0

mn

Here, y,f is a fermionic operator that upon acting on the
bare Ising ground state creates a domain wall after the n-th

spin [72]

:l' \/_Z 1 —lkn’ (22)
and 1

nj = N;nke‘k’, @3)
with

In Figure 3, we show that #; is exponentially localized
inreal space, with maxima at j = +1. Thus, from Eq. (21), we
see that the cavity couples maximally to consecutive domain
walls ymy ‘ms1> 1-€- t0 single-spin domains, which is consistent
with the fact that C, = Y /a" induces single-spin flips. The

coupling to wider domains ymym +w decreases exponentially
with the width w of the domain.

10!
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Figure 3: Coupling of the Bogoliubov fermions (a) , and (b) its Fourier
transform, n;= F{n,}, for different values of the classical transverse
field, w,. The Ising interaction is set to 4/ = Q and the light-matter
coupling to 4 = 0.2Q. Afinite size of N = 150 was used for the Fourier
transform.
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The spin-boson model in waveguide QED can be
described with a spin coupled to a single cavity of a
cavity array. The spin acts as an impurity of the cavity
array, inducing bound states in which photons are local-
ized around the cavity to which the spin couples. Like-
wise, in the Dicke-Ising model, the cavity couples only to
narrow domains, which are a subset of the two-excitation
Ising band. Thus, the cavity acts as an impurity of the two-
excitation band, localizing spin-wave pairs around single-
spin domains.

This interpretation is further supported by the fact that
the equation for the poles of D(w) can be shown to be

Flw) = o — QO — 4220 / dk 24i:o, 25)

=2
4€k

which can be compared with the equation for the eigenval-
ues of a discrete system coupled to a continuum with a finite
bandwidth [33], in our case the band of the Ising model given
by (6). Note that 7, and #; present only small quantitative
differences with 77 and #; displayed in Figure 3 in the ZFMN
phase, where m, < 1.

3.3 Existence of bound polariton states

By simple inspection, we observe in Figure 2 that D(w) has
poles outside the band given by 2¢, in Eq. (6). We refer to
these states as bound polariton states. While we could simply
use the term bound states, we retain the term polaritons
since we are within the field of cavity QED materials. Addi-
tionally, this highlights their complementarity to the usual
bound states in quantum optics, where matter localizes pho-
tons around an impurity. Here, it is the cavity that localizes
spin excitations.

The possibility of bound states emerging is well known
[33], [36], [74]. These states belong to the discrete spectrum
and are solutions to F(w) = 0 for w outside the band. Much
is known about bound states, particularly that their exis-
tence is primarily determined by the bandwidth, the cou-
pling, and the position of the impurity [44], [54], which in
our case is the cavity.

Importantly, in this case, we are able to prove their
existence as follows. First, we focus on the possibility of solu-
tions below the lower band edge, given by 2¢, i.e., F(w <
2€,) = 0. We first assume that Q > 2, the case depicted in
the figure. Thus, the term w? — Q< 0, and the integral in
(25), is also negative. Therefore, for a solution to exist, the
magnitude of the integral must be sufficiently large, which
always occurs because the integral diverges as @w — 2€,. On
the other hand, if Q < 2&, the condition for the existence of
bound states is
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T

52
Q>4AZ/%@ =0.
Zﬂék

(26)

-

Similarly, the argument for bound states above the
upper band, in this case F(w > 2€,) = 0, follows equivalent
reasoning, proving, or disproving their existence under the
same conditions.

We consider it important to emphasize that these states
emerge from a nontrivial system, which, despite being
exactly solvable, is a strongly correlated model of matter
nonperturbatively coupled to a cavity field. The fact that
it can be solved highlights how useful the thermodynamic
limit is in cavity QED materials when performing calcu-
lations at any value of the light-matter coupling. Similar
existence proofs should be obtained in other scenarios, such
as intersubband polaritons [56], [75], [76] or lattice fermion
models like the SSH model or similar [17], [58]. The existence
of bound states in those cases can be discussed following the
same procedure as here [75] and should depend on the band
limits and the density of states of the matter coupled to the
cavity near those band limits.

In Figure 2, we see how tuning the bandwidth with w,
results in the detachment of bound states from the band
edges. Furthermore, we understand their increased visibil-
ity (with respect to the band) when they appear, as it is well
known that the contribution of the impurity (the cavity) is
finite in the bound states. Additionally, the localized nature
of bound states explains why the polariton formula (20)
accounts well for their energy.

3.4 Finite-size effects

Finally, we present a comparison between our analyti-
cal results of Section 3 and finite-size exact-diagonalization
results in Figure 4. This allows us to discuss how quickly
finite-size effects are washed out as we increase the system
size. We compare the analytical results in Figure 4(a), (c)
and (e), valid in the thermodynamic limit, with exact-
diagonalization results for system sizes up to N =14 in
Figure 4(b), (d), and (f).

Let us begin by comparing Figure 4(a) and (b), which
correspond to the case of vanishing classical field. In this
case, we observe the formation of polaritons in the nor-
mal phase and the opening of the two-excitation band and
the hardening of the lower polariton in the superradi-
ant phase in Figure 4(a). The same features are observed
in Figure 4(b), although the two-excitation band is not
fully formed and instead we can distinguish a collection
of discrete levels. Additionally, there are some finite-size
effects. Most prominently, there is a pole corresponding
to the single-excitation band in the normal phase, at
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Figure 4: Cavity response, D, of the Dicke-Ising model as a function of
the collective coupling, A, computed analytically in the thermodynamic
limit, N — oo, (left) and with exact diagonalization, N = 14, (right) for
different values of the classical field, ,. The yellow dashed lines
correspond to a fit of the polaritons with a two-oscillator model (see

Eq. (20)). The top right insets show the magnetizations. The bottom right
inset in the right plots shows a vertical cut at the black dashed line for
two finite sizes, N = 4 and N = 14. The dotted lines mark the edges of the
band of the mean-field effective Hamiltonian (4). The parameters are

w, = 0and 4/ = Q. In the exact-diagonalization results, the Fock basis
for the photonic Hilbert space is truncated at 40 photons.

w=2]=Q/2 for A—0. This is explained by noting
that the coupling operator C, (18) induces single-spin
flips. To understand its effect, it is easier to reason in
the limit of small light-matter coupling A and classi-
cal field w,. Here, the spins are fully magnetized along
z in the ground state |1 ...1), and the excitations
are linear combinations of domain walls of the form
[ 1...10 ... 1). When acting on the ground state, C, typi-
cally creates two contiguous domain walls, i.e., states with
single-spin domains of the form | 1 ... t/1 ... 1), which
belong to the two-excitation subspace. However, in an open
finite chain, C, also connects the ground state with states
of the form | 1 ... 1|), which present a single domain wall
and thus belong to the single-excitation subspace. In the
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thermodynamic limit, these edge states represent a van-
ishing fraction of the single-excitation subspace and thus
the visibility of the single excitation band in the photonic
propagator becomes negligible as N — oo. This interpreta-
tion is confirmed by the bottom right inset in Figure 4(b),
which shows that the intensity of this pole decreases with
size, unlike the poles corresponding to the polaritons. Figure
4(c)—(f) features a finite classical field @, and thus a finite
bandwidth in the normal phase. In Figure 4(c), the narrow
bandwidth allows the formation of bound polariton states
with well-defined energies below and above the band. This
is validated in Figure 4(d). Again, we observe additional
features that we attribute to finite-size effects. In particu-
lar, the single-excitation band, at w = 2] = Q/2 for A — 0.
Its visibility is shown to decrease with size in the bottom
rightinset of Figure 4(d). In Figure 4(e), the large bandwidth
prevents the visibility of the bound polariton states. This is
confirmed in Figure 4(f) where we observe a collection of
closely packed levels of equal visibility that are expected
to form the band in the thermodynamic limit. The levels
that fall well outside the would-be band are shown to be
finite-size artifacts in the bottom right inset of Figure 4(f).

4 Conclusions

In this work, we have studied the emergence of bound
polaritons in cavity QED materials using the Dicke-Ising
model, whose equilibrium and linear spectrum can be
solved exactly in the thermodynamic limit. We demonstrate
the existence of bound polariton states, where the cavity-
matter coupling leads to the localization of spin waves.
These results extend the polariton landscape and present
new opportunities to control the dynamics of excitations in
quantum materials through cavities.

Our work is based on the large N theory for cavity QED
materials [62], [77], which yields exact results. To explore
how these effects persist in finite systems, we have per-
formed exact-diagonalization calculations. We observe that
even in modest system sizes, the described phenomenol-
ogy is well reproduced, apart from the expected finite-size
effects. Finally, we have discussed how the physics described
here is generalizable to other cases, such as intersubband
polaritons or lattice fermion models like the SSH model
coupled to cavities. Additionally, our work extends beyond
light—-matter systems, including to phonon-polaritons [78]
or magnon-spin coupling [79].
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Appendix A: Microscopic theory
for magnetic cavity QED

Here, we consider a microscopic derivation of the light—
matter Hamiltonian. A complementary perspective can be
obtained by employing macroscopic QED theory [80].

For simplicity, we consider a system of N neutral single-
electron atoms, each with a nondynamical nucleus with
charge e at position R; and a dynamical electron with charge
—e, bound to the nucleus, at position Rj +r; The deriva-
tion can be readily extended to multielectron atoms or
molecules. Note that R; is a classical variable and r; is an
operator. The charge density of the system reads

N N
pr)=—e) B*(r—R;—r)+e) 5°r—R), (A
J J

and one can define polarization

1
N
P(r) = —ez rj/ dsé3(r — R;—sr)) (A2)
J 0
and magnetization
N 1
M(r) = —ez rjxr"j/ dssé3(r—Rj — 1)) (A3)
J 0
fields that satisfy V- P=—pand V X M = j — 6,P, with
the current density j(r) = —ezljyr"j63(r —R; —r)). Here,
53(r) is the three-dimensional Dirac delta function.
We start from the Hamiltonian in the Coulomb gauge

+V.+V
2m ¢

N 2
(p~+eA(R-+r»))
HZZ J ] J
)
N
+Hem+ geéuBZGj'B(R]"Frj). (A4)
]

In the Coulomb gauge, the redundancy in the
description of the dynamical variables is eliminated by
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constraining the vector potential to be transverse, ie.,
V - A = 0. The quantized vector potential then reads

A(r) = Y A (Na, +he., (A5)
K

where k is a four-vector containing the polarization index
o =1,2and the wavevector k: k = {k, o }. The mode ampli-
tude is Ay = 1/1/(2¢,Vwy). The V and ¢, are, respectively,
the cavity mode volume and the dielectric constant. We also
introduce the bosonic annihilation and creation operators
of the k-thmode: a,., az, which obey the canonical commuta-
tion relations [aK, a:,] = 6,,». To maintain as much gener-
ality as possible, we have refrained from using a particular
spatial dependence for the vector potential. For a specific
model, the geometry of the cavity will determine the spatial
quantization of the wavevector k and in turn, the functional
form of the mode functions u,.(r) [81]. In any case, the fol-
lowing properties hold for the mode functions: u_y ,(r) =
w (), w,(r) - k=0, [,dVu;(r) - u.(r) = é,,. Note that
in Eq. (A5), the mode functions have been promoted to mode
operators, since they depend on the position operator of
each particle. By definition, B=V X A4, so

B(r) = ) Byu, (r)a, +hec, (A6)

where we have defined the transverse mode functions
Finally, we can express H,, as

Hyy, = Y oyala,. (A7)
K

To move to the multipolar gauge, we will use the
Power-Zienau—Woolley (PZW) transformation, defined as
U = g1/ ErPr-Ar). (A8)

The resulting Hamiltonian in the multipolar gauge
reads [82]

2
1
p;—er;X { dssB(R; + srj))

N <
H= z]: 2m
+Ve+V+ ZwkaZaK
— 1) ohy / &*rP(r) - (u.(r)a, —h.c.)
K

+ Zwk :
K

Ay / &re(r) - u (r)

N
+%Z c;-BR;+r). (A9)
]
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We can now perform the long-wavelength approxima-
tion for the electromagnetic field. Instead of taking the crud-
est approximation, we will perform a multipolar expansion
of the polarization and the magnetic field up to the electric
quadrupole and magnetic dipole terms. For the polarization,
we approximate

8r— R, —sr)~ 8r— R)) - s(er)ég(r —R)) (A10)
and subsequently

N N
P = =€y, 18— R) + 2e Y ry(r; - V)&(r = R)).
7 7

(A1D)
With this

N
/dgrP(r) ‘u(r)=—e) r; u(R)
j

N
1
+ Qe; ry g Vou ]

(A12)

Similarly, we approximate the magnetic field as
B(Rj + rj) & B(R]-). The resulting Hamiltonian reads

N N
H=H,- Y m;-BR)+ %Z (d; X B(R)))’
7 7

N
k K j

2 N
+ iZ%Akz (Tr(pr(Rj)a,( - h.C.)
K J

2

)

+ )y
K

N N
,
A Y, 4 U (R) = 4K Y TrQ;UL(R))
J J

(A13)
with
d; = —er;, (A14)
1 ri
Qjap = =58\ Tjaljp = 3 Sap |- (A15)
m; = —ﬂ3<r; Xpj+ %aj) (A16)

the electric dipole, electric quadrupole, and magnetic
dipole operators, respectively. To simplify notation, we have
defined U (R;) = |k| ! Ju (R;) with ], the Jacobian matrix
of u, at R;. This simplified Hamiltonian (A13) reveals the
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main forms of atom-light interaction. The second term cor-
responds to the Zeeman coupling between the total mag-
netic moment of the electron and the magnetic field. The
third term, coupling the electric dipole to the magnetic field,
is known as the diamagnetic term. We will disregard it, as it
is negligible compared to the others for small per-particle
couplings [82]. Note that we could have identified

hc.),

EY(r) = —0,A(r) = i ) Ay (u, (r)a, — (A17)
in the fifth and sixth terms, which couple the electric dipole
and quadrupole to the transverse electric field, respectively
[83]. The last term corresponds to a self-interaction of the
polarization field and is typically referred to as the P> term.
With this, and defining the constants

m _ w!’ s

8 = ﬁ smc?’ (A18)
[0} w

&= T;f e, (A19)

qa_ O Za)k (A20)

&= N

we can put together the interaction terms to define electric

q
=—12<\/ (R)—g—kTTr(U (R, )Q])

(A21)
and magnetic coupling operators
o 1
m = —Z o u; (R)), (A22)
to finally write the Hamiltonian as
H=H, +ZQka a, +Z |Ce
Z dee + gC™)a, +hee, (A23)

with Q, = w,. The P* term prevents the electronic cou-
pling to the cavity from modifying the ground-state prop-
erties with respect to the bare matter model, which already
includes electrostatic Coulomb interactions [62], [68], [84].
This is a no-go theorem akin to those derived in the Coulomb
gauge from the A® term [85]-[90]. The A* and P* terms
ensure gauge invariance in these models [91]-[95]. This
motivates the consideration of purely magnetic materials,
with negligible polarizability and thus negligible electro-
static dipole—dipole interactions and coupling of the electric
dipole to the cavity’s electric field [15]. These materials inter-
act with the cavity via the Zeeman coupling of the magnetic
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dipole and the cavity’s magnetic field. Under these assump-
tions, and considering for simplicity a single uniform cavity
mode, we arrive at Eq. (1).

Appendix B: Computing ¥,, o
for the Ising model

The spectral decomposition of 7, , reads

EO)

xxxo——f2|<n|c |0>|2

where |n) is the eigenstate of Hé"[ffF (4) with eigenvalue E,,.
From Eq. (18), we see that

(MIC10) = 6,6 (N +y vi) -2 wwnly,y!,10).
k k

(B2)
With this and using Eq. (24), we find
- 162 sin k
Too=—"2) —F——— (B3)
o0 N e (@} —4er)

and in the thermodynamic limit, limy N7'Y,f; =
/7 dk/(2x)f;, we obtain Eq. (17).
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