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S1 Derivation of the equations of motion in the classical coupled

harmonic oscillator models

In the main article, we derive the classical models of coupled harmonic oscillators from the cavity

Quantum Electrodynamics (QED) Hamiltonians. In this supplementary section, we derive in detail the

equations of motion of the classical harmonic oscillators within a classical electromagnetic description

that departs from the classical Lagrangian (Sec. S3 shows how to use this approach to obtain also the

cavity-QED Hamiltonians).

We start this derivation from the general classical Lagrangian representing charges and electro-

magnetic fields, which we then particularize for the specific systems we analyze in the main article.

Afterward, we show that the Spring Coupling (SpC) and the Momentum Coupling (MoC) models

defined in the main article are obtained from the Euler-Lagrange equations of motion of these La-

grangians. Thus, a fully classical description is enough to model ultrastrong coupling in different

nanophotonic systems without the need to use any quantum model. Last, we discuss how to introduce

laser illumination into the SpC Model (necessary for Sec. 3.2 of the main text) and confirm the validity

of the SpC model by comparing it with a an alternative description based on classical polarizabilities.

The form of the electromagnetic Lagrangian depends on the gauge. We choose the Coulomb gauge,

which leads to the following expression [1]:

LCou =
∑
j

1

2
mj ṙ

2
j −

∑
i,j>i

qiqj
4πε0|ri − rj |

+

∫ [ε0
2
(|Ȧ(r)|2 − c2|∇×A(r)|2) + j(r) ·A(r)

]
dr. (S1)

In this Lagrangian, the electromagnetic degrees of freedom are encapsulated in the dynamical field

variable A(r), which represents the vector potential of the fields, with the condition ∇ · A = 0 due

to the choice of gauge. The energy of these fields is scaled by the vacuum permittivity ε0 and the

light speed in vacuum c (for simplicity, we assume in this section that the material filling the cavity

is vacuum). On the other hand, all the dynamics related to the matter structure are expressed by

the spatial positions ri, mass mi, and charge qi of each point-like charge indexed by i. Each point

charge interacts with all the others according to the Coulomb potential energy (second term on the

right-hand side) and with the transverse electromagnetic fields (according to the
∫
j(r) ·A(r)dr term,

where j(r) =
∑

i qiṙiδ(r− ri) is the current density at any position r).

The equations of motion obtained from the Lagrangian in Eq. (S1) for the variables A(r) and ri

are equivalent to Maxwell’s equation for a general system. We are interested in obtaining the equations

of motion that describe the dynamics of systems formed by molecules or similar quantum emitters

interacting with cavity modes in the strong and the ultrastrong coupling regimes. First, we focus

on the terms of the Lagrangian related to the electromagnetic field (which in the Coulomb gauge is

entirely described with the vector potential A). The vector potential is separated into the components

Aα(r) of all transverse modes α of the cavity as A(r) =
∑

αAα(r) =
∑

αAαΞα(r)nα(r). For each α

index, the field is polarized at any position in the direction determined by the unit vector nα(r), the

maximum scalar amplitude is given by Aα and the fields have spatial distribution Ξα(r), normalized

so that Ξα(r) = 1 in the position where the field is maximum. Further, we consider that the α modes

form an orthogonal basis, and the integral of the field distribution over space gives the effective volume

of the mode, i.e. ∫
Ξα(r)Ξ

∗
α′(r)nα(r) · nα′(r) dr = Veff,αδα,α′ . (S2)
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By taking into account the decomposition of the modes and their orthogonality, the terms of the

Lagrangian of Eq. (S1) only related to the electromagnetic fields are written as

∫
ε0
2

∣∣∣∣∣∑
α

ȦαΞα(r)nα

∣∣∣∣∣
2

− c2

∣∣∣∣∣∇×
∑
α

AαΞα(r)nα

∣∣∣∣∣
2
 dr =

∑
α

ε0Veff,α

2

(
ȦαȦ∗

α − ω2
cav,αAαA∗

α

)
.

(S3)

We now focus on the terms of the Lagrangian associated with the matter degrees of freedom

to describe the matter excitations. We model the material as an ensemble of dipoles indexed by

j, each formed by two point charges that have the same mass mj and opposite charges and are

placed in positions rj+ and rj− (representing e.g. the simplest description of a quantum emitter). At

equilibrium, rj+ − rj− = reqj , where reqj can take into account the coupling with other dipoles. For

example, when modeling a complex molecule reqj would be obtained including the interaction between

all charges forming the molecule. We make the harmonic approximation to the Coulomb potential

experienced by each dipole with respect to the equilibrium position: ≈ 1
2mredω

2
mat|rj+ − rj− − reqj |2,

where mred is the reduced mass of the dipole. We also assume that the mass center of the dipole

is static at position rj =
rj++rj−

2 , while the distance between point charges from the equilibrium

position, i.e., lj = rj+ − rj− − req and, equivalently, the induced dipole moment dj = qjlj , evolve in

time. From these assumptions, the Coulomb potential energy in the second term in Eq. (S1) includes

the harmonic potential energy corresponding to the charges in each dipole and the potential energy

due to the interaction between different dipoles. Accordingly, the terms related to the matter degrees

of freedom in the Lagrangian transform as

∑
j

1

2
mj ṙ

2
j −

∑
i,j>i

qiqj
4πε0|ri − rj |

=
∑
j

(
1

2

mred,j

q2j
ḋ2j −

1

2

mred,j

q2j
ω2
mat,jd

2
j

)

−
∑
i,j>i

1

4πε0|ri − rj |3
[di · dj − 3(di · nrij)(dj · nrij)] , (S4)

with dj = |dj | and the unit vector nrij =
rj−ri
|rj−ri| . Equation (S4) has been derived using the harmonic

approximation of the dipolar potential and, as a consequence, all terms of the Lagrangian that do

not account for light-matter interaction are quadratic with respect to the amplitudes of the vector

potential and their time derivatives (Eq. (S3)), or with respect to the induced dipole moments and

their time derivatives (Eq. (S4)). Therefore, if light and matter were uncoupled, the dynamical

evolution of these variables would be the same as that of free harmonic oscillators. We now discuss

how the interaction between the cavity modes and the dipoles affects the equations of motion. The

coupling of each dipole with the transverse fields of the cavity appears in the Lagrangian as

∫
j ·A dr =

∫ ∑
j

qj ṙj+δ(r− rj+)− qj ṙj−δ(r− rj−)

(∑
α

AαΞα(r)nα

)
dr

=
∑
j,α

qj [rj+Ξα(ṙj+)− ṙj−Ξα(rj−)]Aαnα ≈
∑
j,α

AαΞα(rj)ḋj · nα (S5)

In the last step, we have performed the long-wavelength approximation, so that the fields do not vary

in the length scale of each dipole, i.e., Ξ(rj+) ≈ Ξ(rj−) for any j. The total Lagrangian of the system
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in the Coulomb gauge reads

LCou(dj , ḋj ,Aα, Ȧα,A∗
α, Ȧ∗

α) =
∑
α

ε0Veff,α

2

(
ȦαȦ∗

α − ω2
cav,αAαA∗

α

)
+
∑
j

1

2

1

fmat,j

(
ḋ2j − ω2

mat,jd
2
j

)
+
∑
j,α

AαḋjΞα(rj) cos θα,j −
∑
i,j

didj
ndi · ndj − 3(ndi · nrij)(ndj · nrij)

4πε0|ri − rj |3
,

(S6)

where ndj =
dj

|dj | , θα,j is the angle between the induced dipole moment dj and the direction nα of the

electric field in the mode α, and fmat =
q2j

mred
is the oscillator strength of the jth dipole.

From the Lagrangian LCou of Eq. (S6), we can derive the equations of motion of the classical

coupled harmonic oscillators by calculating the Euler-Lagrange equations, d
dt

∂LCou
∂ẋ − ∂LCou

∂x = 0, for

x ∈ {dj ,A∗
α}. The resulting equations of motion are

Äα + ω2
cav,αAα −

∑
j

ḋj
Ξα(rj) cos θα,j

ε0Veff,α
= 0, (S7a)

d̈j + ω2
mat,jdj + fmat,j

∑
i ̸=j

ndi · ndj − 3(ndi · nrij)(ndj · nrij)

4πε0|ri − rj |3
di +

∑
α

Ȧαfmat,jΞ
∗
α(rj) cos θα,j = 0.

(S7b)

These equations account for all dipole-cavity and dipole-dipole interactions, as analyzed in Sec. 3.3

of the main article. To show how to obtain the MoC and SpC models, we focus on the two canonical

examples analyzed in Secs. 3.1 and 3.2 of the main article:

• Coupling between a quantum emitter and a transverse mode of a dielectric cavity (Sec. 3.1): By

considering a single transverse mode α of the cavity interacting with one molecular emitter with

induced dipole moment d, all Coulomb interactions in Eq. (S7) are eliminated. The equations

of motion become

Ä+ ω2
cavA− ḋ

Ξ(rmat) cos θ

ε0Veff
= 0, (S8a)

d̈+ ω2
matd+ ȦfmatΞ

∗(rmat) cos θ = 0. (S8b)

By replacing here the oscillation amplitudes xcav = A
√
ε0Veff and xmat =

d√
fmat

and introducing

the coupling strength

gMoC =
1

2

√
fmat

ε0Veff
Ξ(rmat) cos θ, (S9)

we recover the equations of motion of the MoC model (Eq. (11) in the main article).

• Coupling between a quantum emitter and a plasmonic nanoparticle via Coulomb interactions (Sec.

3.2): We consider that the emitter (a molecule) and the nanoparticle have induced dipole

moments dmat and dcav, respectively. Under the quasistatic approximation of the plasmonic

response, the vector potential components of all transverse modes are neglected. With this
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approximation and for only two dipoles, Eq. (S7) is written as

d̈cav + ω2
cavdcav + fcav

ndcav · ndmat − 3(ndcav · nrrel)(ndmat · nrrel)

4πε0|rcav − rmat|3
dmat = 0, (S10a)

d̈mat + ω2
matdmat + fmat

ndcav · ndmat − 3(ndcav · nrrel)(ndmat · nrrel)

4πε0|rcav − rmat|3
dcav = 0, (S10b)

where nrrel =
rcav−rmat
|rcav−rmat| is the unitary vector of the relative direction between the nanocavity

and the molecular emitter. By replacing xcav = dcav√
fcav

and xmat = dmat√
fmat

, and defining the

coupling strength gSpC as

gSpC =
1

2

√
fcav

√
fmat

4πε0|rcav − rmat|3
√
ωcavωmat

[ndcav · ndmat − 3(ndcav · nrrel)(ndmat · nrrel)], (S11)

we recover the equations of the SpC model (Eq. (8) in the main article).

Spring coupling model with external laser illumination

In Sec. 3.2 of the main text, the dipolar mode of a metallic nanoparticle is excited by an external

laser. We now discuss briefly how to introduce the incident laser field in the model of the interaction

of this metallic nanocavity with a quantum emitter, e.g. a molecule. The incident field is treated as

a planewave of wavevector kinc, amplitude Ainc and frequency ω, with an associated vector potential

of the form Ainc(r, t) = Aince
ikinc·re−iωt. Under the quasistatic approximation, all transverse modes

α of the system are neglected, and thus the only component of the vector potential considered in the

Lagrangian of Eq. (S6) corresponds to the external laser Ainc(r, t). With these considerations, the

Lagrangian of Eq. (S6) becomes

Ldip-dip
Cou (dcav, ḋcav, dmat, ḋmat) =

1

2

1

fcav

(
ḋ2cav − ω2

cavd
2
cav

)
+

1

2

1

fmat

(
ḋ2mat − ω2

matd
2
mat

)
− dcavdmat

ndcav · ndmat − 3(ndcav · nrrel)(ndmat · nrrel)

4πε0|rcav − rmat|3
+Aince

−iωt(ḋcav cos θinc,cav + ḋmat cos θinc,mat),

(S12)

where θinc,cav and θinc,mat are the angles between the incident field and the induced dipole moments

of the cavity and molecular emitter, respectively. The superscript ”dip-dip” emphasizes that we

only consider dipole-dipole interactions for this system (under the quasistatic approximation). The

dynamics of the variables dcav and dmat are obtained within the Euler-Lagrange equations of Eq.

(S12). By calculating these equations of motion and transforming the variables into the oscillation

amplitudes xcav = dcav√
fcav

and xmat =
dmat√
fmat

, the resulting equations are

ẍcav+ω2
cavxcav+

ndcav · ndmat − 3(ndcav · nrrel)(ndmat · nrrel)

4πε0|rcav − rmat|3
xmat = −

√
fcav cos θinc,cav

d

dt

(
Aince

−iωt
)
,

(S13a)

ẍmat+ω2
matxmat+

ndcav · ndmat − 3(ndcav · nrrel)(ndmat · nrrel)

4πε0|rcav − rmat|3
xcav = −

√
fmat cos θinc,mat

d

dt

(
Aince

−iωt
)
.

(S13b)

Therefore, the incident field is incorporated into the SpC equations of motion (Eq. (8) in the main

article) by adding time-dependent force-like terms of amplitude Fcav = iωAinc
√
fcav cos θinc,cav and

Fmat = iωAinc
√
fmat cos θinc,mat to the nanocavity and the molecular emitter, respectively.
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Classical description of the coupling between a molecular emitter and a plasmonic nanocav-

ity based on their polarizability

The interaction of a small metallic nanoparticle with a molecular emitter (or another quantum

emitter) can also be described classically by using polarizabilities αcav and αmat for both particles

so that the dipole moment induced by the electric field at each position rcav and rmat is given by

dcav = αcavE(rcav) and dmat = αmatE(rmat), respectively. We briefly show here that this approach

leads to the same equations as the SpC model obtained from the electromagnetic Lagrangian, which

supports the validity of the general approach used in the main text. For the cavity mode (plasmon in

metallic nanoparticle) and the molecular excitation (or any matter excitation in general), we consider

the polarizability given by the Lorentz oscillator model. In the case of the molecular emitter, we

assume a single molecular excitation with Lorentzian polarizability centered at resonant frequency

ωmat, linewidth determined by the damping frequency γ, and oscillator strength fmat. Similarly, we

also model the nanocavity response as given by a single plasmonic resonance that follows a Lorentzian-

like lineshape (for a Drude permittivity), which is the typical lineshape in the quasistatic regime. This

resonance is centered at frequency ωcav and is characterized by losses κ and oscillator strength fcav.

The polarizabilities of the plasmonic nanocavity and the molecular emitter are then given by

αcav(ω) =
fcav

ω2
cav − ω2 − iωκ

, (S14a)

αmat(ω) =
fmat

ω2
mat − ω2 − iωγ

. (S14b)

The dipole moment of the molecular emitter and the nanoparticle is induced by the electric field Einc

of the external laser and also by the electric field generated by either the plasmonic mode (Ecav) or the

matter excitation in the molecule (Emat), respectively. We then have dcav = αcav[Emat(rcav) + Einc]

and dmat = αmat[Ecav(rmat)+Einc]. By inserting in these expressions the polarizabilities given by Eq.

(S14) and considering that the quasi-static fields induced by the dipoles excited at the cavity and the

molecule follow the dependence,

Emat(rcav) =
ndmat − 3(ndmat · nrrel)nrrel

4πε0|rcav − rmat|3
dmat, (S15a)

Ecav(rmat) =
ndcav − 3(ndcav · nrrel)nrrel

4πε0|rcav − rmat|3
dcav, (S15b)

we obtain the expressions of the induced dipole moments

(ω2
cav−ω2−iωκ)dcav = fcav

[
ndcav · ndmat − 3(ndcav · nrrel)(ndmat · nrrel)

4πε0|rcav − rmat|3
dmat +Einc · ndcav

]
, (S16a)

(ω2
mat − ω2 − iωγ)dmat = fmat

[
ndcav · ndmat − 3(ndcav · nrrel)(ndmat · nrrel)

4πε0|rcav − rmat|3
dcav +Einc · ndmat

]
.

(S16b)

These equations are equivalent to Eq. (S13) in frequency domain, with xcav = dcav√
fcav

, xmat =
dmat√
fmat

and using the relation |Einc| = |iωAinc| that follows from the definition of the vector potential.
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S2 Alternative classical models of coupled harmonic oscillators

The discussion of Supplementary Sec. S1 concluded that the classical MoC model describes the

coupling of matter excitations with transverse electromagnetic modes, while the SpC model can ex-

press dipole-dipole interactions. Crucially, the bare cavity and matter frequencies appear directly in

these models without dressing the energies. In this supplementary section, we demonstrate that other

classical coupled harmonic oscillator models exist, equivalent to the MoC and SpC models, but involv-

ing some frequency dressing (this effect is related to the discussion in Ref. [2] between the dressing

of the frequencies and the presence or absence of diamagnetic term). The alternative models depend

on the gauge chosen for the classical Lagrangian and Hamiltonian descriptions. We discuss oscillator

models in two of the most commonly used gauges: the Coulomb and dipole gauges. We also show that

the physical interpretation of the oscillation amplitudes depends on the particular coupled harmonic

oscillator model that is used.

More specifically, Secs. S2.1 and S2.2 consider the coupling with transverse modes in dielectric

cavities. We derive alternative coupled harmonic oscillator equations that use dressed frequencies

and coupling terms proportional to the amplitude of the oscillators (in contrast with the equivalent

MoC model, which uses bare frequencies and coupling terms proportional to the time derivatives of

the oscillator amplitudes). We first show in Sec. S2.1 how to derive, within the Coulomb gauge, an

alternative coupled harmonic oscillator model in which the cavity mode is dressed. Then, in Sec. S2.2,

the use of the dipole gauge yields a second alternative coupled harmonic oscillator model with dressed

matter excitation and coupling terms again proportional to the oscillations amplitudes.

Afterwards, in Sec S2.3, we consider Coulomb coupling through longitudinal fields, and obtain

coupled harmonic oscillator equations with dressing of the matter excitation and coupling term pro-

portional to the time derivatives of the oscillator amplitudes (for comparison, in the equivalent SpC

model, the frequencies are the bare ones and the coupling terms are proportional to the oscillator

amplitudes of the oscillation models). This section considers the Coulomb gauge, but the dipole gauge

yields identical results.

S2.1 Alternative model of a matter excitation interacting with transverse cavity

modes obtained within the Coulomb gauge

We first describe the coupling between a transverse electromagnetic mode and a dipolar excitation

of a molecule (or another quantum emitter), which is the system discussed in Sec. 3.1 of the main

article. The aim is to obtain alternative equations of motion of this system. We start with the classical

Lagrangian in the Coulomb gauge given by Eq. (S6), which for the considered system can be expressed

as

Lmin-c
Cou (d, ḋ,A, Ȧ) =

ε0Veff

2
(Ȧ2 − ω2

cavA2) +
1

2fmat
(ḋ2 − ω2

matd
2) +Aḋ. (S17)

To simplify the analytical expressions in the following discussion, we consider Eq. (S17) for a

specific case where the molecular emitter is placed in the position of maximum field of the mode and

oriented in the same direction as the field polarization so that Ξ(rmat) cos θ = 1 (see Sec. S1 for the

definition of these parameters). However, the discussion of this section remains valid for other values

of Ξ(rmat) cos θ.

It has been shown in Supplementary Sec. S1 that the Euler-Lagrange equations derived from Eq.

(S17) lead to the MoC model. We use here Hamilton’s equations to derive the MoC model in an

alternative manner and also to obtain another equivalent classical model of harmonic oscillators. To
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first derive the classical Hamiltonian of the system, we obtain the canonical momenta related to the

transverse electromagnetic modes and the induced dipole moment in the Coulomb gauge as

ΠCou =
∂LCou

∂Ȧ
= ε0VeffȦ, (S18a)

pCou =
∂LCou

∂ḋ
=

ḋ

fmat
+A. (S18b)

According to these expressions, the dynamical variable ΠCou expresses the transverse electric field of

the cavity modes from the relation E = −∂A
∂t . On the other hand, the relation between the induced

dipole moment d and its canonical momentum pCou is more complicated because pCou depends not

only on d but also on the vector potential. Using Eq. (S18), the calculation of the Hamiltonian

Hmin-c
Cou = ȦΠCou + ḋpCou − Lmin-c

Cou is straightforward:

Hmin-c
Cou =

Π2
Cou

2ε0Veff
+

1

2
ε0Veffω

2
cavA2 +

fmat

2
p2Cou +

1

2

ω2
mat

fmat
d2 − fmatpCouA+

1

2
fmatA2. (S19)

This expression has the well-known form of the minimal-coupling Hamiltonian. This is the reason

why we include the superindex ”min-c” in the Lagrangian of Eq. (S17) and in the Hamiltonian of Eq.

(S19). We can directly derive the Hamilton’s equations of motion of all canonical variables:

Ȧ =
∂Hmin-c

Cou

∂ΠCou
=

ΠCou

ε0Veff
, (S20a)

Π̇Cou = −
∂Hmin-c

Cou

∂A
= −ε0Veffω

2
cavA+ fmat(pCou −A), (S20b)

ḋ =
∂Hmin-c

Cou

∂pCou
= fmat(pCou −A), (S20c)

ṗCou = −
∂Hmin-c

Cou

∂d
= −ω2

mat

fmat
dj . (S20d)

Hamilton’s equations can be used to obtain classical harmonic oscillator models by eliminating

two variables, leading to two second-order differential equations. By choosing the variables A and d

to describe the dynamics of the system, we obtain

Ä+ ω2
cavA− ḋ

ε0Veff
= 0, (S21a)

d̈+ ω2
matd+ fmatȦ = 0. (S21b)

This system of equations can be converted into Eq. (11) in the main text, and thus we recover the

MoC model. However, there are other possible ways to represent the response of this system with

harmonic oscillators. An alternative is to choose the variable pCou for the matter excitation and A for

the cavity mode. By eliminating the rest of the variables in Eq. (S20), the equations of motion for

the chosen variables are written as

Ä+

(
ω2
cav +

fmat

ε0Veff

)
A− fmat

ε0Veff
pCou = 0, (S22a)

p̈Cou + ω2
matpCou − ω2

matA = 0. (S22b)

With the transformation xcav =
√
ε0VeffA used in Sec. 3.1 of the main text, and with the new
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transformation x′mat =
√
fmat

ωmat
pCou, Eq. (S22) becomes

ẍcav + (ω2
cav + 4g2MoC)xcav − 2gMoCωmatx

′
mat = 0, (S23a)

ẍ′mat + ω2
matx

′
mat − 2gMoCωmatxcav = 0, (S23b)

with the same coupling strength gMoC = 1
2

√
fmat

ε0Veff
that is used to describe the cavity-dipole coupling

within the MoC model.

Equations (S21) and (S23) (the former corresponding to the MoC model) have been derived for

the same system and thus must result in the same response of the system. However, several interesting

aspects can be observed. First, in Eq. (S23) x′mat is related to pCou, while xmat is related to d in the

MoC model. Thus, it is important to consider this difference when calculating physical observables, as

in Sec. 3.1 of the main text. Second, Eq. (S23) contains coupling terms proportional to the oscillation

amplitudes xcav and x′mat (as in the SpC model) instead of to their time derivatives ẋcav and ẋmat

(as in the MoC model). Last, in Eq. (S23) the frequency of the cavity mode is dressed from ωcav

to
√

ω2
cav + 4g2MoC. The different coupling terms and the frequency dressing compensate each other,

ensuring that Eq. (S23) yields the same result as the MoC model. Therefore, the molecule-dielectric

cavity system can be equivalently described using coupling terms proportional to the oscillation am-

plitudes or to their time derivatives, provided that the frequency of the cavity mode and the physical

interpretation of the oscillation amplitudes are modified appropriately.

S2.2 Alternative model of a matter excitation interacting with transverse cavity

modes obtained within the dipole gauge

We have shown that the results of the MoC model can be recovered using equations with a different

coupling term and a dressed frequency of the cavity mode. Here, we use the dipole gauge to show

that we can also obtain equivalent equations by dressing the frequency of the matter excitation. We

consider again a single matter excitation and a transverse electromagnetic mode.

The Lagrangian in the Coulomb gauge LCou of Eq. (S17) can be transformed to any other La-

grangian L′ with the operation L′ = LCou + dG(A,d,t)
dt , by using a general function G(A, d, t). In

particular, the transformation to the dipole gauge is done with the choice G = −dA. This is equiv-

alent to the Power-Zienau-Woolley transformation [3] in cavity-QED descriptions, with the unitary

operator

Û = exp

{
i

ℏ

∫
P ·A dr

}
, (S24)

where P is the polarization density. After applying the gauge transformation to Eq. (S17), the

Lagrangian of the system in the dipole gauge is

Lmin-c
Dip (d, ḋ,A, Ȧ) =

ε0Veff

2
(Ȧ2 − ω2

cavA2) +
1

2fmat
(ḋ2 − ω2

matd
2)− Ȧd. (S25)

We repeat the procedure implemented in the Coulomb gauge in Sec. S2.1 to obtain the equations

of motion of the dynamical variables in the dipole gauge. The canonical momenta are calculated as

ΠDip =
∂LDip

∂Ȧ
= ε0VeffȦ − d, (S26a)

pDip =
∂LDip

∂ḋ
=

ḋ

fmat
. (S26b)
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In the dipole gauge, pDip is only related to the time derivative of the induced dipole moment. However,

the canonical momentum associated with the cavity mode, ΠDip, depends on both d and the vector

potential, in contrast to the result of the Coulomb gauge (Eq. (S18)). Thus, in the dipole gauge this

variable represents the displacement vector ΠDip ∝ |D| = |ε0E+P| instead of the electric field of the

cavity mode as happens in the Coulomb gauge, where ΠCou ∝ |E|. The resulting Hamiltonian in the

dipole gauge is

Hmin-c
Dip =

Π2
Dip

2ε0Veff
+

1

2
ε0Veffω

2
cavA2 +

fmat

2
p2Dip +

1

2

ω2
mat

fmat
d2 +

ΠDipd

ε0Veff
+

d2

2ε0Veff
, (S27)

with corresponding Hamilton’s equations of motion:

Ȧ =
∂Hmin-c

Dip

∂ΠDip
=

ΠDip + d

ε0Veff
, (S28a)

Π̇Dip = −
∂Hmin-c

Dip

∂A
= −ε0Veffω

2
cavA, (S28b)

ḋ =
∂Hmin-c

Dip

∂pDip
= fmatpDip, (S28c)

ṗDip = −
∂Hmin-c

Dip

∂d
= −ω2

mat

fmat
d−

ΠDip + d

ε0Veff
. (S28d)

The choice of variables A and d to obtain second-order differential equations leads to the trans-

formation from Eq. (S28) to Eq. (S21). Therefore, the MoC model is obtained independently of the

considered gauge for these variables. On the other hand, with the choice of the variables d and ΠDip,

we obtain

Π̈Dip + ω2
cavΠDip + ω2

cavd = 0 (S29a)

d̈+

(
ω2
mat +

fmat

ε0Veff

)
d+

fmat

ε0Veff
ΠDip = 0. (S29b)

This equation can be rewritten in terms of oscillation amplitudes. By using the matter oscillator

amplitude xmat = d√
fmat

and the new cavity oscillator amplitude x′cav =
ΠDip√

ε0Veffωcav
, the resulting

equations are

ẍ′cav + ω2
cavx

′
cav + 2gMoCωcavxmat = 0, (S30a)

ẍmat + (ω2
mat + 4g2MoC)xmat + 2gMoCωcavx

′
cav = 0, (S30b)

which gives the same results as the MoC model, but with the coupling term proportional to the

oscillator oscillation amplitudes x′cav and xmat and with the frequency of the matter excitation dressed,

i.e. renormalized, from ωmat to
√
ω2
mat + 4g2MoC.

S2.3 Alternative model of a molecular emitter interacting with a metallic nanopar-

ticle

In Supplementary Secs. S2.1 and S2.2 we have shown that the coupling between a dipolar excitation

of a molecular emitter and a transverse cavity mode can be described equivalently with the MoC

model (coupling terms proportional to the time derivatives ẋcav and ẋmat) or with models where the
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coupling terms are proportional to the oscillation amplitudes and the frequencies of the oscillators are

dressed. Here, we use the Coulomb gauge and show a similar result for the dipole-dipole interaction

between one plasmonic mode and one matter excitation in a molecule or any other quantum emitter:

this interaction can be described by the SpC model (coupling terms proportional to the oscillation

amplitudes xcav and xmat) or with alternative equations that contain coupling terms proportional to

the time derivatives ẋcav and ẋmat, together with dressed frequencies.

We consider the same system analyzed in Sec. 3.2 of the main article, namely, a molecule (or

another quantum emitter) placed close to a metallic nanoparticle and coupled to it through the

Coulomb interaction. This system is described by the Lagrangian of Eq. (S12) (here we omit laser

excitation, i.e. Ainc = 0), which leads to the SpC model in Eq. (S10), as discussed in Sec. S1. To

obtain the alternative model, we follow the procedure of the previous subsections and first obtain from

Eq. (S12) the classical Hamiltonian of the system Hdip-dip = ḋcavpcav + ḋmatpmat − Ldip-dip
Cou , which is

Hdip-dip =
1

2
fcavp

2
cav +

1

2

ω2
cav

fcav
d2cav +

1

2
fmatp

2
mat +

1

2

ω2
mat

fmat
d2mat

+ dcavdmat
ndcav · ndmat − 3(ndcav · nrrel)(ndmat · nrrel)

4πε0|rcav − rmat|3
, (S31)

with the canonical momenta pcav = ḋcav
fcav

and pmat = ḋmat
fmat

. The Hamiltonian of Eq. (S31) has been

obtained from the Coulomb gauge, but the dipole gauge leads to the same Hamiltonian for this specific

system because this change of gauge affects the treatment of the electromagnetic degrees of freedom

Aα associated with the transverse fields. These degrees of freedom are not present when the interaction

occurs through Coulomb coupling.

By calculating the equations of motion for the oscillator variables xcav = dcav√
fcav

and xmat =
dmat√
fmat

as in previous subsections, we recover the equations of the SpC model (Eq. (8) in the main text).

However, we can again make another choice for the variables to obtain an alternative model of harmonic

oscillators. Using the oscillator xcav = dcav√
fcav

as before and the new oscillator x′mat =
√
fmat

ωmat
pmat, the

equations of motion are

ẍcav + (ω2
cav − 4g′2SpC)xcav − 2g′SpCẋ

′
mat = 0, (S32a)

ẍ′mat + ω2
matx

′
mat + 2g′SpCẋcav = 0, (S32b)

with the coupling strength g′SpC = gSpC

√
ωcav
ωmat

, slightly modified compared to the SpC value gSpC used

in Eq. (28) of the main text. We have thus shown that the results of the SpC model can also be

obtained with a model where the coupling terms are proportional to the time derivatives ẋcav and

ẋ′mat. In this case the cavity frequency has been renormalized from ωcav to
√

ω2
cav − 4g′2SpC.

S3 Comparison between cavity-QED Hamiltonians of different sys-

tems and gauges

In the previous Supplementary Sections, the SpC, MoC, and alternative coupled harmonic oscillator

models are derived from a fully classical description based on Lagrangian and Hamiltonian mechanics.

We next quantize the classical Hamiltonians to obtain the cavity-QED Hamiltonians describing the

system, including those in the main text. This procedure shows that the cavity-QED Hamiltonians

and the corresponding coupled-harmonic oscillator models are directly related.
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The coupling between a molecular emitter (or another quantum emitter) and the transverse elec-

tromagnetic modes of a dielectric cavity is described by the minimal-coupling Hamiltonian, which for

the Coulomb gauge has the classical form of Eq. (S19) and for the dipole gauge it is given by Eq.

(S27). We quantize these classical Hamiltonians following the standard rules of quantization (Eqs.

(15)-(18) in the main article) and obtain

Ĥmin-c
Cou = ℏωcav

(
â†â+

1

2

)
+ℏωmat

(
b̂†b̂+

1

2

)
+ iℏgMoC

√
ωmat

ωcav
(â+ â†)(b̂− b̂†)+ℏ

g2MoC

ωcav
(â+ â†)2. (S33)

Ĥmin-c
Dip = ℏωcav

(
â†â+

1

2

)
+ℏωmat

(
b̂†b̂+

1

2

)
− iℏgMoC

√
ωcav

ωmat
(â− â†)(b̂+ b̂†)+ℏ

g2MoC

ωmat
(b̂+ b̂†)2. (S34)

for the Coulomb and dipole gauges, respectively. In these Hamiltonians, â and â† are the annihilation

and creation operators of the cavity mode, while b̂ and b̂† are the corresponding operators for the

molecular excitations. The main difference between Eqs. (S33) and (S34) is the last quadratic term,

which is originated from the vector potential of the electromagnetic mode in the Coulomb gauge, and

from the induced dipole moment of the molecule in the dipole gauge, respectively. We further note that

the relation between the quantum coupling strength gQED (i.e., the proportionality factor if we write

the third term of the Hamiltonians as ±iℏgQED(â− â†)(b̂+ b̂†) ) and the classical coupling strength gMoC

is different for each gauge, with gQED = gMoC

√
ωmat
ωcav

for the Coulomb gauge and gQED = gMoC

√
ωcav
ωmat

for

the dipole gauge. We emphasize, however, that the eigenvalues of the two Hamiltonians are identical

(given by Eq. (13) in the main text). Further, these two Hamiltonians also lead to identical results

for any physical magnitude, once we consider that the operators â, â†, b̂ and b̂† are not equivalent in

the two Hamiltonians and are related to a different set of canonical momenta (and thus to different

physical magnitudes) in each of them: ΠCou and pCou given by Eq. (S18) for the Hamiltonian of Eq.

(S33), or ΠDip and pDip given by Eq. (S26) for the Hamiltonian of Eq. (S34).

On the other hand, dipole-dipole interactions (for example, between a metallic nanoparticle and

a molecular emitter) are modeled with the following cavity-QED Hamiltonian both in the Coulomb

and dipole gauges (obtained by applying the quantization rules to Eq. (S31)):

Ĥdip-dip = ℏωcav

(
â†â+

1

2

)
+ ℏωmat

(
b̂†b̂+

1

2

)
+ ℏgQED(â+ â†)(b̂+ b̂†), (S35)

with gQED = gSpC. This Hamiltonian does not have any diamagnetic term. Thus it gives different

results than the minimal-coupling Hamiltonians of Eqs. (S33) and (S34). Further, the operators â, â†,

b̂ and b̂† in Eq. (S35) are related to the induced dipole moments of the nanoparticle and the molecule

according to Eq. (17) of the main article.

The analysis of this and the previous sections establishes that the classical coupled harmonic

oscillator models and the cavity-QED Hamiltonians can be derived from the same starting point of

the Lagrangian in Eq. (S1), and can thus be used to obtain equivalent physical results.

S4 Summary of classical models and their connection with cavity-

QED Hamiltonians

Table S1 summarizes all the classical models discussed in Supplementary Secs. S1 and S2, as well as

the cavity-QED Hamiltonians discussed in Supplementary Sec. S3. These sections focus on two types

of interactions: the coupling between a molecular excitation and transverse electromagnetic modes
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Table S1: Summary of the correspondences between the classical coupled harmonic oscillator models
and the cavity-QED Hamiltonians. We consider the coupling between a dipole (representing, e.g., a
molecular excitation) and a dielectric cavity (with transverse electromagnetic modes) or a plasmonic
nanocavity (dipole-dipole coupling via Coulomb interactions). The coupling with transverse modes is
described in the Coulomb (second column) and dipole (third column) gauges, while the dipole-dipole
coupling is described in the same way in both gauges as indicated in the fourth column. The fourth
row shows the cavity-QED Hamiltonians that describe each of these situations. The fifth and the sixth
rows indicate the corresponding classical harmonic oscillations models: the fifth row corresponds to
the models associated with coupling terms proportional to oscillation amplitudes, and the sixth row
to models with coupling terms proportional to their time derivatives (with coupling strengths gMoC

given by Eq. (S9) and gSpC given by Eq. (S11)). We highlight in green the SpC and MoC models,
which are the focus of the main text and for which the bare frequencies ωcav and ωmat are considered.
With the yellow background, we indicate the alternative models where we use dressed frequencies,
which also change the coupling term. The seventh row shows the association between the amplitudes
of the oscillators and the physical magnitudes of the system, which differ for each model in the fifth
and sixth rows. The last row provides the frequencies of the two hybrid modes for the two different
types of interaction. To ease comparison, we write both the cavity-QED Hamiltonians and coupled
harmonic oscillator models in terms of gSpC and gMoC.
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in a dielectric (Fabry-Pérot) cavity, and the dipole-dipole coupling due to the Coulomb interaction.

The models describing the first type of interaction (second and third columns) depend on the chosen

gauge (Coulomb or dipole) [4], but all of them result in identical eigenfrequencies and other physical

magnitudes (the latter require to take into account the specific connection of the classical oscillation

amplitudes and quantum operators with, e.g., the electric field depends on the model). All the models

in the fourth column describing dipole-dipole Coulomb coupling are also equivalent to each other. On

the other hand, the models in the fourth column are not equivalent to those in the second and third

columns.

Table S1 shows that if the classical equations depend directly on the bare (non-dressed) frequencies

of the uncoupled oscillators ωcav and ωmat, the description of the interaction between transverse cavity

modes and matter excitations requires a coupling term proportional to the time derivatives of the os-

cillation amplitudes (MoC model, equivalent to cavity-QED Hamiltonians with diamagnetic term). In

contrast, the coupling term associated with dipole-dipole interactions is proportional to the oscillation

amplitudes where frequencies are not dressed (SpC model, equivalent to cavity-QED Hamiltonians

without diamagnetic term). These classical models are analyzed in the main text and Supplementary

Sec. S1 and highlighted in green. On the other hand, as discussed in Supplementary Sec. S2, each

type of interaction can also be modeled with alternative models where the type of coupling term is

modified from proportional to the oscillation amplitudes to proportional to their time derivatives, or

vice versa. We highlight these models in Table S1 by the yellow squares. In these alternative models,

dressing or renormalization of one of the oscillator frequencies is needed to maintain their equivalence

with their corresponding cavity-QED Hamiltonians. Further, the alternative classical models also

require the modification of the physical magnitudes that each oscillator represents. However, if the

transformation of oscillation amplitudes and frequencies is done appropriately, all models describing

the coupling between transverse fields and dipoles (second and third columns) yield identical results,

and the same happens for dipole-dipole interactions (fourth column).

S5 Linearized Model

We show in this section that, for g < 0.1ωmat (i.e., before the onset of ultrastrong coupling according

to the standard definition of this regime), it is possible to reduce both the MoC and the SpC model

to the same simplified linearized model by considering that the eigenfrequencies ω± do not differ too

strongly from the bare frequencies ωα (α = ’cav’ or α = ’mat’).

Using the approximation ωα + ω ≈ 2ω ≈ 2ωα, the frequency-domain equations of both the SpC

and MoC models become linear in ω:

(ωcav − ω)xcav + glinxmat = 0 (S36a)

(ωmat − ω)xmat + g∗linxcav = 0, (S36b)

with glin = gSpC = igMoC. The resulting eigenfrequencies are

ω±,lin =
ωcav + ωmat ±

√
(ωcav − ωmat)2 + 4|glin|2

2
. (S37)

We compare in Fig. S1 the results of this model (black dots) to those obtained with the MoC (red

dashed lines) and SpC (blue solid lines) models. The results are obtained with Eq. (S37), and Eqs.
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Figure S1: Comparison of the Spring Coupling (SpC), Momentum Coupling (MoC), and linearized
models. a) Eigenfrequencies ω± of the hybrid states calculated from the bare values ωcav and ωmat, with
ωmat fixed and ωcav/ωmat changing. ω± obtained from the SpC model (blue solid line, corresponding
to Eq. (10) in the main text), MoC model (red dashed line, Eq. (13) in the main text) and the
approximate linearized model (black dots, Eq. (S37)), for coupling strength g = gSpC = gMoC = glin =
0.1ωmat. The thin gray lines correspond to the bare cavity frequency ωcav and the bare frequency of the
matter excitation, ωmat. b) Same as panel (a), for coupling strength g = gSpC = gMoC = glin = 0.3ωmat.
c) Minimum splitting between the hybrid modes Ωmin = ω+−ω−, as a function of the coupling strength
g for the SpC model (blue solid line), the MoC model (red solid line) and the linearized model (black
dots). All frequencies are normalized with respect to the fixed frequency of the matter excitation
ωmat, so that the results do not depend on the particular value of ωmat, only on the ωcav/ωmat ratio
or g/ωcav ratio . The MoC and SpC results are the same as in Fig. 2 of the main text.

(13) and (10) of the main text, respectively. Fig. S1a shows that, for g = 0.1ωmat (as in Sec. 2.4 of the

main text, we use g to refer to gSpC, gMoC and/or glin in discussions that are valid for more than one

model), the three models indeed result in very similar eigenvalues for all values of ωcav/ωmat. However,

this is not the case for g = 0.3ωmat (Fig. S1b), where the eigenfrequencies of the linearized model

are typically in between those of the SpC and MoC models. Notably, the linearized model does not

present any mode in a forbidden energy band that is half as wide as in the MoC model (while the SpC

model did not present such a forbidden band). Similarly, the linearized model does not present any

lower-energy mode, (i.e., negative ω−,lin, for
ωcav
ωmat

<
(

glin
ωmat

)2
); in contrast, the corresponding condition

for the SpC model is ωcav
ωmat

<
(
2gSpC
ωmat

)2
(where ω−,SpC is imaginary) and the MoC model always presents

a lower-energy mode. On the other hand, the splitting at zero detuning is equal to Ω = 2g in both the

linearized and MoC models (but with different values of ω± for each of them), which is the minimum

splitting in these two models. In contrast, the minimum splitting scales non-linearly with g for the

SpC model, and is larger than for the MoC or linearized modes. These results are illustrated in Fig.

S1(c), which shows the dependence of the normalized minimum splitting Ωmin/ωmat on the normalized

coupling strength g/ωmat.

S6 Evolution of the eigenvalues for a different choice of coupling

strength

In Sec. 2.4 of the main text (as well as in Sec. S5), we consider that the coupling strengths gMoC

and gSpC do not depend on the resonant frequency of the cavity ωcav. This choice is consistent with
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Figure S2: Comparison of the Spring Coupling (SpC) and Momentum Coupling (MoC) models for
a different choice of the coupling strength than in the main text. Eigenfrequencies ω± obtained
as a function of ωcav, obtained from the SpC model (blue solid line, corresponding to Eq. (10) in
the main text) and MoC model (red dashed line, Eq. (13) in the main text) for coupling strength
gSpC = 0.3

√
ωcavωmat and gMoC = 0.3ωmat, respectively. The thin gray lines correspond to the bare

cavity frequency ωcav and the bare frequency of the matter excitation, ωmat. All frequencies are
normalized with respect to the fixed frequency of the matter excitation ωmat (ℏωmat = 0.1 eV), and
the MoC results are the same as in Fig. 2 of the main text.

the results obtained in Secs. 3.1 and 3.3 of the main text, which used the MoC model to describe the

coupling of a molecular emitter or an ensemble of molecular emitters with the transverse fields of an

electromagnetic mode of a dielectric (Fabry-Pérot) cavity. On the other hand, when describing the

Coulomb coupling within the SpC model in Sec. 3.2, the dependence of the coupling strength gSpC on

ωcav can vary with the details of each particular configuration. To exemplify the consequences of such

details, we consider in this section a different dependence of gSpC on ωcav than in the main text.

We analyze again the Coulomb coupling between metallic spherical particles of radius Rcav and a

quantum emitter, described with the SpC model as in Sec. 3.2 of the main text. However, we now

change the plasma frequency of the metal, which modifies the dipole moment fcav = 4πε0R
3
cavω

2
cav so

that, according to Eq. (28) in the main text, the coupling strength scales as gSpC ∝ √
ωcav (assuming

a constant fmat).

We then plot in Fig. S2 the results obtained within the MoC model for ℏωmat = 0.1 eV, gMoC =

0.3ωmat (red dashed line, same as in the main text) and within the SpC model for coupling strength

gSpC = 0.3ωmat

√
ωcav/ωmat = 0.3

√
ωcavωmat (blue solid line), as ωcav is changed. With this choice,

gMoC = gSpC under resonant conditions (ωcav = ωmat). We find that, for this scaling of gSpC, the SpC

model results in two (real valued) eigenfrequencies for all values of ωcav, as well as in the opening of a

Reststrahlen band. Interestingly, however, this band appears for energies smaller than ωmat, contrary

to the result for the MoC model.

S7 Transformation from individual to collective oscillators in the

description of homogeneous materials in Fabry-Pérot cavities

In Sec. 3.3 of the main article, we analyze how classical models of harmonic oscillators describe an

ensemble of Ndip molecules (or a homogeneous material) inside a Fabry-Pérot cavity. Each molecular
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emitter couples with all the other molecular emitters and also with the transverse modes of the cavity,

and all these interactions can be modeled through Eq. (33) in the main text. In this supplementary

section, we show in more detail how to describe this system by considering the coupling of each Fabry-

Pérot mode with a single collective mode of matter oscillators. Specifically, here we demonstrate

how to transform Eq. (33) in Sec. 3.3 of the main text, written in terms of harmonic oscillators of

individual molecular excitations, into Eq. (34), which considers collective modes. This derivation can

be generalized to other cavities by following the same procedure but using the spatial distribution of

the transverse electric field of the corresponding cavity modes.

We assume that the Fabry-Pérot cavity contains perfect mirrors in the planes z = 0 and z = Lcav

(Lcav is the thickness of the cavity), so that the cavity has transverse electric (TE) modes with field

distributionc

Ξnk∥(r) = sin

(
nπz

Lcav

)
eik∥·r∥ . (S38)

The integer n indexes all modes of the cavity and the wavevector in the parallel direction k∥ is

any two-dimensional vector (we consider a discrete set of k∥ by assuming that the cavity has long

but finite size in the lateral dimensions and using Born-von Karman periodic boundary conditions for

Eq. (S38)). We further assume that the direction of the transition dipole moments of the molecules

is the same as that of the electric field of the mode (parallel to the mirror planes). As a consequence,

the coupling strength between each molecular emitter placed in the position ri = (r∥,i, zi) and the

nk∥ Fabry-Pérot mode is calculated with the expression g
(nk∥,i)
MoC = 1

2

√
fdip
ε0Veff

Ξnk∥(ri) (see discussion

of Supplementary Sec. S1 and Eq. (S9)). By introducing the field distribution of Eq. (S38) in the

expression of the coupling strength explicitly, the equations of motion of the system (Eq. (33) in the

main text) become

ẍcav,nk∥ + ω2
cav,nk∥

xcav,nk∥ −
∑
i

√
fdip
ε0Veff

sin

(
nπzi
Lcav

)
e−ik∥·r∥i ẋdip,i = 0, (S39a)

ẍdip,i + ω2
dipxdip,i +

∑
n′,k′∥

√
fdip
ε0Veff

sin

(
n′πzi
Lcav

)
eik

′
∥·r∥i ẋcav,n′k′∥ +

∑
j ̸=i

2ωdipg
(i,j)
SpC xdip,j = 0. (S39b)

In Eq. (S39a), we already observe that the oscillator xcav,nk∥ of the nk∥ cavity mode is coupled to

a collective matter operator. By defining the collective oscillator of the nk∥ matter mode as

xmat,nk∥ =
1√
Neff

∑
i

e−ik∥·r∥i sin

(
nπzi
Lcav

)
xdip,i, (S40)

Equation (S39a) becomes

ẍcav,nk∥ + ω2
cav,nk∥

xcav,nk∥ − 2
√
Neffg

max
MoC ẋmat,nk∥ = 0. (S41)

where gmax
MoC = 1

2

√
fdip
ε0Veff

is the maximum achievable coupling strength between a single molecular

emitter and a cavity mode in this system, found for molecules placed in the antinodes of the mode.

cTo simplify the discussion, here we show explicitly the transformation under the field distribution of TE modes.
Fabry-Pérot cavities also have transverse magnetic (TM) modes, and all the transformations are equivalent after sub-
stituting the field distribution of these modes into Eq. (S38), but additional care needs to be taken to account for the
position dependence of the polarization direction of the cavity fields.
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Neff =
∑

i

∣∣∣Ξnk∥(ri)
∣∣∣2 is the effective number of molecular emitters that couple with the cavity mode,

whose exact relation with the total number of molecular emitters Ndip depends on the system and the

spatial distribution of the modes. By performing the sum Neff =
∑

i

∣∣∣Ξnk∥(ri)
∣∣∣2 =

∑
i

∣∣∣sin(nπzi
Lcav

)∣∣∣2
with the specific field distribution of Fabry-Pérot cavity modes, we obtain Neff = Ndip/2 for this

cavity. We observe in Eq. (S41) that the coupling strength between the cavity mode and the collective

oscillator mode increases as gmax
MoC

√
Neff. This scaling of the coupling strength (together with the scaling

as 1/
√
Neff of the collective oscillator in Eq. (S40)) is the same as in the quantum Dicke model [5],

further confirming that the classical oscillator models are consistent with cavity-QED descriptions.

The next step is to transform Eq. (S39b), which requires consideringNdip equations simultaneously,

one per molecular emitter at position ri. To do the transformation, we multiply Eq. (S39b) by
1√
Neff

sin
(
nπzi
Lcav

)
e−ik∥·r∥i for each i molecular emitter and sum the Ndip resulting terms. With this

procedure, and using Eq. (S40), the transformation of the first two terms is straightforward as

1√
Neff

∑
i

sin

(
nπzi
Lcav

)
e−ik∥·r∥i(ẍdip,i + ω2

dipxdip,i) = ẍmat,nk∥ + ω2
dipxmat,nk∥ . (S42)

Repeating the procedure with the third term of Eq. (S39b), we obtain

2√
Neff

gmax
MoC

∑
n′,k′∥

ẋcav,n′k′∥

∑
i

sin

(
n′πzi
Lcav

)
sin

(
nπzi
Lcav

)
ei(k∥−k′

∥)·r∥

=
2√
Neff

gmax
MoC

∑
n′,k′∥

ẋcav,nk∥Neffδn,n′δk∥,k′∥ = 2gmax
MoC

√
Neffẋcav,nk∥ . (S43)

Equation (S43) shows that, although each molecular emitter couples with all Fabry-Pérot modes of

different k∥, the collective matter oscillator of amplitude xmat,nk∥ , described by the indexes n and k∥,

only couples with the cavity mode of same indexes due to the orthogonality of all these modes.

Last, we transform the fourth term of Eq. (S39b), which involves molecule-molecule interactions.

To perform this transformation, we consider the SpC coupling strength between molecular emitters

as given by Eq. (S11) explicitly, which leads to

1√
Neff

∑
i

∑
j ̸=i

2ωdipg
(i,j)
SpC sin

(
nπzi
Lcav

)
e−ik∥·r∥ixmat,j

=
1√
Neff

∑
j

2ωdipxmat,je
−ik∥·r∥j

∑
i ̸=j

g
(i,j)
SpC sin

(
nπzi
Lcav

)
e−ik∥·(r∥i−r∥j)

=
1√
Neff

∑
j

2ωdipxmat,je
−ik∥·r∥j

∑
i ̸=j

1

2

fdipe
−ik∥·(r∥i−r∥j)

4πε0|ri − rj |3ωdip
[1− 3(nd · nrij)] sin

(
nπzi
Lcav

)

≈ 1√
Neff

∑
j

2ωdipxmat,je
−ik∥·r∥j sin

(
nπzj
Lcav

)∑
i ̸=j

1

2

fdipe
−ik∥·(r∥i−r∥j)

4πε0|ri − rj |3ωdip
[1− 3(nd · nrij)]︸ ︷︷ ︸

g
(nk∥)
shift

= 2ωdipg
(nk∥)

shift xmat,nk∥ . (S44)

In the fourth line in Eq. (S44), we have considered that the dipole-dipole coupling strength between

different molecular emitters, which depends on their distance as |ri− rj |−3, decays much faster over z

than the term sin(nπz/Lcav) changes (unless n is so large that it has very fast oscillations, which we do
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not consider here). Due to this fast decay, we have checked numerically that the term sin(nπzi/Lcav)

can be taken outside the sum over the molecular emitters i as a constant of value sin(nπzj/Lcav), i.e.

where only the emitter j is involved. The sum over the variable i in Eq. (S44) can be then performed

numerically to obtain the collective molecule-molecule coupling strength g
(nk∥)

shift .

Therefore, by gathering all transformed terms in Eqs. (S42), (S43) and (S44), and using Eq. (S40),

Eq. (S39b) becomes

ẍmat,nk∥ + (ω2
dip + 2ωdipg

(nk∥)

shift )xmat,nk∥ + 2gmax
MoC

√
Neffẋcav,nk∥ = 0. (S45)

Equations (S41) and (S45) correspond to Eqs. (34a) and (34b) in the main article. Importantly, the

derivation carried out in this section shows two important features of light-matter coupling in this

system: i) although each nk∥ cavity mode is coupled to all individual molecular emitters, it is only

coupled to the nk∥ collective mode due to the orthogonality of the modes, and ii) the only consequence

of the molecule-molecule coupling for the interaction between the nk∥ cavity and collective matter

modes is to shift the bare frequency of the matter oscillator from ωdip to

√
ω2
dip + 2ωdipg

(nk∥)

shift [6].

S8 Reststrahlen band

In the main text, we have shown that, if we impose that the resonant cavity mode and matter

excitation frequencies in the coupled harmonic oscillator model are the bare ones without any dressing,

then the Reststrahlen band is only correctly recovered when we use the MoC model, i.e., the coupling

term is proportional to the time derivative of the amplitude of the oscillators. However, according to

Sec. S2 and Table S1, if we relax this condition and dress the cavity mode or matter excitation, we

find alternative classical harmonic oscillator models that are equivalent to the MoC model but that

use a coupling term proportional to the oscillation amplitude and the appropriate dressing. Here,

we apply this finding to demonstrate how to reproduce the Reststrahlen band with a coupling term

proportional to the oscillator amplitudes. The results are equivalent to those obtained using the

Hopfield Hamiltonian [7]. To obtain the Reststrahlen band, we first follow the approach in Ref. [8] to

obtain the bulk dispersion of a phononic material directly from the response of an infinite material

(an equivalent demonstration could be performed by connecting the dispersion of a Fabry-Pérot cavity

with the bulk dispersion as in Sec. 3.3)

In the previous work, the authors considered a phononic material with a permittivity given by Eq.

(38) in the main text and derived the system of equations(
ω2 − ω2

TO ωωp

ωωp ω2 − ω2
k

)(
ijlatt/(qi)

√
ε0ε∞|E(k)inc|

)
= 0 (S46)

where |E(k)inc| is the amplitude of the incident electric field, qi the (positive) charge of the lattice

ions, ε∞ the high-frequency permittivity of the material, ω the frequency of the bulk dispersion

modes, ωk = ck0√
ε∞

the frequency of a free photon of vacuum wavevector k0 propagating in a medium

of permittivity ε∞ and k the wavevector in this material. ωp =
√
ω2
LO − ω2

TO is the parameter that

controls the coupling strength in this model and ωLO and ωTO the frequency of the longitudinal

and transverse optical phonon modes, respectively. According to the discussion in Sec. 3.3 of the

main text, ωTO is here the bare frequency of the material. As a difference to the previous work,

we neglect losses, and we have written the equations as a function of the normalized microscopic
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current jlatt, which depends on the normalized relative displacement xlatt of the atoms in the atomic

lattice [8] through jlatt = −iqiωxlatt (xlatt correspond to the normalized displacement of the atoms

that are positively charged from the atoms that are mostly negatively charged). We can then identify

xk =
√
ε0ε∞|E(k)inc| (the amplitude of the oscillator associated with the field of wavevector k) and

xmat = −jlatt/(qi) (associated with the matter excitation) and rewrite Eq. (S46) as

−iω2xmat + iω2
TOxmat + ωωpxk = 0 (S47a)

ω2xk − ω2
kxk − iωωpxmat = 0, (S47b)

which can be rewritten in the time domain to obtain

iẍmat + iω2
TOxmat + iωpẋk = 0 (S48a)

−ẍk − ω2
kxk + ωpẋmat = 0, (S48b)

or, equivalently,

ẍk + ω2
kxk − 2GMoCẋmat = 0, (S49a)

ẍmat + ω2
matxmat + 2GMoCẋk = 0. (S49b)

where ωmat = ωTO and GMoC =
ωp

2 =

√
ω2
LO−ω2

TO
2 , so that we recover Eq. (35) in the main text. This

equivalence indicates that the result obtained here for an infinite phononic material coincides with

those obtained in Sec. 3.3 of the main text, where we focused on the eigenmodes of the Fabry-Pérot

cavity. Following the discussion in that section, this further confirms that Eq. (S49) describes the

bulk dispersion within the MoC model.

On the other hand, Table S1 indicates that an equivalent dispersion can be obtained with the

following coupled harmonic oscillator model (alternative model 1):

ẍk + (ω2
k + 4G2

MoC)xk − 2GMoCωmatx
′
mat = 0, (S50a)

ẍ′mat + ω2
matx

′
mat − 2GMoCωmatxk = 0, (S50b)

where the coupling term is proportional to the amplitude of the oscillators. We can rewrite this

equation as

ẍk +
(
ωA1
k

)2
xk + 2GA1

√
ωmatωA1

k x′mat = 0, (S51a)

ẍ′mat + ω2
matx

′
mat + 2GA1

√
ωmatωA1

k xk = 0, (S51b)

ωA1
k =

√
ω2
k + 4G2

MoC, (S51c)

GA1 = −GMoC

ωmat√
ωmatωA1

k

= −GMoC

√√√√ ωmat√
ω2
k + 4G2

MoC

. (S51d)

Crucially, the first two equations are formally equivalent to the SpC model, except that in this case,

ωA1
k is a dressed frequency and the coupling strengths GA1 has been changed, as given by the last two

equations (the superscript ’A1’ refers to alternative model 1).

S20



0.5

1.0

0.0

1.5

2.0

0.0 0.5 1.0 1.5 2.0

a Momentum Coupling model

0.5

1.0

0.0

1.5

2.0

0.0 0.5 1.0 1.5 2.0

b Alternative model 1

0.5

1.0

0.0

1.5

2.0

0.0 0.5 1.0 1.5 2.0

c Alternative model 2

0.2

0.0

0.4

0.0 0.5 1.0 1.5 2.0

d Coupling strength

Alternative model 1
MoC model

Alternative model 2

Figure S3: Bulk dispersion and opening of the Reststrahlen band according to different models.
(a) Bulk dispersion (black line) and uncoupled frequencies (bare photon frequency ωk, diagonal red
dashed line; transverse optical frequency ωTO, horizontal red dashed line) according to the Momentum
Coupling (MoC) model. The horizontal dashed line corresponds to the longitudinal optical phonon
frequency. (b) Bulk dispersion (black line) and uncoupled frequencies (dressed photon frequency ωA1

k ,
diagonal-like cyan short-dashed line; bare transverse optical phonon frequency ωTO, horizontal cyan
short-dashed line) according to the alternative model 1. The horizontal dashed line corresponds to the
longitudinal optical phonon frequency. (c) Bulk dispersion (black line) and uncoupled frequencies (bare
photon frequency ωk, diagonal green solid line; longitudinal optical phonon frequency ωLO, horizontal
green solid line) according to alternative model 2. The horizontal dashed line corresponds to the
transverse optical phonon frequency. (d) Coupling strength as a function of wavevector according to
the MoC model (GMoC, red dashed line), the alternative model 1 (|GA1|, cyan short-dashed line) and
the alternative model 2 (GA2, green solid line). In all panels, the bulk dispersion is the same (black
lines, corresponding to the one obtained for GMoC = 0.3ωmat), all frequencies and the coupling strength
are normalized by ωmat = ωTO and the results are plotted as a function of the normalized wavevector
ck/ωmat.
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Proceeding in the same manner but for the alternative model 2 in Table 1, we obtain a second set

of coupled harmonic oscillations that also give the same dispersion.

ẍ′k + ω2
kx

′
k + 2GA2

√
ωA2
matωkxmat = 0, (S52a)

ẍmat +
(
ωA2
mat

)2
xmat + 2GA2

√
ωA2
matωkx

′
k = 0, (S52b)

ωA2
mat =

√
ω2
mat + 4G2

MoC =
√
ω2
TO + 4G2

MoC = ωLO, (S52c)

GA2 = GMoC

ωk√
ωA2
matωk

= GMoC

√
ωk√

ω2
mat + 4G2

MoC

, (S52d)

where, in this case, the dressed frequency is that of the matter excitation ωA2
mat.

The different coupled harmonic oscillator models are compared in Fig. S3. The bulk dispersion

obtained for GMoC = 0.3ωmat = 0.3ωTO (and corresponding values of GA1 and GA2) is shown in panels

(a-c) by the black lines. As expected, the three models give identical results. The red dashed lines

in Fig. S3(a) show the frequencies of the uncoupled modes (i.e. the frequencies that are obtained

if the coupling is ignored) of the MoC model given by Eq. (S49), corresponding to the frequency

of the transverse optical mode, ωTO, and of the free photons in the material of permittivity ε∞,

ωk. Figure S3(b) shows the corresponding result for the alternative model 1, with the uncoupled

modes (cyan short-dashed line) being in this is case the TO photon at frequency ωTO and the dressed

photon at frequency ωA1
k . Last, the uncoupled frequencies of the alternative model 2 are indicated

by the solid green line in Fig. S3(c) and correspond to the LO phonon frequency ωLO and of the

free photons ωk. The coupling strength that need to be used in each of this models to reproduce the

same bulk dispersion is shown in Fig. S3(d) (red dashed line corresponds to the coupling strength

in the MoC model, GMoC = 0.3ωmat; the cyan short-dashed line corresponds to the coupling strength

in the alternative model 1, GA1; the green solid line to the coupling strength in alternative model 2,

GA2). These results thus stress that the same bulk dispersion can be obtained using different classical

coupled harmonic oscillator models.

Last, we emphasize that the possibility of obtaining the same dispersion with both the MoC model

(Eq. (S49)) and the second alternative model (Eq. (S52)) indicates that the bulk dispersion can

be obtained with classical coupled harmonic oscillator models that use a coupling term that can be

proportional to either the oscillator amplitude (alternative model 2) and to its derivative (MoC model).

These two models offer a very different picture of the opening of the Reststrahlen band (we do not

discuss here the first alternative model because it does not have a simple physical interpretation):

• According to the second alternative model (Eq. (S52)), the dressed matter excitation in the cou-

pled equations corresponds to the longitudinal optical phonon frequency, ωA2
mat =

√
ω2
TO + 4G2

MoC =

ωLO, the renormalized coupling strength GA2 becomes zero for photons of energy (or momen-

tum) tending to zero, and
(
GA2

)2
scales linearly with photon energy. Thus, in this picture, i)

the square of the coupling term is proportional to the energy of the photons, ii) the longitudinal

optical phonon appears as the resonant matter excitation in the harmonic oscillator equations,

and can be interpreted as the dressed matter excitation of the ’bare’ transverse optical phonon,

iii) the (dressed) matter excitation and the photons do not couple at low energies and iv) at

large energy/momentum, the coupling becomes infinite. The arbitrarily large coupling strength

at large momenta explains why, in the two limits of large detuning (ωk → 0 and ωk → ∞), two

different asymptotic frequencies (ωTO and ωLO respectively) are obtained, i.e., it explains the
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opening of the Reststrahlen band.

• In contrast, in the MoC model, (i) the coupling constant is independent of the photon energy,

and (ii) the transverse optical phonon coincides with the bare matter excitation . In this case,

the Reststrahlen band opens because the coupling is proportional to the time derivative of the

oscillation amplitudes.
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