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Abstract: We present a study of hybrid light–matter excita-

tions in cavityQEDmaterials using theDicke–Isingmodel as

a theoretical framework. Leveraging linear response theory,

we derive the exact excitations of the system in the ther-

modynamic limit. Our results demonstrate that the cavity

can localize spin excitations, leading to the formation of

bound polaritons, where the cavity acts as an impurity of

the two-excitation band, localizing spin-wave pairs around

single-spin domains. We derive the condition for the exis-

tence of these bound states and discuss its satisfiability in

different regimes. Finally, we show that these effects persist

in finite systems using exact-diagonalization calculations.

Keywords: cavity QED materials; bound states; quantum

materials

1 Introduction

The control of quantum matter with quantum light is a

common pursuit in quantum optics. Initially, the focus was

on minimalistic matter such as single atoms and molecules.

Due to the weak light–matter coupling, it was realized that

photons need to be confined in cavities, giving rise to cavity

quantumelectrodynamics (cQED) [1], [2]. This field has since

evolved to consider more complex forms of matter as well.

First, using the cavity as a probe for materials in cavity-

enhanced spectroscopy, and more recently, to push the
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boundaries of light–matter interaction to explore whether

quantum light, either a few photons or vacuum states, can

alter the properties of matter [3]–[5]. Seminal experimental

demonstrations modifying and controlling conductivity [6],

[7], magnetism [8], and the metal-to-insulator transition [9]

led to envisioning novel phenomenology emerging from

the hybridization of light and matter, such as modifica-

tions of chemical reactions [10]–[12], changes in the critical

temperature in superconductivity [13], [14], or alterations

in magnetism [15], [16], topology [17]–[22], ferroelectricity

[23]–[25], and transport in excitonic [26],molecular [27], and

disordered electronic systems [28]–[30].

Matter alterations can be underlain by the modifica-

tion of the ground (thermal) state, and/or from changes to

the excitation spectrum. The mixing of two near-resonant

energy levels gives rise to polaritons, hybrid states of light

and matter that exhibit properties of both constituents [31].

Here, we focus on a key scenario of excitation hybridization:

when a continuum couples to a discrete level it can give

rise to new discrete levels outside of the continuum, known

as bound states. In waveguide QED, the role of the contin-

uum is played by the electromagnetic modes of the waveg-

uide and a coupled emitter provides the discrete energy

level. The resulting bound state is spatially localized around

the emitter. These bound states have attracted significant

attention due to their ability to control light emission, such

as inhibiting or enhancing spontaneous emission [32]–[41].

They can also mediate long-range interactions between

emitters [42]–[54]. In cavity QEDmaterials, light andmatter

exchange their roles with respect to waveguide QED, as it

is common to consider a macroscopic material that hosts a

continuum of energy levels, in the form of bands, coupled to

a single cavity mode [17], [55]–[58].

In this paper,wediscuss the emergence of boundpolari-

tons in cavity QED materials. These are localized bound

states arising from the hybridization of the material energy

band with the cavity mode. For this purpose, we employ

the Dicke–Ising model, i.e., a spin-1∕2 Ising chain coupled

transversally to the quantum field fluctuations of the cav-

ity, see Figure 1(a). It generalizes the Dicke model by intro-

ducing intrinsic (Ising) interactions among the two-level

systems, and it extends the Ising model by considering a

quantum transverse field. While it serves as a toy model

for a magnetic material coupled to a cavity, it can also be
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Figure 1: Sketch (a) and phase diagram (b–d) of the Dicke–Ising model
in the

(
𝜆2∕Ω, 𝜔x

)
plane. (b) Number of photons, nph, which is an order

parameter of the x-ferromagnetic superradiant (xFMS) phase for𝜔x = 0.
(c) Longitudinal magnetization,mz , which is the order parameter of the
z-ferromagnetic normal (zFMN) phase. (d) Transverse magnetization,mx ,
which is another order parameter of the xFMS phase for𝜔x = 0.

experimentally realized with an array of superconducting

qubits coupled to a one-dimensional transmission-line res-

onator [59]. Crucially, it is exactly solvable in the thermo-

dynamic limit (N →∞ with N the number of spins) and

its phase diagram is well known [60], [61]. Additionally,

using a linear response theory developed by us for cavity

QED materials, the excitations can be obtained exactly [62].

This allows us to determine the conditions for the existence

of bound polaritons and establish a connection with the

bound states in waveguide QED. We show the formation

of localized polaritonic bound states hybridizing spin-wave

pairs and the cavity photon near the band edges. The rea-

son for this is that the model, through a Jordan–Wigner

transformation, can be mapped onto an impurity model,

more specifically, a boson localized within the real space of

a continuum of fermions.

The rest of the paper is organized as follows. In

Section 2, the light–matter model is presented. Section 3 is

the main part of our work, where we solve the Dicke–Ising

model, including its equilibrium and linear response. Addi-

tionally, we prove the existence of bound polariton states.

We also perform exact diagonalization calculations for

finite systems. Tautologically, we conclude with the conclu-

sions. The microscopic theory of the light–matter Hamilto-

nian is presented in Appendix A, and the calculation of the

dressed material response is presented in appendix B.

2 Model

The light–matter Hamiltonian for a magnetic material cou-

pled to a uniform cavity mode reads

H = Hm − 𝜆√
N

N∑
j

1

𝜇B
m j ⋅ u

(
a+ a†

)
+Ωa†a, (1)

with a, a† bosonic annihilation and creation operators,

[a, a†] = 1, and m j the magnetic dipole operators of the

material (see Appendix A for a derivation). Here, Hm is the

Hamiltonian of the bare magnetic material and 𝜆∕
√
N =

𝜇BB is the Zeeman coupling to the magnetic field of the

cavity, B = Bu. Importantly, we consider the material in the

thermodynamic limit for the number of magnetic dipoles,

N →∞. The cavity field intensity depends on the inverse

square root of the mode volume B ∼ 1∕
√
V . To ensure a

well-defined thermodynamic limit, we assume a finite den-

sity of dipoles in the cavity, 𝜌 = N∕V = cst. Accordingly, we

find that B ∼ 1∕
√
N for N →∞.

We will consider a toy model of a magnetic material,

the spin-1∕2 Ising chain in transverse field, with transverse
coupling to the cavity, such that

Hm = 𝜔x

2

N∑
j

𝜎x
j
− J

N∑
j

𝜎z
j
𝜎z
j+1 (2)

and
1

𝜇B
m j ⋅ u = 𝜎x

j
, (3)

with 𝜎𝛼
j
the Pauli matrices,

[
𝜎𝛼
i
, 𝜎

𝛽

j

]
= 𝛿i j2𝜖𝛼𝛽𝛾𝜎

𝛾

i
and

𝜖𝛼𝛽𝛾 the Levi-Civita symbol. The full light–matter model

is termed the (transverse) Dicke–Ising model [59]–[61],

[63]–[66]. For vanishing transverse field, the model has

a ℤ2 × ℤ2 symmetry. The first symmetry corresponds to

a spin flip, 𝜎z
j
→−𝜎z

j
, and in the bare Ising model, it is

spontaneously broken in a second-order phase transition

from a paramagnetic to a ferromagnetic phase. The sec-

ond symmetry corresponds to a simultaneous cavity field

and spin flip, a→ −a and 𝜎x
j
→−𝜎x

j
, and in the bare Dicke

model, it is spontaneously broken in a second-order phase

transition from a paramagnetic normal to a ferromagnetic

superradiant phase. Their combination gives rise to a first-

order phase transition in the Dicke–Ising model between

two symmetry-broken phases: an x-ferromagnetic superra-

diant (xFMS) phase for large g2∕Ω and a z-ferromagnetic

normal (zFMN) phase for large J. A nonzero classical trans-

verse field breaks the Dicke symmetry, but the model still

features a first-order phase transition between the xFMS

phase where the order direction is fixed by the classical

field to a symmetry-broken zFMN phase. Alternatively, the
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Ising chainwith longitudinal coupling to the cavity has been

studied in Ref. [67]. The model defined by Eqs. (1) and (2) is

sketched in Figure 1(a).

3 Exact solution in the

thermodynamic limit

Following [62], the equilibrium and linear response prop-

erties of model (1) can be computed exactly in the ther-

modynamic limit, N →∞. This is essentially because the

cavity mediates collective all-to-all interactions between

the spins, which can be treated exactly with a mean-field

approach.

3.1 Ground state phase diagram

The equilibrium properties are obtained by solving the

mean-field effective Hamiltonian [68]

HMF
eff

= 𝜔̃x

2

N∑
j

𝜎x
j
− J

N∑
j

𝜎z
j
𝜎z
j+1 +

N𝜆2

Ω m2
x
, (4)

with 𝜔̃x = 𝜔x − 4𝜆2∕Ωmx andmx = N−1∑N

j
⟨𝜎x

j
⟩, variation-

ally with respect to mx . Then, photonic observables can be

computed from the relation ⟨a⟩ = √
N𝜆∕Ωmx . Equation (4)

corresponds to the Ising chain in a transverse field. The

transverse field is a combination of the external field and

the cavity-induced mean field. It is now clear that adding a

longitudinal field would make HMF
eff

analytically intractable,

as the resulting mean-field effective Hamiltonian would

correspond to the Ising model with both transverse and

longitudinal fields. In the thermodynamic limit,N →∞, the

ground-state energy per spin is given by [69], Chap. 10]

ẽ0(mx ) =
𝜆2

Ωm2
x
− 1

2

𝜋

∫
−𝜋

dk

2𝜋
𝜖̃k, (5)

with

𝜖̃k =
√
(2 J )2 + 𝜔̃2

x
− 4 J𝜔̃x cos k. (6)

Solving variationally allows us to compute the equilib-

rium value ofmx numerically and subsequently the longitu-

dinal magnetization as [70]

mz =

⎧⎪⎪⎨⎪⎪⎩

(
1−

(
𝜔̃x

2 J

)2
) 1

8

if 0 ≤ 𝜔̃x

2 J
≤ 1,

0 if 1 <
𝜔̃x

2 J
.

(7)

and the number of photons per spin as

nph =
𝜆2

Ω2
m2
x
. (8)

The zero-temperature phase diagram is presented in

Figure 1. The transverse magnetization,mz, acts as an order

parameter for the zFMN phase. For𝜔x = 0, the longitudinal

magnetization,mx , and the photon number, nph, act as order

parameters for the xFMS phase. An analysis of e0(mx) in

this case reveals that the system undergoes a first-order

phase transition at 𝜆2∕(Ω J) ≈ 0.837. In the opposite case

of vanishing light–matter coupling, 𝜆 = 0, the Ising chain

in transverse field is known to undergo a second-order

phase transition at 𝜔x∕ J = 2. In previous solutions of the

Dicke–Ising model, the transverse field is set in a direction

perpendicular to both the intrinsic interaction and the cav-

ity field, which would be the y direction in our case [60],

[61]. Although this difference is subtle, it implies that mx

is always an order parameter of the xFMS phase. Then, a

Landau analysis of the ground-state energy in terms of its

series expansion in powers of mx reveals the existence of

a tricritical point splitting the critical line into a regime

of second-order criticality for large 𝜔x and small 𝜆 and a

regime of first-order criticality for small𝜔x and large 𝜆 [61].

In the present case, where the classical transverse field and

the cavity fields are aligned, the Landau analysis is not pos-

sible. Nevertheless, a visual inspection of the landscape of

energyminima of e0(mx) reveals the existence of a tricritical

point at 𝜆2∕(Ω J) ≈ 0.225 and 𝜔x∕ J = 1.427.

3.2 Linear response theory

The response functions of the hybrid system are given by

retarded Green functions [71], Chap. 7]. The retarded Green

function for operators A and B is defined as

Gr
A,B
(t, t′ ) = −i𝜃(t − t′ )⟨[A(t),B(t′ )]⟩. (9)

We will be particularly concerned with the photonic

propagator

D(t) = Gr
a,a†

(t, 0), (10)

and the matter response function

𝜒 (t) = − 1

N
Gr
Cx ,Cx

(t, 0), (11)

for the coupling operator Cx =
∑N

j
𝜎x
j
. In the thermody-

namic limit, these are given by

D(𝜔) = D0(𝜔)− 𝜆2D0(𝜔)𝜒 (𝜔)D0(𝜔), (12)

and

𝜒 (𝜔) = 𝜒̃0(𝜔)

1+ Vind(𝜔)𝜒̃0(𝜔)
(13)
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with

Vind(𝜔) =
2𝜆2

Ω
Ω2

(𝜔+ i0)2 −Ω2
, (14)

Here, D0 is the bare photonic propagator

D0(𝜔) =
1

𝜔+ i0−Ω , (15)

and 𝜒̃0 is the matter response function for the mean-field

effective matter Hamiltonian of Eq. (4), i.e.,

𝜒̃0(t) =
i

N
𝜃(t)⟨[Cx(t), Cx(0)]⟩HMF

eff
. (16)

Note that in the cases where mx = 0, HMF
eff

= Hm and

thus 𝜒̃0 = 𝜒0 is the bare matter response function.

At zero temperature and in the continuum limit, 𝜒̃0 is

given by (see Appendix B for details)

𝜒̃0(𝜔) = −32 J2
𝜋

∫
−𝜋

dk

2𝜋

sin2 k

𝜖̃k((𝜔+ i0)2 − 4𝜖̃2
k
)
. (17)

Interestingly, we find that 𝜒̃0 has poles at𝜔 = 2𝜖̃k . This

stems from the fact that the coupling operator, Cx , creates

and destroys excitations in pairs of opposite momentum

Cx = N − 2
∑
k

(
𝑣̃2
k
+
(
ũ2
k
− 𝑣̃2

k

)
𝛾̃
†
k
𝛾̃k

+ iũk𝑣̃k

(
𝛾̃
†
k
𝛾̃
†
−k − 𝛾̃−k 𝛾̃k

))
, (18)

where 𝛾̃k and 𝛾̃
†
k
are the annihilation and creation oper-

ators of the Bogoliuvov fermions that constitute the ele-

mentary excitations of the effective Ising model (4) after a

Jordan–Wigner fermionization [69], Chap. 10]. Here, ũk =
cos(𝜃̃k∕2) and 𝑣̃k = sin(𝜃̃k∕2) are the Bogoliubov coeffi-

cients, with

tan 𝜃̃k =
sin k

𝜔̃x

2 J
− cos k

. (19)

Thus, 𝜒 and D will reflect how the zero-momentum

sector of the two-excitation band (a double-energy replica

of the single-excitation band) of the Ising model hybridizes

with the cavity photon. The fact that excitations are created

in pairs of opposite momenta allows one to probe the full

band, despite the collective nature of Cx .

This feature brings novel phenomenology that we sum-

marize in Figure 2, where the cavity response (12) is plotted

for different scenarios. In all panels, we set 4 J = Ω, such
that the two-excitation band is in resonance with the cavity

frequency. Figure 2(a) shows the case of vanishing classical

field, 𝜔x = 0. In this case, the model is nondispersive in

the normal phase, as the only source of transverse field is

the effective mean field. Instead of a band, the model has

a collection of degenerate excitations with energy 2 J that

Figure 2: Cavity response, D, of the Dicke model as a function of the
collective coupling, 𝜆, for different values of the classical transverse field,
𝜔x . The yellow dashed lines correspond to a fit of the polaritons with a
two-oscillator model (see Eq. (20)). The top right insets show the
magnetization. The dotted lines mark the edges of the band of the
mean-field effective Hamiltonian (4). The Ising interaction is set to
4 J = Ω.

are linear combinations of domain walls [72]. Accordingly,

the zero-momentum sector of the two-excitation band is a

degenerate collection of the double excitations that corre-

spond to single-spin flips. This is a typical situation where

the cavity is coupled to a collective mode hybridizing with

the cavity photon, forming polaritons whose energy can

be fitted by a model of two coupled quantum harmonic

oscillators of frequenciesΩ and 4 J:

2Ω2

± = 4 J2 +Ω2 ±
√(

4 J2 −Ω2
)2

+ 32𝜆2 JΩ. (20)

At the first-order phase transition, the effective mean

field acquires a nonzero value, opening the band. The lower

polariton hardens to become the cavity photon in the deep

superradiant regime [73].

Figure 2(b)–(d) shows the case of nonzero classical

field, 𝜔x ≠ 0. Then, the Ising band (6) is already open in

the normal phase and we can understand the model as an

impurity model, where the impurity role is played by the

cavity.

Before proceedingwith the discussion, it is important to

distinguish between the twoHamiltonians thatwe have pre-

sented so far, the original Dicke–Ising Hamiltonian defined

in Eqs. (1)–(3) and the mean-field effective Hamiltonian of

Eq. (4), which is useful for calculations of equilibrium and

linear response properties, as we have shown. We have
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defined Bogoliubov fermions in Eq. (18) as the fermions that

diagonalize the mean-field effective Hamiltonian. It is also

possible, however, to diagonalize the original Isingmodel (2)

andwrite theDicke–Isingmodel in terms of the correspond-

ing Bogoliubov fermions 𝛾k and 𝛾
†
k
(written without ∼ in

contrast with those of Eq. (18)). For the following argument,

we focus on the full Dicke–Ising Hamiltonian, such that the

cavity appears explicitly.

The original collective coupling of the spins to the cav-

ity translates into a momentum-dependent coupling of the

Bogoliubov fermions that diagonalize the bare Ising model

to the cavity (Cf. Eq. (18)). Furthermore, it is possible tomove

from a momentum to a real-space representation with a

Fourier transform and express Cx in terms of the domain-

wall operators of the bare Ising model

Cx ∝ i
∑
mn

𝜂m−n
(
𝛾†
m
𝛾†
n
− 𝛾n𝛾m

)
. (21)

Here, 𝛾†n is a fermionic operator that upon acting on the

bare Ising ground state creates a domain wall after the n-th

spin [72]

𝛾†
n
= 1√

N

∑
k

𝛾
†
k
e−ikn, (22)

and

𝜂 j =
1

N

∑
k

𝜂ke
ik j, (23)

with

𝜂k = 2uk𝑣k = 2 J sin k∕𝜖k . (24)

In Figure 3, we show that 𝜂 j is exponentially localized

in real space, withmaxima at j = ±1. Thus, fromEq. (21), we

see that the cavity couplesmaximally to consecutive domain

walls 𝛾†m𝛾
†
m+1, i.e., to single-spin domains, which is consistent

with the fact that Cx =
∑

j𝜎
x
j
induces single-spin flips. The

coupling to wider domains 𝛾†m𝛾
†
m+𝑤 decreases exponentially

with the width𝑤 of the domain.

(a) (b)

Figure 3: Coupling of the Bogoliubov fermions (a) 𝜂k and (b) its Fourier
transform, 𝜂 j = {𝜂k}, for different values of the classical transverse
field,𝜔x . The Ising interaction is set to 4 J = Ω and the light–matter
coupling to 𝜆 = 0.2Ω. A finite size of N = 150 was used for the Fourier
transform.

The spin-boson model in waveguide QED can be

described with a spin coupled to a single cavity of a

cavity array. The spin acts as an impurity of the cavity

array, inducing bound states in which photons are local-

ized around the cavity to which the spin couples. Like-

wise, in the Dicke–Ising model, the cavity couples only to

narrow domains, which are a subset of the two-excitation

Ising band. Thus, the cavity acts as an impurity of the two-

excitation band, localizing spin-wave pairs around single-

spin domains.

This interpretation is further supported by the fact that

the equation for the poles of D(𝜔) can be shown to be

F(𝜔) = 𝜔2 −Ω2 − 4𝜆2Ω
𝜋

∫
−𝜋

dk

2𝜋
𝜂̃2
k

4𝜖̃k
𝜔2 − 4𝜖̃2

k

= 0, (25)

which can be compared with the equation for the eigenval-

ues of a discrete system coupled to a continuumwith a finite

bandwidth [33], in our case the bandof the Isingmodel given

by (6). Note that 𝜂̃k and 𝜂̃ j present only small quantitative

differences with 𝜂k and 𝜂 j displayed in Figure 3 in the zFMN

phase, wheremx ≪ 1.

3.3 Existence of bound polariton states

By simple inspection, we observe in Figure 2 that D(𝜔) has

poles outside the band given by 2𝜖̃k in Eq. (6). We refer to

these states as boundpolariton states.Whilewe could simply

use the term bound states, we retain the term polaritons

since we are within the field of cavity QED materials. Addi-

tionally, this highlights their complementarity to the usual

bound states in quantumoptics, wherematter localizes pho-

tons around an impurity. Here, it is the cavity that localizes

spin excitations.

The possibility of bound states emerging is well known

[33], [36], [74]. These states belong to the discrete spectrum

and are solutions to F(𝜔) = 0 for 𝜔 outside the band. Much

is known about bound states, particularly that their exis-

tence is primarily determined by the bandwidth, the cou-

pling, and the position of the impurity [44], [54], which in

our case is the cavity.

Importantly, in this case, we are able to prove their

existence as follows. First, we focus on the possibility of solu-

tions below the lower band edge, given by 2𝜖̃0, i.e., F(𝜔 <

2𝜖̃0 ) = 0. We first assume thatΩ > 2𝜖̃0, the case depicted in

the figure. Thus, the term 𝜔2 −Ω2
< 0, and the integral in

(25), is also negative. Therefore, for a solution to exist, the

magnitude of the integral must be sufficiently large, which

always occurs because the integral diverges as 𝜔→ 2𝜖̃0. On

the other hand, ifΩ < 2𝜖̃0, the condition for the existence of

bound states is



2058 — J. Román-Roche et al.: Bound polariton states in the Dicke–Ising model

Ω > 4𝜆2

𝜋

∫
−𝜋

dk

2𝜋

𝜂̃2
k

𝜖̃k
= 0. (26)

Similarly, the argument for bound states above the

upper band, in this case F(𝜔 > 2𝜖̃𝜋 ) = 0, follows equivalent

reasoning, proving, or disproving their existence under the

same conditions.

We consider it important to emphasize that these states

emerge from a nontrivial system, which, despite being

exactly solvable, is a strongly correlated model of matter

nonperturbatively coupled to a cavity field. The fact that

it can be solved highlights how useful the thermodynamic

limit is in cavity QED materials when performing calcu-

lations at any value of the light–matter coupling. Similar

existence proofs should be obtained in other scenarios, such

as intersubband polaritons [56], [75], [76] or lattice fermion

models like the SSHmodel or similar [17], [58]. The existence

of bound states in those cases can be discussed following the

same procedure as here [75] and should depend on the band

limits and the density of states of the matter coupled to the

cavity near those band limits.

In Figure 2, we see how tuning the bandwidth with 𝜔x

results in the detachment of bound states from the band

edges. Furthermore, we understand their increased visibil-

ity (with respect to the band) when they appear, as it is well

known that the contribution of the impurity (the cavity) is

finite in the bound states. Additionally, the localized nature

of bound states explains why the polariton formula (20)

accounts well for their energy.

3.4 Finite-size effects

Finally, we present a comparison between our analyti-

cal results of Section 3 and finite-size exact-diagonalization

results in Figure 4. This allows us to discuss how quickly

finite-size effects are washed out as we increase the system

size. We compare the analytical results in Figure 4(a), (c)

and (e), valid in the thermodynamic limit, with exact-

diagonalization results for system sizes up to N = 14 in

Figure 4(b), (d), and (f).

Let us begin by comparing Figure 4(a) and (b), which

correspond to the case of vanishing classical field. In this

case, we observe the formation of polaritons in the nor-

mal phase and the opening of the two-excitation band and

the hardening of the lower polariton in the superradi-

ant phase in Figure 4(a). The same features are observed

in Figure 4(b), although the two-excitation band is not

fully formed and instead we can distinguish a collection

of discrete levels. Additionally, there are some finite-size

effects. Most prominently, there is a pole corresponding

to the single-excitation band in the normal phase, at

Figure 4: Cavity response, D, of the Dicke–Ising model as a function of
the collective coupling, 𝜆, computed analytically in the thermodynamic
limit, N→∞, (left) and with exact diagonalization, N = 14, (right) for
different values of the classical field,𝜔x . The yellow dashed lines
correspond to a fit of the polaritons with a two-oscillator model (see
Eq. (20)). The top right insets show the magnetizations. The bottom right
inset in the right plots shows a vertical cut at the black dashed line for
two finite sizes, N = 4 and N = 14. The dotted lines mark the edges of the
band of the mean-field effective Hamiltonian (4). The parameters are
𝜔x = 0 and 4 J = Ω. In the exact-diagonalization results, the Fock basis
for the photonic Hilbert space is truncated at 40 photons.

𝜔 = 2 J = Ω∕2 for 𝜆→ 0. This is explained by noting

that the coupling operator Cx (18) induces single-spin

flips. To understand its effect, it is easier to reason in

the limit of small light–matter coupling 𝜆 and classi-

cal field 𝜔x . Here, the spins are fully magnetized along

z in the ground state | ↑ … ↑⟩, and the excitations

are linear combinations of domain walls of the form

| ↑ … ↑↓ … ↓⟩. When acting on the ground state, Cx typi-

cally creates two contiguous domain walls, i.e., states with

single-spin domains of the form | ↑ … ↑↓↑ … ↑⟩, which
belong to the two-excitation subspace. However, in an open

finite chain, Cx also connects the ground state with states

of the form | ↑ … ↑↓⟩, which present a single domain wall
and thus belong to the single-excitation subspace. In the
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thermodynamic limit, these edge states represent a van-

ishing fraction of the single-excitation subspace and thus

the visibility of the single excitation band in the photonic

propagator becomes negligible as N →∞. This interpreta-

tion is confirmed by the bottom right inset in Figure 4(b),

which shows that the intensity of this pole decreases with

size, unlike the poles corresponding to the polaritons. Figure

4(c)–(f) features a finite classical field 𝜔x and thus a finite

bandwidth in the normal phase. In Figure 4(c), the narrow

bandwidth allows the formation of bound polariton states

with well-defined energies below and above the band. This

is validated in Figure 4(d). Again, we observe additional

features that we attribute to finite-size effects. In particu-

lar, the single-excitation band, at 𝜔 = 2 J = Ω∕2 for 𝜆→ 0.

Its visibility is shown to decrease with size in the bottom

right inset of Figure 4(d). In Figure 4(e), the large bandwidth

prevents the visibility of the bound polariton states. This is

confirmed in Figure 4(f) where we observe a collection of

closely packed levels of equal visibility that are expected

to form the band in the thermodynamic limit. The levels

that fall well outside the would-be band are shown to be

finite-size artifacts in the bottom right inset of Figure 4(f).

4 Conclusions

In this work, we have studied the emergence of bound

polaritons in cavity QED materials using the Dicke–Ising

model, whose equilibrium and linear spectrum can be

solved exactly in the thermodynamic limit. We demonstrate

the existence of bound polariton states, where the cavity-

matter coupling leads to the localization of spin waves.

These results extend the polariton landscape and present

new opportunities to control the dynamics of excitations in

quantum materials through cavities.

Our work is based on the large N theory for cavity QED

materials [62], [77], which yields exact results. To explore

how these effects persist in finite systems, we have per-

formed exact-diagonalization calculations. We observe that

even in modest system sizes, the described phenomenol-

ogy is well reproduced, apart from the expected finite-size

effects. Finally,wehavediscussedhow thephysics described

here is generalizable to other cases, such as intersubband

polaritons or lattice fermion models like the SSH model

coupled to cavities. Additionally, our work extends beyond

light–matter systems, including to phonon-polaritons [78]

or magnon-spin coupling [79].

Research funding: TED2021-131447B-C21 funded

by MCIN/AEI/10.13039/501100011033 and the EU

“NextGenerationEU”/PRTR CEX2023-001286-S financed

by MICIU/AEI/10.13039/501100011033. The Gobierno de

Aragón (Grant E09-17R Q-MAD), Quantum Spain and

the CSIC Quantum Technologies Platform PTI-001. JRR

acknowledges support from the Ministry of Universities of

the Spanish Government through the grant FPU2020-07231.

Author contributions: All authors have accepted responsi-

bility for the entire content of thismanuscript and approved

its submission.

Conflict of interest: Authors state no conflicts of interest.

Data availability: Data sharing is not applicable to this arti-

cle as no datasets were generated or analyzed during the

current study.

Appendix A: Microscopic theory

for magnetic cavity QED

Here, we consider a microscopic derivation of the light–

matter Hamiltonian. A complementary perspective can be

obtained by employing macroscopic QED theory [80].

For simplicity, we consider a system ofN neutral single-

electron atoms, each with a nondynamical nucleus with

charge e at positionR j and a dynamical electronwith charge

−e, bound to the nucleus, at position R j + r j. The deriva-

tion can be readily extended to multielectron atoms or

molecules. Note that R j is a classical variable and r j is an

operator. The charge density of the system reads

𝜌(r) = −e
N∑
j

𝛿3(r − R j − r j )+ e

N∑
j

𝛿3(r − R j ), (A1)

and one can define polarization

P(r) = −e
N∑
j

r j

1

∫
0

ds𝛿3(r − R j − sr j ) (A2)

and magnetization

M(r) = −e
N∑
j

r j × ṙ j

1

∫
0

dss𝛿3(r − R j − sr j ) (A3)

fields that satisfy ∇ ⋅ P = −𝜌 and ∇ × M = j− 𝛿tP, with

the current density j(r) = −e∑N

j
ṙ j𝛿

3(r − R j − r j ). Here,

𝛿
3(r) is the three-dimensional Dirac delta function.

We start from the Hamiltonian in the Coulomb gauge

H =
N∑
j

(
p j + eA(R j + r j )

)2
2m

+ VC + V

+ Hem + ge𝜇B
2

N∑
j

𝝈 j ⋅ B(R j + r j ). (A4)

In the Coulomb gauge, the redundancy in the

description of the dynamical variables is eliminated by
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constraining the vector potential to be transverse, i.e.,

∇ ⋅ A = 0. The quantized vector potential then reads

A(r) =
∑
𝜅

A
k
u𝜅 (r)a𝜅 + h.c., (A5)

where 𝜅 is a four-vector containing the polarization index

𝜎 = 1, 2 and the wavevector k: 𝜅 ≡ {k, 𝜎}. Themode ampli-
tude is A

k
=

√
1∕(2𝜖0V𝜔k

). The V and 𝜖0 are, respectively,

the cavity mode volume and the dielectric constant. We also

introduce the bosonic annihilation and creation operators

of the𝜅-thmode:a𝜅 ,a
†
𝜅 , which obey the canonical commuta-

tion relations
[
a𝜅, a

†
𝜅′

]
= 𝛿𝜅𝜅′ . To maintain as much gener-

ality as possible, we have refrained from using a particular

spatial dependence for the vector potential. For a specific

model, the geometry of the cavity will determine the spatial

quantization of thewavevector k and in turn, the functional

form of the mode functions u𝜅 (r) [81]. In any case, the fol-

lowing properties hold for the mode functions: u−k,𝜎(r) =
u
∗
k,𝜎
(r), u

k,𝜎(r) ⋅ k = 0, ∫
V
dVu∗

𝜅
(r) ⋅ u𝜅′ (r) = 𝛿𝜅𝜅′ . Note that

in Eq. (A5), themode functions have been promoted tomode

operators, since they depend on the position operator of

each particle. By definition, B = ∇ × A, so

B(r) =
∑
𝜅

B
k
u⊥,𝜅 (r)a𝜅 + h.c., (A6)

where we have defined the transverse mode functions

u⊥,𝜅 (r) = |k|−1∇ × u𝜅 (r) and B
k
= A

k
|k| = A

k
𝜔

k
∕c.

Finally, we can express Hem as

Hem =
∑
𝜅

𝜔
k
a†
𝜅
a𝜅 . (A7)

To move to the multipolar gauge, we will use the

Power–Zienau–Woolley (PZW) transformation, defined as

U = e−i ∫ d3rP(r)⋅A(r). (A8)

The resulting Hamiltonian in the multipolar gauge

reads [82]

H =
N∑
j

(
p j − er j ×

1∫
0

dssB(R j + sr j )

)2

2m

+ VC + V +
∑
𝜅

𝜔
k
a†
𝜅
a𝜅

− i
∑
𝜅

𝜔
k
A
k ∫ d3rP(r) ⋅

(
u𝜅 (r)a𝜅 − h.c.

)

+
∑
𝜅

𝜔
k

||||Ak ∫ d3rP(r) ⋅ u𝜅 (r)
||||
2

+ ge𝜇B
2

N∑
j

𝝈 j ⋅ B(R j + r j ). (A9)

We can now perform the long-wavelength approxima-

tion for the electromagnetic field. Instead of taking the crud-

est approximation, we will perform a multipolar expansion

of the polarization and the magnetic field up to the electric

quadrupole andmagnetic dipole terms. For the polarization,

we approximate

𝛿3(r − R j − sr j ) ≈ 𝛿3(r − R j )− s(r j∇)𝛿3(r − R j ) (A10)

and subsequently

P(r) = −e
N∑
j

r j𝛿
3(r − R j )+

1

2
e

N∑
j

r j(r j ⋅∇)𝛿3(r − R j ).

(A11)

With this

∫ d3rP(r) ⋅ u𝜅 (r) = −e
N∑
j

r j ⋅ u𝜅 (R j )

+ 1

2
e

N∑
j

r j ⋅
[
(r j ⋅∇)u𝜅 (r)

]
r=R j

.

(A12)

Similarly, we approximate the magnetic field as

B(R j + r j) ≈ B(R j). The resulting Hamiltonian reads

H = Hm −
N∑
j

m j ⋅ B(R j )+
1

8m

N∑
j

(
d j × B(R j )

)2

+
∑
k

𝜔
k
a†
𝜅
a𝜅 − i

∑
𝜅

𝜔
k
A
k

N∑
j

d j ⋅ (u𝜅 (R j )a𝜅 − h.c.)

+ i
∑
𝜅

𝜔2
k

c
A
k

N∑
j

(
Tr
(
QjU𝜅 (R j )a𝜅 − h.c.

)

+
∑
𝜅

𝜔
k

||||||
A
k

N∑
j

d j ⋅ u𝜅 (R j )− A
k

𝜔
k

c

N∑
j

TrQjU𝜅 (R j )

||||||
2

,

(A13)

with

d j = −er j, (A14)

Qj,𝛼𝛽 = − 1

2
e

(
r j,𝛼r j,𝛽 −

r
2
j

3
𝛿𝛼𝛽

)
, (A15)

m j = −𝜇B
(
r j × p j +

ge
2
𝝈 j

)
(A16)

the electric dipole, electric quadrupole, and magnetic

dipole operators, respectively. To simplify notation, we have

defined U𝜅 (R j ) = |k|−1 J
u𝜅
(R j ) with J

u𝜅
the Jacobian matrix

of u𝜅 at R j. This simplified Hamiltonian (A13) reveals the
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main forms of atom–light interaction. The second term cor-

responds to the Zeeman coupling between the total mag-

netic moment of the electron and the magnetic field. The

third term, coupling the electric dipole to themagnetic field,

is known as the diamagnetic term. We will disregard it, as it

is negligible compared to the others for small per-particle

couplings [82]. Note that we could have identified

E
⊥(r) = −𝜕tA(r) = i

∑
𝜅

𝜔
k
A
k

(
u𝜅 (r)a𝜅 − h.c.

)
, (A17)

in the fifth and sixth terms, which couple the electric dipole

and quadrupole to the transverse electric field, respectively

[83]. The last term corresponds to a self-interaction of the

polarization field and is typically referred to as the P2 term.

With this, and defining the constants

gm
k
=

𝜔 p√
N

√
𝜔

k

8mc2
, (A18)

gd
k
= 𝜔

k√
N

√
𝜔 p

𝜔
k

, (A19)

g
q

k
= 𝜔

k√
N

√
2𝜔

k

mc2
, (A20)

we can put together the interaction terms to define electric

Ce
𝜅
= −i

N∑
j

(√
m𝜔 p

2
d j ⋅ u𝜅 (R j )−

g
q

k

gd
k

m𝜔 p

2
Tr(U𝜅 (R j )Qj )

)
,

(A21)

and magnetic coupling operators

Cm
𝜅
= −

N∑
j

1

𝜇B
m j ⋅ u⊥,𝜅 (R j ), (A22)

to finally write the Hamiltonian as

H = Hm +
∑
𝜅

Ω
k
a†
𝜅
a𝜅 +

∑
𝜅

gd
k

Ω
k

||Ce𝜅 ||2

+
∑
𝜅

(
gd
k
Ce
𝜅
+ gm

k
Cm
𝜅

)
a𝜅 + h.c., (A23)

with Ω
k
= 𝜔

k
. The P2 term prevents the electronic cou-

pling to the cavity from modifying the ground-state prop-

erties with respect to the bare matter model, which already

includes electrostatic Coulomb interactions [62], [68], [84].

This is a no-go theoremakin to those derived in the Coulomb

gauge from the A2 term [85]–[90]. The A2 and P2 terms

ensure gauge invariance in these models [91]–[95]. This

motivates the consideration of purely magnetic materials,

with negligible polarizability and thus negligible electro-

static dipole–dipole interactions and coupling of the electric

dipole to the cavity’s electric field [15]. Thesematerials inter-

act with the cavity via the Zeeman coupling of the magnetic

dipole and the cavity’s magnetic field. Under these assump-

tions, and considering for simplicity a single uniform cavity

mode, we arrive at Eq. (1).

Appendix B: Computing 𝝌̃
xx, 0

for the Ising model

The spectral decomposition of 𝜒̃xx,0 reads

𝜒̃xx,0 = − 1

N

∑
n

|⟨n|Cx|0⟩|2 2(En − E0 )

𝜔2
+ − (En − E0 )

2
, (B1)

where |n⟩ is the eigenstate of HMF
eff

(4) with eigenvalue En.

From Eq. (18), we see that

⟨n|Cx|0⟩ = 𝛿n0

(
N +

∑
k

𝑣2
k

)
− 2i

∑
k

uk𝑣k⟨n|𝛾†k 𝛾†−k|0⟩.
(B2)

With this and using Eq. (24), we find

𝜒̃xx,0 = − 16 J2

N

∑
k

sin2 k

𝜖k
(
𝜔2
+ − 4𝜖2

k

) (B3)

and in the thermodynamic limit, limN→∞N
−1∑

k fk =∫ 𝜋

−𝜋dk∕(2𝜋 ) fk , we obtain Eq. (17).
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