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S1 Derivation of the equations of motion in the classical coupled

harmonic oscillator models

In the main article, we derive the classical models of coupled harmonic oscillators from the cavity
Quantum Electrodynamics (QED) Hamiltonians. In this supplementary section, we derive in detail the
equations of motion of the classical harmonic oscillators within a classical electromagnetic description
that departs from the classical Lagrangian (Sec. S3 shows how to use this approach to obtain also the
cavity-QED Hamiltonians).

We start this derivation from the general classical Lagrangian representing charges and electro-
magnetic fields, which we then particularize for the specific systems we analyze in the main article.
Afterward, we show that the Spring Coupling (SpC) and the Momentum Coupling (MoC) models
defined in the main article are obtained from the Euler-Lagrange equations of motion of these La-
grangians. Thus, a fully classical description is enough to model ultrastrong coupling in different
nanophotonic systems without the need to use any quantum model. Last, we discuss how to introduce
laser illumination into the SpC Model (necessary for Sec. 3.2 of the main text) and confirm the validity
of the SpC model by comparing it with a an alternative description based on classical polarizabilities.

The form of the electromagnetic Lagrangian depends on the gauge. We choose the Coulomb gauge,

which leads to the following expression [1]:
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In this Lagrangian, the electromagnetic degrees of freedom are encapsulated in the dynamical field
variable A(r), which represents the vector potential of the fields, with the condition V - A = 0 due
to the choice of gauge. The energy of these fields is scaled by the vacuum permittivity €9 and the
light speed in vacuum ¢ (for simplicity, we assume in this section that the material filling the cavity
is vacuum). On the other hand, all the dynamics related to the matter structure are expressed by
the spatial positions r;, mass m;, and charge ¢; of each point-like charge indexed by i. Each point
charge interacts with all the others according to the Coulomb potential energy (second term on the
right-hand side) and with the transverse electromagnetic fields (according to the [ j(r)- A(r)dr term,
where j(r) = >, ¢;1;0(r — r;) is the current density at any position r).

The equations of motion obtained from the Lagrangian in Eq. (S1) for the variables A(r) and r;
are equivalent to Maxwell’s equation for a general system. We are interested in obtaining the equations
of motion that describe the dynamics of systems formed by molecules or similar quantum emitters
interacting with cavity modes in the strong and the ultrastrong coupling regimes. First, we focus
on the terms of the Lagrangian related to the electromagnetic field (which in the Coulomb gauge is
entirely described with the vector potential A). The vector potential is separated into the components
A, (r) of all transverse modes o of the cavity as A(r) =) Aq(r) = >, AaZa(r)ny(r). For each o
index, the field is polarized at any position in the direction determined by the unit vector n,(r), the
maximum scalar amplitude is given by A, and the fields have spatial distribution Z,(r), normalized
so that Z,(r) = 1 in the position where the field is maximum. Further, we consider that the o modes
form an orthogonal basis, and the integral of the field distribution over space gives the effective volume

of the mode, i.e.

/Ea(r)EZ, (r)ng(r) -ny(r) dr = Vegoda,o- (S2)
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By taking into account the decomposition of the modes and their orthogonality, the terms of the

Lagrangian of Eq. (S1) only related to the electromagnetic fields are written as
/ =
2

We now focus on the terms of the Lagrangian associated with the matter degrees of freedom
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to describe the matter excitations. We model the material as an ensemble of dipoles indexed by
J, each formed by two point charges that have the same mass m; and opposite charges and are

placed in positions r;; and rj, (representing e.g. the simplest description of a quantum emitter). At

eq

equilibrium, rj; — r;_ = r}’, where r? can take into account the coupling with other dipoles. For

J J
example, when modeling a complex molecule r(;’-q
all charges forming the molecule. We make the harmonic approximation to the Coulomb potential

eq‘Q

would be obtained including the interaction between

experienced by each dipole with respect to the equilibrium position: = 5mredwmat]rj+ —Trj_—r
where myeq is the reduced mass of the dipole. We also assume that the mass center of the dipole
is static at position r; = m, while the distance between point charges from the equilibrium
position, ie., l; = r;4 — — req and, equivalently, the induced dipole moment d; = ¢;l;, evolve in
time. From these assumptlons, the Coulomb potential energy in the second term in Eq. (S1) includes
the harmonic potential energy corresponding to the charges in each dipole and the potential energy
due to the interaction between different dipoles. Accordingly, the terms related to the matter degrees

of freedom in the Lagrangian transform as
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S B ' B - J g2 ) 2
Zj: Gt = 2 dreglr; — 1] zj: 2 @ T2 g mend®

4,5>

- - Nrij ) (dj - Drij)] 4
Z;Z47T50’rz_r]|3[ d;j — 3(di - nrij)(d; - )] (S4)
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with d; = |d;| and the unit vector ny;; = =t

Equation (S4) has been derived using the harmonic
approximation of the dipolar potential and, as a consequence, all terms of the Lagrangian that do
not account for light-matter interaction are quadratic with respect to the amplitudes of the vector
potential and their time derivatives (Eq. (S3)), or with respect to the induced dipole moments and
their time derivatives (Eq. (S4)). Therefore, if light and matter were uncoupled, the dynamical
evolution of these variables would be the same as that of free harmonic oscillators. We now discuss
how the interaction between the cavity modes and the dipoles affects the equations of motion. The

coupling of each dipole with the transverse fields of the cavity appears in the Lagrangian as

/j -Adr = / qui‘j+5(r —rjy) — gt 0(r —rj_ (Z AaZa(r ) dr
J

= gjlrj1Zalijy) — 15 Ba(r; )l Aana & Y AuZa(rj)d; - n, (S5)
] ]’a
In the last step, we have performed the long-wavelength approximation, so that the fields do not vary

in the length scale of each dipole, i.e., Z(rj;) ~ Z(r;_) for any j. The total Lagrangian of the system
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in the Coulomb gauge reads
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(S6)

where ng; = %, f,; is the angle between the induced dipole moment d; and the direction n, of the
J

2
electric field in the mode «, and fiat = mqj " is the oscillator strength of the jth dipole.

From the Lagrangian Lo, of Eq. (S6), we can derive the equations of motion of the classical

coupled harmonic oscillators by calculating the Euler-Lagrange equations, %% — % = 0, for
z € {dj, A% }. The resulting equations of motion are
(r;)cosé
A Aa d ] e 0, St7a
o cav « Z £0 Véﬂ o ( )

. ng; -ng; — 3(nd,- . nn-j)(ndj .
dj + Wiy + fmatj D ’
J mat,j %J fmaw Py dmeg|r; — I“j|3

nrij) d; + Z AafmathEz (I‘j) cosfy; = 0.
(S7h)

These equations account for all dipole-cavity and dipole-dipole interactions, as analyzed in Sec. 3.3
of the main article. To show how to obtain the MoC and SpC models, we focus on the two canonical

examples analyzed in Secs. 3.1 and 3.2 of the main article:

e Coupling between a quantum emitter and a transverse mode of a dielectric cavity (Sec. 3.1): By

considering a single transverse mode « of the cavity interacting with one molecular emitter with
induced dipole moment d, all Coulomb interactions in Eq. (S7) are eliminated. The equations

of motion become

-E(rmat) cos 0
eoVest
d+ w2 d+ AfmatZ" (rmat) cos 6 = 0. (S8b)

Atwi A—d — 0, (S8a)

By replacing here the oscillation amplitudes zcay = AvegVeg and Tmat = \/fdi and introducing
the coupling strength
fmat

€0 Veft

E(rmat) cos b, (S9)

Ivoc = 3

we recover the equations of motion of the MoC model (Eq. (11) in the main article).

e Coupling between a quantum emitter and a plasmonic nanoparticle via Coulomb interactions (Sec.

3.2): We consider that the emitter (a molecule) and the nanoparticle have induced dipole
moments dpat and deay, respectively. Under the quasistatic approximation of the plasmonic

response, the vector potential components of all transverse modes are neglected. With this
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approximation and for only two dipoles, Eq. (S7) is written as

dcav + wgavdcav + f cav

Ndcav * Ndmat — 3(ndcav : nrrel)(ndmat : nrrel) d

mat = 0, S10
47T50|rcav - I'mat|3 a ( a)

F 2 Ndcay * Ndmat — 3(ndcav : nrrel)(ndmat : nrrel)
dmat + wmatdmat + f mat 3 d
47r50|rcav - I'mat‘

cav =0, (S10Db)

where ny.e = % is the unitary vector of the relative direction between the nanocavity
and the molecular emitter. By replacing xc., = j% and Tpat = j%, and defining the

coupling strength gs,c as

_ 1 \ fcav\/m
gSpC — a 3
2 47T50|rcav - rmat| v WeavWmat

[Ndcay * Ndmat — 3(Ndcav * Nrrel) (Ndmat * Nrrel)], (S11)
we recover the equations of the SpC model (Eq. (8) in the main article).

Spring coupling model with external laser illumination

In Sec. 3.2 of the main text, the dipolar mode of a metallic nanoparticle is excited by an external
laser. We now discuss briefly how to introduce the incident laser field in the model of the interaction
of this metallic nanocavity with a quantum emitter, e.g. a molecule. The incident field is treated as
a planewave of wavevector Ki,., amplitude A, and frequency w, with an associated vector potential
of the form Ajn(r,t) = A’ ineTe ™t Under the quasistatic approximation, all transverse modes
« of the system are neglected, and thus the only component of the vector potential considered in the
Lagrangian of Eq. (S6) corresponds to the external laser Ajnc(r,?). With these considerations, the
Lagrangian of Eq. (S6) becomes

1 1
2fmat

—iwt [ J 7
+ Aince (dcav Ccos einc,cav + dmat COos einc,mat)a

(S12)

. : : 11 /.
L((ijlgudlp(dcavy dcaw dmata dmat) = 5 f (dgav - wgavdgav> +
cav

Ndcav * Ndmat — 3(ndcav : nrrel)(ndmat : nrrel)
47[-50|rcav - I'mat|3

72 2 2
(dmat — What dmat)

- dcavdmat

where Oinccav and Gincmatr are the angles between the incident field and the induced dipole moments
of the cavity and molecular emitter, respectively. The superscript ”dip-dip” emphasizes that we
only consider dipole-dipole interactions for this system (under the quasistatic approximation). The
dynamics of the variables dc,y and dmas are obtained within the Euler-Lagrange equations of Eq.
(S12). By calculating these equations of motion and transforming the variables into the oscillation

amplitudes Teay = -2 and Tya = -2@at . the resulting equations are

\% fcav A% fmat
7 +W2 Tono 4 Ndcav * Ndmat — 3(ndcav ’ nrrel)(ndmat ’ nrrel)aj L= —\/ficos 0: i (.A e_iwt)
cav cavcav 47T€0|rcav — rmat|3 ma cav inc,cav’ inc s
(S13a)
. 2 Ndcay - Nd t—3(nd -n 1)(nd P 1! 1) d .
Tmat +WnatTmat T = = 47T€0|I‘C:jv— I':::t|3 o S Tcav = —V/ Jmat cos einc,mata (-Aince zwt) .
(S13b)

Therefore, the incident field is incorporated into the SpC equations of motion (Eq. (8) in the main
article) by adding time-dependent force-like terms of amplitude Fiay = iwAiney/ feav €08 binc cav and

Fnat = 1w AincV/ fmat €08 Oincmat to the nanocavity and the molecular emitter, respectively.
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Classical description of the coupling between a molecular emitter and a plasmonic nanocav-

ity based on their polarizability

The interaction of a small metallic nanoparticle with a molecular emitter (or another quantum
emitter) can also be described classically by using polarizabilities acay and amat for both particles
so that the dipole moment induced by the electric field at each position res, and rypag is given by
deav = QeavE(rcay) and dpat = amat E(rmat), respectively. We briefly show here that this approach
leads to the same equations as the SpC model obtained from the electromagnetic Lagrangian, which
supports the validity of the general approach used in the main text. For the cavity mode (plasmon in
metallic nanoparticle) and the molecular excitation (or any matter excitation in general), we consider
the polarizability given by the Lorentz oscillator model. In the case of the molecular emitter, we
assume a single molecular excitation with Lorentzian polarizability centered at resonant frequency
Wmat, linewidth determined by the damping frequency ~y, and oscillator strength fi,a¢. Similarly, we
also model the nanocavity response as given by a single plasmonic resonance that follows a Lorentzian-
like lineshape (for a Drude permittivity), which is the typical lineshape in the quasistatic regime. This
resonance is centered at frequency wesy and is characterized by losses x and oscillator strength feay.

The polarizabilities of the plasmonic nanocavity and the molecular emitter are then given by

fCaV
v = . y S14
Qca () w2, — w? —iwk (S14a)
Jmat
Omat(w) = — : — P~ (S14b)
ma

The dipole moment of the molecular emitter and the nanoparticle is induced by the electric field E;y¢
of the external laser and also by the electric field generated by either the plasmonic mode (Ec,y) or the
matter excitation in the molecule (Ey,t), respectively. We then have dcay = acay|[Emat (Ceav) + Einc)
and dpat = omat [Ecay (Tmat) + Einc]. By inserting in these expressions the polarizabilities given by Eq.
(S14) and considering that the quasi-static fields induced by the dipoles excited at the cavity and the

molecule follow the dependence,

Ndmat — 3(ndmat : nrrel)nrrel
o (rcaV) 47750’rcav — T'mat |3 a ( a)
A 3 : T T
Ecav (Fmat) = o (Ndcay el v deay, (S15b)

dTeg | Tcav — 'mat | 3

we obtain the expressions of the induced dipole moments

Ndcav - Ndmat — 3(ndcav : nrrel)(ndmat : nrrel) d

471'80‘1’ —r t’3 mat + Einc - ndcav] , (8163)
cav ma;

(wgav_WQ_iw’?)dcav = fcav |:

Ndcav - Ndmat — 3(ndcav : nrrel)(ndmat : nrrel) d
47r50|rcav - rmat‘3

(w12nat - w2 - Z.(’J')’)dmat = fmat |:

cav T+ Einc * Ndmat
(S16b)
These equations are equivalent to Eq. (S13) in frequency domain, with ¢, = j%, Tmat = /P

and using the relation |Einc| = |iwAinc| that follows from the definition of the vector potential.
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S2  Alternative classical models of coupled harmonic oscillators

The discussion of Supplementary Sec. S1 concluded that the classical MoC model describes the
coupling of matter excitations with transverse electromagnetic modes, while the SpC model can ex-
press dipole-dipole interactions. Crucially, the bare cavity and matter frequencies appear directly in
these models without dressing the energies. In this supplementary section, we demonstrate that other
classical coupled harmonic oscillator models exist, equivalent to the MoC and SpC models, but involv-
ing some frequency dressing (this effect is related to the discussion in Ref. [2] between the dressing
of the frequencies and the presence or absence of diamagnetic term). The alternative models depend
on the gauge chosen for the classical Lagrangian and Hamiltonian descriptions. We discuss oscillator
models in two of the most commonly used gauges: the Coulomb and dipole gauges. We also show that
the physical interpretation of the oscillation amplitudes depends on the particular coupled harmonic
oscillator model that is used.

More specifically, Secs. S2.1 and S2.2 consider the coupling with transverse modes in dielectric
cavities. We derive alternative coupled harmonic oscillator equations that use dressed frequencies
and coupling terms proportional to the amplitude of the oscillators (in contrast with the equivalent
MoC model, which uses bare frequencies and coupling terms proportional to the time derivatives of
the oscillator amplitudes). We first show in Sec. S2.1 how to derive, within the Coulomb gauge, an
alternative coupled harmonic oscillator model in which the cavity mode is dressed. Then, in Sec. S2.2,
the use of the dipole gauge yields a second alternative coupled harmonic oscillator model with dressed
matter excitation and coupling terms again proportional to the oscillations amplitudes.

Afterwards, in Sec S2.3, we consider Coulomb coupling through longitudinal fields, and obtain
coupled harmonic oscillator equations with dressing of the matter excitation and coupling term pro-
portional to the time derivatives of the oscillator amplitudes (for comparison, in the equivalent SpC
model, the frequencies are the bare ones and the coupling terms are proportional to the oscillator
amplitudes of the oscillation models). This section considers the Coulomb gauge, but the dipole gauge

yields identical results.

S2.1 Alternative model of a matter excitation interacting with transverse cavity
modes obtained within the Coulomb gauge

We first describe the coupling between a transverse electromagnetic mode and a dipolar excitation
of a molecule (or another quantum emitter), which is the system discussed in Sec. 3.1 of the main
article. The aim is to obtain alternative equations of motion of this system. We start with the classical
Lagrangian in the Coulomb gauge given by Eq. (S6), which for the considered system can be expressed

as
1

2f mat

To simplify the analytical expressions in the following discussion, we consider Eq. (S17) for a

B, d, A, A) = S04 2 A) (0~ ) + A (817

specific case where the molecular emitter is placed in the position of maximum field of the mode and
oriented in the same direction as the field polarization so that Z(rmat) cosf = 1 (see Sec. S1 for the
definition of these parameters). However, the discussion of this section remains valid for other values
of E(rmat) cos .

It has been shown in Supplementary Sec. S1 that the Euler-Lagrange equations derived from Eq.
(S17) lead to the MoC model. We use here Hamilton’s equations to derive the MoC model in an

alternative manner and also to obtain another equivalent classical model of harmonic oscillators. To
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first derive the classical Hamiltonian of the system, we obtain the canonical momenta related to the

transverse electromagnetic modes and the induced dipole moment in the Coulomb gauge as

8LCou 1
Meou = — =¢goVe »A, S18a
c oA 0' t (S18a)
8LCou d
ou = — = + A. S18b
be 8d fmat ( )

According to these expressions, the dynamical variable IIcg, expresses the transverse electric field of

the cavity modes from the relation E = —%¢. On the other hand, the relation between the induced
dipole moment d and its canonical momentum PCou 18 more complicated because pcoy depends not
only on d but also on the vector potential. Using Eq. (S18), the calculation of the Hamiltonian
HEmC = ATy + dpcon — LB is straightforward:

f mat 1 wmat

112
Hénéﬁ ¢ =_—Cou + 50‘/effwcav"42 Cou +5
2 2 fmat

260V

1
d2 fmatpCou-A + 5fmat¢42- (819)

This expression has the well-known form of the minimal-coupling Hamiltonian. This is the reason

2

why we include the superindex ”"min-c” in the Lagrangian of Eq. (S17) and in the Hamiltonian of Eq.

(519). We can directly derive the Hamilton’s equations of motion of all canonical variables:

aHrCngﬁ_c _ HCou

i _ 9
A= oo oV (5202)
II — f% = —eqVeaw? A — A S20b
Cou = oA €0 VefWeay A + fmat (pCou )7 ( )
. 8Hmin—c

d= Cou_ — ma ou ) 520

apCou f t(pC A) ( C)
o énin—c w2 ¢

. L= — ou — ma d S20d
PcCo ad fmat ( )

Hamilton’s equations can be used to obtain classical harmonic oscillator models by eliminating
two variables, leading to two second-order differential equations. By choosing the variables A and d

to describe the dynamics of the system, we obtain

. d
2 4 _ 21
A+ we A oV 0, (S21a)
d+w?d+ frmarA = 0. (S21b)

This system of equations can be converted into Eq. (11) in the main text, and thus we recover the
MoC model. However, there are other possible ways to represent the response of this system with
harmonic oscillators. An alternative is to choose the variable pcoy for the matter excitation and A for
the cavity mode. By eliminating the rest of the variables in Eq. (S20), the equations of motion for

the chosen variables are written as

fmat > fmat
A+ ( wi, + A — ou =0, S22a
eoVest €0Veffpc ( )
ﬁCou + wrznatpCou - wijatA =0. (822b)

With the transformation rc,, = veoVeg A used in Sec. 3.1 of the main text, and with the new
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/ _ V/fmat

transformation ., = Y2 pcoy, Eq. (S22) becomes
ZTeav + (Wzav + 491%/100)$cav - 2gl\/locwmatxinat =0, (823a)
j;nat + wfnatxinat — 29MocWmat Teay = 0, (SZ?)b)
1 fmat

with the same coupling strength gyc =
within the MoC model.
Equations (S21) and (S23) (the former corresponding to the MoC model) have been derived for

the same system and thus must result in the same response of the system. However, several interesting

2\ Vs that is used to describe the cavity-dipole coupling

aspects can be observed. First, in Eq. (S23) a7, is related to pcou, while Zpa is related to d in the
MoC model. Thus, it is important to consider this difference when calculating physical observables, as
in Sec. 3.1 of the main text. Second, Eq. (S23) contains coupling terms proportional to the oscillation
amplitudes Zcay and ., (as in the SpC model) instead of to their time derivatives Zcay and @mat
(as in the MoC model). Last, in Eq. (S23) the frequency of the cavity mode is dressed from weay

w2, + 492 The different coupling terms and the frequency dressing compensate each other,
ensuring that Eq. (S23) yields the same result as the MoC model. Therefore, the molecule-dielectric
cavity system can be equivalently described using coupling terms proportional to the oscillation am-
plitudes or to their time derivatives, provided that the frequency of the cavity mode and the physical

interpretation of the oscillation amplitudes are modified appropriately.

S2.2 Alternative model of a matter excitation interacting with transverse cavity
modes obtained within the dipole gauge

We have shown that the results of the MoC model can be recovered using equations with a different
coupling term and a dressed frequency of the cavity mode. Here, we use the dipole gauge to show
that we can also obtain equivalent equations by dressing the frequency of the matter excitation. We
consider again a single matter excitation and a transverse electromagnetic mode.

The Lagrangian in the Coulomb gauge Lcoy of Eq. (S17) can be transformed to any other La-

grangian L' with the operation L' = Loy + W, by using a general function G(A,d,t). In
particular, the transformation to the dipole gauge is done with the choice G = —d.A. This is equiv-

alent to the Power-Zienau-Woolley transformation [3] in cavity-QED descriptions, with the unitary

U:exp{;/P-Adr}, (S24)

where P is the polarization density. After applying the gauge transformation to Eq. (S17), the

operator

Lagrangian of the system in the dipole gauge is

1
2fmat

Ve .
A — 2, %) +

Bic(d, d, A, A) = (d? — w2, d?) — Ad. (S25)

We repeat the procedure implemented in the Coulomb gauge in Sec. S2.1 to obtain the equations

of motion of the dynamical variables in the dipole gauge. The canonical momenta are calculated as

8LDip .
IIp;, = — =¢oVer A — d, S26a,
pip =57 oVest (S26a)
OLpiyp,  d
=g ¢ S26b
pr Bd fmat ( )
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In the dipole gauge, ppip is only related to the time derivative of the induced dipole moment. However,
the canonical momentum associated with the cavity mode, Ilp;,, depends on both d and the vector
potential, in contrast to the result of the Coulomb gauge (Eq. (S18)). Thus, in the dipole gauge this
variable represents the displacement vector Ilpi, o |[D| = |¢oE + P| instead of the electric field of the
cavity mode as happens in the Coulomb gauge, where IIcoy o |E|. The resulting Hamiltonian in the

dipole gauge is

. HQD- 1 f 1 w? Ipipd d?
Fmin-c _ ip ZeaVomw? .A2 mat 2 — “mat ;2 Dip g27
B =gt T e T T e T T e T v
with corresponding Hamilton’s equations of motion:
= OHBy Ty +d (S28a)
Ollpip eoVert
: OHpn-<
HDip = _Tfltp = —60%5&)23\,./4, (828b)
. QHPinc
d= b Dip» S28c
8pDip fmatp ip ( )
— _OHBLT ey Moip +d (S28d)
P ad fmat 6O‘/eicf

The choice of variables A and d to obtain second-order differential equations leads to the trans-
formation from Eq. (S28) to Eq. (S21). Therefore, the MoC model is obtained independently of the
considered gauge for these variables. On the other hand, with the choice of the variables d and Ilp;p,

we obtain
ﬁDip + wgaVHDiP + wCQavd =0 (8293«)
7 fmat fmat
d 2 d Hpip, = 0. S29b
" (wmat * g0 Vet * coVer P ( )

This equation can be rewritten in terms of oscillation amplitudes. By using the matter oscillator
amplitude Tmat = ﬁ and the new cavity oscillator amplitude z,, = \/EOHT%’ the resulting

equations are

j}éav + wgavx/cav + 29Mocwcavxmat = 07 (8303)

Zmat + (wanat + 491%40@)$mat + zglvlocwcavx/cav =0, (S?’Ob)

which gives the same results as the MoC model, but with the coupling term proportional to the

oscillator oscillation amplitudes z/,,, and zy,,t and with the frequency of the matter excitation dressed,

i.e. renormalized, from wpmat to /w2, + 492,c-

S2.3 Alternative model of a molecular emitter interacting with a metallic nanopar-
ticle

In Supplementary Secs. S2.1 and S2.2 we have shown that the coupling between a dipolar excitation
of a molecular emitter and a transverse cavity mode can be described equivalently with the MoC

model (coupling terms proportional to the time derivatives @cay and @) or with models where the
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coupling terms are proportional to the oscillation amplitudes and the frequencies of the oscillators are
dressed. Here, we use the Coulomb gauge and show a similar result for the dipole-dipole interaction
between one plasmonic mode and one matter excitation in a molecule or any other quantum emitter:
this interaction can be described by the SpC model (coupling terms proportional to the oscillation
amplitudes Tcay and ) or with alternative equations that contain coupling terms proportional to
the time derivatives &¢ay and Zmat, together with dressed frequencies.

We consider the same system analyzed in Sec. 3.2 of the main article, namely, a molecule (or
another quantum emitter) placed close to a metallic nanoparticle and coupled to it through the
Coulomb interaction. This system is described by the Lagrangian of Eq. (S12) (here we omit laser
excitation, i.e. Ajpe = 0), which leads to the SpC model in Eq. (S10), as discussed in Sec. S1. To
obtain the alternative model, we follow the procedure of the previous subsections and first obtain from

Eq. (S12) the classical Hamiltonian of the system HP-diP — deavPeay + dmatPmat — L%ié)l'ldip, which is

a1 1w? 1 1w?
dip-d 2 v 32 2 2
HEP P = §fcavpcav + 5 fz:v dcav + §fmatpmat + 5 fz:‘: dmat

Ndcav * Ndmat — 3(ndcav : nrrel)(ndmat : nrrel)
4750’rcav - rmat’3

+ dcav dmat

; (S31)

with the canonical momenta pe,y = ;l;m and Ppmat = %. The Hamiltonian of Eq. (S31) has been

cav

obtained from the Coulomb gauge, but the dipole gauge leads to the same Hamiltonian for this specific
system because this change of gauge affects the treatment of the electromagnetic degrees of freedom
A, associated with the transverse fields. These degrees of freedom are not present when the interaction
occurs through Coulomb coupling.

By calculating the equations of motion for the oscillator variables x¢., = deav and gy = -dmat

V fcav V fmat
as in previous subsections, we recover the equations of the SpC model (Eq. (8) in the main text).

However, we can again make another choice for the variables to obtain an alternative model of harmonic

oscillators. Using the oscillator zc,y = \‘}% as before and the new oscillator x] ., = Vw{n “Zt Pmat, the
equations of motion are
i 2 —4g2 — 2L @l =0 S32
Lcav + (wcav gSpC)xCaV gSprmat ] ( 3‘)
Zrnat + w?natx;nat + 29épcj70av =0, (S32b)

with the coupling strength g¢ . = gspc ::;Vt , slightly modified compared to the SpC value gs,c used

in Eq. (28) of the main text. We have thus shown that the results of the SpC model can also be

obtained with a model where the coupling terms are proportional to the time derivatives @, and
T7,a¢- In this case the cavity frequency has been renormalized from weay to /w2, — 492.

S3 Comparison between cavity-QED Hamiltonians of different sys-

tems and gauges

In the previous Supplementary Sections, the SpC, MoC, and alternative coupled harmonic oscillator
models are derived from a fully classical description based on Lagrangian and Hamiltonian mechanics.
We next quantize the classical Hamiltonians to obtain the cavity-QED Hamiltonians describing the
system, including those in the main text. This procedure shows that the cavity-QED Hamiltonians

and the corresponding coupled-harmonic oscillator models are directly related.
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The coupling between a molecular emitter (or another quantum emitter) and the transverse elec-
tromagnetic modes of a dielectric cavity is described by the minimal-coupling Hamiltonian, which for
the Coulomb gauge has the classical form of Eq. (S19) and for the dipole gauge it is given by Eq.
(S27). We quantize these classical Hamiltonians following the standard rules of quantization (Egs.
(15)-(18) in the main article) and obtain

- 1 e 1 - o 2
o = hweay (éﬁ& + 2) + Rt (bTb + 2) +ihgntoc /Z * (ata)(b—b) + hPC (a+ah)2. (933)
cav

wcav

Frmi 1 217 1 cav o P 2 2
Dip = Mweay (aT& + 2) + hWmat <bTb + 2> —ihgneey | 2 (a— 6T (b+bT) + h2MeC (h+-bT)2. (S34)
Wmat

Wmat

for the Coulomb and dipole gauges, respectively. In these Hamiltonians, ¢ and a' are the annihilation
and creation operators of the cavity mode, while b and b are the corresponding operators for the
molecular excitations. The main difference between Eqgs. (S33) and (S34) is the last quadratic term,
which is originated from the vector potential of the electromagnetic mode in the Coulomb gauge, and
from the induced dipole moment of the molecule in the dipole gauge, respectively. We further note that
the relation between the quantum coupling strength goep (i.e., the proportionality factor if we write
the third term of the Hamiltonians as +ihgqup (G — &T)(3+6T) ) and the classical coupling strength gyoc
is different for each gauge, with gqrp = gMoc\/% for the Coulomb gauge and gqrp = Groc :J;—th for
the dipole gauge. We emphasize, however, that the eigenvalues of the two Hamiltonians are identical
(given by Eq. (13) in the main text). Further, these two Hamiltonians also lead to identical results
for any physical magnitude, once we consider that the operators a, al, b and b' are not equivalent in
the two Hamiltonians and are related to a different set of canonical momenta (and thus to different
physical magnitudes) in each of them: Ilcoy and pooy given by Eq. (S18) for the Hamiltonian of Eq.
(S33), or lp;p, and ppip given by Eq. (S26) for the Hamiltonian of Eq. (S34).

On the other hand, dipole-dipole interactions (for example, between a metallic nanoparticle and
a molecular emitter) are modeled with the following cavity-QED Hamiltonian both in the Coulomb

and dipole gauges (obtained by applying the quantization rules to Eq. (S31)):

~ A~

L 1 e 1
Fdiv-dip _ i, <a* a+ 2) + Fwmat <bTb + 2) + hggep(a + a') (b + bY), (S35)

with goep = gspc. This Hamiltonian does not have any diamagnetic term. Thus it gives different
results than the minimal-coupling Hamiltonians of Egs. (S33) and (S34). Further, the operators a, al,
b and b' in Eq. (S35) are related to the induced dipole moments of the nanoparticle and the molecule
according to Eq. (17) of the main article.

The analysis of this and the previous sections establishes that the classical coupled harmonic
oscillator models and the cavity-QED Hamiltonians can be derived from the same starting point of

the Lagrangian in Eq. (S1), and can thus be used to obtain equivalent physical results.

S4 Summary of classical models and their connection with cavity-
QED Hamiltonians

Table S1 summarizes all the classical models discussed in Supplementary Secs. S1 and S2, as well as
the cavity-QED Hamiltonians discussed in Supplementary Sec. S3. These sections focus on two types

of interactions: the coupling between a molecular excitation and transverse electromagnetic modes
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Table S1: Summary of the correspondences between the classical coupled harmonic oscillator models
and the cavity-QED Hamiltonians. We consider the coupling between a dipole (representing, e.g., a
molecular excitation) and a dielectric cavity (with transverse electromagnetic modes) or a plasmonic
nanocavity (dipole-dipole coupling via Coulomb interactions). The coupling with transverse modes is
described in the Coulomb (second column) and dipole (third column) gauges, while the dipole-dipole
coupling is described in the same way in both gauges as indicated in the fourth column. The fourth
row shows the cavity-QED Hamiltonians that describe each of these situations. The fifth and the sixth
rows indicate the corresponding classical harmonic oscillations models: the fifth row corresponds to
the models associated with coupling terms proportional to oscillation amplitudes, and the sixth row
to models with coupling terms proportional to their time derivatives (with coupling strengths gy.c
given by Eq. (S9) and gs,c given by Eq. (S11)). We highlight in green the SpC and MoC models,
which are the focus of the main text and for which the bare frequencies weay and wmat are considered.
With the yellow background, we indicate the alternative models where we use dressed frequencies,
which also change the coupling term. The seventh row shows the association between the amplitudes
of the oscillators and the physical magnitudes of the system, which differ for each model in the fifth
and sixth rows. The last row provides the frequencies of the two hybrid modes for the two different
types of interaction. To ease comparison, we write both the cavity-QED Hamiltonians and coupled
harmonic oscillator models in terms of gs,¢ and gyc-
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in a dielectric (Fabry-Pérot) cavity, and the dipole-dipole coupling due to the Coulomb interaction.
The models describing the first type of interaction (second and third columns) depend on the chosen
gauge (Coulomb or dipole) [4], but all of them result in identical eigenfrequencies and other physical
magnitudes (the latter require to take into account the specific connection of the classical oscillation
amplitudes and quantum operators with, e.g., the electric field depends on the model). All the models
in the fourth column describing dipole-dipole Coulomb coupling are also equivalent to each other. On
the other hand, the models in the fourth column are not equivalent to those in the second and third
columns.

Table S1 shows that if the classical equations depend directly on the bare (non-dressed) frequencies
of the uncoupled oscillators weay and wmat, the description of the interaction between transverse cavity
modes and matter excitations requires a coupling term proportional to the time derivatives of the os-
cillation amplitudes (MoC model, equivalent to cavity-QED Hamiltonians with diamagnetic term). In
contrast, the coupling term associated with dipole-dipole interactions is proportional to the oscillation
amplitudes where frequencies are not dressed (SpC model, equivalent to cavity-QED Hamiltonians
without diamagnetic term). These classical models are analyzed in the main text and Supplementary
Sec. S1 and highlighted in green. On the other hand, as discussed in Supplementary Sec. S2, each
type of interaction can also be modeled with alternative models where the type of coupling term is
modified from proportional to the oscillation amplitudes to proportional to their time derivatives, or
vice versa. We highlight these models in Table S1 by the yellow squares. In these alternative models,
dressing or renormalization of one of the oscillator frequencies is needed to maintain their equivalence
with their corresponding cavity-QED Hamiltonians. Further, the alternative classical models also
require the modification of the physical magnitudes that each oscillator represents. However, if the
transformation of oscillation amplitudes and frequencies is done appropriately, all models describing
the coupling between transverse fields and dipoles (second and third columns) yield identical results,

and the same happens for dipole-dipole interactions (fourth column).

S5 Linearized Model

We show in this section that, for g < 0.1wpat (i.e., before the onset of ultrastrong coupling according
to the standard definition of this regime), it is possible to reduce both the MoC and the SpC model
to the same simplified linearized model by considering that the eigenfrequencies w4 do not differ too
strongly from the bare frequencies w, (o = 'cav’ or @ = 'mat’).

Using the approximation w, + w = 2w =~ 2w,, the frequency-domain equations of both the SpC

and MoC models become linear in w:
(wcav - W>$cav + G1inTmat = 0 (8363)

(Wmat — W)xmat + glﬁn-xcav =0, (836b)

with g1, = gspc = ©9mec- The resulting eigenfrequencies are

Weay + Wmat £ \/(wcav - Wmat)2 + 4’glin‘2

: (S37)

W4 lin =

We compare in Fig. S1 the results of this model (black dots) to those obtained with the MoC (red
dashed lines) and SpC (blue solid lines) models. The results are obtained with Eq. (S37), and Eqgs.
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Figure S1: Comparison of the Spring Coupling (SpC), Momentum Coupling (MoC), and linearized
models. a) Eigenfrequencies wy of the hybrid states calculated from the bare values weay and wmat, with
Wmat fixed and weay/wmat changing. w4 obtained from the SpC model (blue solid line, corresponding
to Eq. (10) in the main text), MoC model (red dashed line, Eq. (13) in the main text) and the
approximate linearized model (black dots, Eq. (S37)), for coupling strength ¢ = gs,c = Imoc = Giin =
0.1 wiat- The thin gray lines correspond to the bare cavity frequency weay and the bare frequency of the
matter excitation, wpyat. b) Same as panel (a), for coupling strength ¢ = gs,c = gmoc = Giin = 0.3 Wmat-
¢) Minimum splitting between the hybrid modes Q™" = w, —w_, as a function of the coupling strength
g for the SpC model (blue solid line), the MoC model (red solid line) and the linearized model (black
dots). All frequencies are normalized with respect to the fixed frequency of the matter excitation
Wmat, SO that the results do not depend on the particular value of wpat, only on the weay/wmat ratio
or g/weay ratio . The MoC and SpC results are the same as in Fig. 2 of the main text.

(13) and (10) of the main text, respectively. Fig. Sla shows that, for ¢ = 0.1lwmat (as in Sec. 2.4 of the
main text, we use g to refer to gs,c, gumoc and/or gy, in discussions that are valid for more than one
model), the three models indeed result in very similar eigenvalues for all values of weay/wmat. However,
this is not the case for g = 0.3wpay (Fig. S1b), where the eigenfrequencies of the linearized model
are typically in between those of the SpC and MoC models. Notably, the linearized model does not
present any mode in a forbidden energy band that is half as wide as in the MoC model (while the SpC

model did not present such a forbidden band). Similarly, the linearized model does not present any

2
lower-energy mode, (i.e., negative w_ ,, for :}’C—avt < (jl—‘“t) ); in contrast, the corresponding condition
’ ma ma

2
for the SpC model is v < (%) (where w_ g,¢ is imaginary) and the MoC model always presents

a lower-energy mode. On the other hand, the splitting at zero detuning is equal to 2 = 2¢g in both the
linearized and MoC models (but with different values of w4 for each of them), which is the minimum
splitting in these two models. In contrast, the minimum splitting scales non-linearly with g for the
SpC model, and is larger than for the MoC or linearized modes. These results are illustrated in Fig.
S1(c), which shows the dependence of the normalized minimum splitting Q™" /w.¢ on the normalized

coupling strength g/wmat.

S6 Evolution of the eigenvalues for a different choice of coupling

strength

In Sec. 2.4 of the main text (as well as in Sec. S5), we consider that the coupling strengths gy.c

and gs,c do not depend on the resonant frequency of the cavity weay. This choice is consistent with
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Figure S2: Comparison of the Spring Coupling (SpC) and Momentum Coupling (MoC) models for
a different choice of the coupling strength than in the main text. FEigenfrequencies w4 obtained
as a function of weay, obtained from the SpC model (blue solid line, corresponding to Eq. (10) in
the main text) and MoC model (red dashed line, Eq. (13) in the main text) for coupling strength
gspc = 0.3y/WeayWmat and gyoc = 0.3 Wmat, respectively. The thin gray lines correspond to the bare
cavity frequency weay and the bare frequency of the matter excitation, wmat. All frequencies are
normalized with respect to the fixed frequency of the matter excitation wyat (Awmay = 0.1 eV), and
the MoC results are the same as in Fig. 2 of the main text.

the results obtained in Secs. 3.1 and 3.3 of the main text, which used the MoC model to describe the
coupling of a molecular emitter or an ensemble of molecular emitters with the transverse fields of an
electromagnetic mode of a dielectric (Fabry-Pérot) cavity. On the other hand, when describing the
Coulomb coupling within the SpC model in Sec. 3.2, the dependence of the coupling strength gs,c on
Weay can vary with the details of each particular configuration. To exemplify the consequences of such
details, we consider in this section a different dependence of gs,c on weay than in the main text.

We analyze again the Coulomb coupling between metallic spherical particles of radius R.,y and a
quantum emitter, described with the SpC model as in Sec. 3.2 of the main text. However, we now

30)2

change the plasma frequency of the metal, which modifies the dipole moment feay = 4me0R2, Weay

SO
that, according to Eq. (28) in the main text, the coupling strength scales as gs,c o \/Weay (assuming
a constant fiat)-

We then plot in Fig. S2 the results obtained within the MoC model for Awmas = 0.1 €V, gyoc =
0.3 wmat (red dashed line, same as in the main text) and within the SpC model for coupling strength
Jspc = O.3wmat\/cm = 0.3\/WeavwWmar (blue solid line), as weay is changed. With this choice,
roc = Gspe under resonant conditions (weay = wmat). We find that, for this scaling of gs,c, the SpC
model results in two (real valued) eigenfrequencies for all values of wcay, as well as in the opening of a
Reststrahlen band. Interestingly, however, this band appears for energies smaller than wpa¢, contrary

to the result for the MoC model.

S7 Transformation from individual to collective oscillators in the

description of homogeneous materials in Fabry-Pérot cavities

In Sec. 3.3 of the main article, we analyze how classical models of harmonic oscillators describe an

ensemble of Ngip, molecules (or a homogeneous material) inside a Fabry-Pérot cavity. Each molecular
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emitter couples with all the other molecular emitters and also with the transverse modes of the cavity,
and all these interactions can be modeled through Eq. (33) in the main text. In this supplementary
section, we show in more detail how to describe this system by considering the coupling of each Fabry-
Pérot mode with a single collective mode of matter oscillators. Specifically, here we demonstrate
how to transform Eq. (33) in Sec. 3.3 of the main text, written in terms of harmonic oscillators of
individual molecular excitations, into Eq. (34), which considers collective modes. This derivation can
be generalized to other cavities by following the same procedure but using the spatial distribution of
the transverse electric field of the corresponding cavity modes.

We assume that the Fabry-Pérot cavity contains perfect mirrors in the planes z = 0 and z = Le¢ay
(Lcay is the thickness of the cavity), so that the cavity has transverse electric (TE) modes with field

distribution®

e, (1) = sin | 22 ) ek, (S38)
“ Lcav

The integer n indexes all modes of the cavity and the wavevector in the parallel direction k| is
any two-dimensional vector (we consider a discrete set of k| by assuming that the cavity has long
but finite size in the lateral dimensions and using Born-von Karman periodic boundary conditions for
Eq. (S38)). We further assume that the direction of the transition dipole moments of the molecules
is the same as that of the electric field of the mode (parallel to the mirror planes). As a consequence,

the coupling strength between each molecular emitter placed in the position r; = (rH,iv z;) and the

. . . ki b — . .
nk) Fabry-Pérot mode is calculated with the expression QIEZ)C” ) 4/ Jaip = k (ri) (see discussion

2\ eoVeg ™M

of Supplementary Sec. S1 and Eq. (S9)). By introducing the field distribution of Eq. (S38) in the
expression of the coupling strength explicitly, the equations of motion of the system (Eq. (33) in the

main text) become

. 9 Jaip . (nTz\ ik r

Lcav,nk| +wcav,nk” Leav,nk) — E Sl 7 e "l Hlxdipﬂ' =0, (8393)
. cav
(]

I

; 9 faip . (7'TZ\ g (i.9)

Ldip,i + wdipxdip,i + E V. s ( I el I.Hlxcav,n’k’u + E 2wdipgSpC Ldip,j = 0. (Sng)
K €0 Veff cav vy

In Eq. (S39a), we already observe that the oscillator Teav,nk, of the nk) cavity mode is coupled to

a collective matter operator. By defining the collective oscillator of the nk| matter mode as

1 P nwz;
Zmat,nk| = \/ﬁ % e "It gin <Lcav ZTdip,i (840)
Equation (S39a) becomes

. 2 / max ;
xcav,nk” + wcav,nku fpcav,nk” - 2 Neff.QMoC xmat,nku = 0 (841)

max 1

where g8 = 2\/610 ‘%}:ﬂ is the maximum achievable coupling strength between a single molecular

emitter and a cavity mode in this system, found for molecules placed in the antinodes of the mode.

°To simplify the discussion, here we show explicitly the transformation under the field distribution of TE modes.
Fabry-Pérot cavities also have transverse magnetic (TM) modes, and all the transformations are equivalent after sub-
stituting the field distribution of these modes into Eq. (S38), but additional care needs to be taken to account for the
position dependence of the polarization direction of the cavity fields.
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2
Ner = 3_; |Enk (r;)| is the effective number of molecular emitters that couple with the cavity mode,

whose exact relation with the total number of molecular emitters Ng;, depends on the system and the
2
Zok ()| = X [sin (32)

with the specific field distribution of Fabry-Pérot cavity modes, we obtain Neg = Ngip/2 for this

spatial distribution of the modes. By performing the sum Neg = > .

1

cavity. We observe in Eq. (S41) that the coupling strength between the cavity mode and the collective
oscillator mode increases as g% \/N.g. This scaling of the coupling strength (together with the scaling
as 1//Ng of the collective oscillator in Eq. (S40)) is the same as in the quantum Dicke model [5],
further confirming that the classical oscillator models are consistent with cavity-QED descriptions.
The next step is to transform Eq. (S39b), which requires considering Ngj, equations simultaneously,
one per molecular emitter at position r;. To do the transformation, we multiply Eq. (S39b) by
nmz;

ﬁ sin (K) e~ Xl for each i molecular emitter and sum the Ngip resulting terms. With this

procedure, and using Eq. (S40), the transformation of the first two terms is straightforward as

Zi ik ry; /e 2 . 2
( > e X rlll(xdip,i + wdipxdip,i) == xmat7nk“ + depl‘mat,nku . (842)

cav

Repeating the procedure with the third term of Eq. (S39b), we obtain

AT\ e 1.
gi?fg > Feavmric, Zsm ( ) sin (Z> etk —K'y) 7
’VL k/ cav Lcav
= 2 g S ke NG ey = 2075/ Nogr S4
B WQ“IOC Z Leav,nk) NeffOn,n' Ok k') = “Ynoc V HNeffLcav,nk - (543)
eff
n ,k/H

Equation (S43) shows that, although each molecular emitter couples with all Fabry-Pérot modes of
different k|, the collective matter oscillator of amplitude Tmat,nk described by the indexes n and k|,
only couples with the cavity mode of same indexes due to the orthogonality of all these modes.

Last, we transform the fourth term of Eq. (S39b), which involves molecule-molecule interactions.
To perform this transformation, we consider the SpC coupling strength between molecular emitters

as given by Eq. (S11) explicitly, which leads to

1 nwz _
m Z Z 2wdlpgspc) sin <L Z> KTl g,
€ cav

i jF£L
Tz ;
“amis N gl bm< ’> e~k (eyiry)

cav
i#j

1 faipe I (Ti—r5)

' nTz;
= 2Wdin® ok — 1 — 3(ng - ny;;) sin < z)
m zj: prmat,y ; 2 4meg|r; — I'j’?’wdip[ ( vij)] Leny

1 ki . (T2 1 faipe i i)
R~ 2WdinTmat. ;€ Zk"““sm( J) — =P 1—3(ng - ng;
Vv Neff ; prmaty Lcav ; 2 47T60|I‘Z' — rj]3wdip [ ( ”j)]

(nkH )
Ishift

- 2Wd1pgs(h1fu)xmat,nk” . (844)

In the fourth line in Eq. (S44), we have considered that the dipole-dipole coupling strength between
different molecular emitters, which depends on their distance as |r; —r;| 3, decays much faster over z

than the term sin(nmz/Lcay) changes (unless n is so large that it has very fast oscillations, which we do
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not consider here). Due to this fast decay, we have checked numerically that the term sin(nmz;/Leay)
can be taken outside the sum over the molecular emitters i as a constant of value sin(nnz;/Leay), i-e.
where only the emitter j is involved. The sum over the variable 7 in Eq. (S44) can be then performed
numerically to obtain the collective molecule-molecule coupling strength gigﬁ‘).

Therefore, by gathering all transformed terms in Eqgs. (S42), (S43) and (S44), and using Eq. (S40),

Eq. (S39b) becomes

. (nky) max_ / .
xmat7nkH + (wgljp + 2wdipgs}?ift” )xmat,nk” + 291\/130 Neffxcav,nk“ =0. (845)

Equations (S41) and (S45) correspond to Eqs. (34a) and (34b) in the main article. Importantly, the
derivation carried out in this section shows two important features of light-matter coupling in this
system: i) although each nk| cavity mode is coupled to all individual molecular emitters, it is only
coupled to the nk collective mode due to the orthogonality of the modes, and ii) the only consequence

of the molecule-molecule coupling for the interaction between the nk) cavity and collective matter

. . . Kk
modes is to shift the bare frequency of the matter oscillator from wqjp, to \/ wﬁip + deipgiﬁift”) [6].

S8 Reststrahlen band

In the main text, we have shown that, if we impose that the resonant cavity mode and matter
excitation frequencies in the coupled harmonic oscillator model are the bare ones without any dressing,
then the Reststrahlen band is only correctly recovered when we use the MoC model, i.e., the coupling
term is proportional to the time derivative of the amplitude of the oscillators. However, according to
Sec. S2 and Table S1, if we relax this condition and dress the cavity mode or matter excitation, we
find alternative classical harmonic oscillator models that are equivalent to the MoC model but that
use a coupling term proportional to the oscillation amplitude and the appropriate dressing. Here,
we apply this finding to demonstrate how to reproduce the Reststrahlen band with a coupling term
proportional to the oscillator amplitudes. The results are equivalent to those obtained using the
Hopfield Hamiltonian [7]. To obtain the Reststrahlen band, we first follow the approach in Ref. [8] to
obtain the bulk dispersion of a phononic material directly from the response of an infinite material
(an equivalent demonstration could be performed by connecting the dispersion of a Fabry-Pérot cavity
with the bulk dispersion as in Sec. 3.3)

In the previous work, the authors considered a phononic material with a permittivity given by Eq.

(38) in the main text and derived the system of equations

w? — wi ;uwp . iate/ (qi) —0 (S46)
wwp w® — wj, VE0E oo | E(K)inc|

where |E(k)inc| is the amplitude of the incident electric field, ¢ the (positive) charge of the lattice

ions, £, the high-frequency permittivity of the material, w the frequency of the bulk dispersion

modes, wi = \75% the frequency of a free photon of vacuum wavevector kg propagating in a medium
of permittivity e, and k the wavevector in this material. w, = w%o — w%o is the parameter that

controls the coupling strength in this model and wpo and wro the frequency of the longitudinal
and transverse optical phonon modes, respectively. According to the discussion in Sec. 3.3 of the
main text, wro is here the bare frequency of the material. As a difference to the previous work,

we neglect losses, and we have written the equations as a function of the normalized microscopic
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current jj.tt, which depends on the normalized relative displacement x,. of the atoms in the atomic
lattice [8] through jlatt = —iGiwTlats (T1ate correspond to the normalized displacement of the atoms
that are positively charged from the atoms that are mostly negatively charged). We can then identify
T = \/€0Eoo|E(K)inc| (the amplitude of the oscillator associated with the field of wavevector k) and

Tmat = —Jlatt/(¢i) (associated with the matter excitation) and rewrite Eq. (S46) as
—iw? T mat + iw%oazmat + wwpxp =0 (S47a)
w?x), — Wity — iWWpTmat = 0, (S47b)

which can be rewritten in the time domain to obtain

idmat + WO Tmat + iwpdg = 0 (S48a)
—T — w,%xk + wpZmat = 0, (S48b)
or, equivalently,
ip + wity — 2Gyoctmat = 0, (S49a)
Fmat + W2t Tmat + 2Geciy = 0. (S49b)
where wpat = wro and Gyee = % = 7%2_0%0, so that we recover Eq. (35) in the main text. This

equivalence indicates that the result obtained here for an infinite phononic material coincides with
those obtained in Sec. 3.3 of the main text, where we focused on the eigenmodes of the Fabry-Pérot
cavity. Following the discussion in that section, this further confirms that Eq. (S49) describes the
bulk dispersion within the MoC model.

On the other hand, Table S1 indicates that an equivalent dispersion can be obtained with the

following coupled harmonic oscillator model (alternative model 1):

ik + (OJ]% + 4G§/[OC)$]€ - 2GMonmatxinat = 07 (8503)

Frat + WinatTmat — 2GocWmatZk = 0, (S50Db)

where the coupling term is proportional to the amplitude of the oscillators. We can rewrite this

equation as

. 2

T + (w;’jl) T + 2GM \fwmarwi ) = 0, (S51a)
j}/mat + w?natxénat + 2GA1 mxk = 07 (S51b)
w}?l =V wl% + 4G 10 (Sb1c)

GM = —Groo—at G | —mat | (S51d)

A/ wmatwlél \/ W]% + 4G, 0

Crucially, the first two equations are formally equivalent to the SpC model, except that in this case,

w{jl is a dressed frequency and the coupling strengths G*' has been changed, as given by the last two

equations (the superscript A1’ refers to alternative model 1).
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Figure S3: Bulk dispersion and opening of the Reststrahlen band according to different models.
(a) Bulk dispersion (black line) and uncoupled frequencies (bare photon frequency wy, diagonal red
dashed line; transverse optical frequency wro, horizontal red dashed line) according to the Momentum
Coupling (MoC) model. The horizontal dashed line corresponds to the longitudinal optical phonon
frequency. (b) Bulk dispersion (black line) and uncoupled frequencies (dressed photon frequency w,fl,
diagonal-like cyan short-dashed line; bare transverse optical phonon frequency wrg, horizontal cyan
short-dashed line) according to the alternative model 1. The horizontal dashed line corresponds to the
longitudinal optical phonon frequency. (c¢) Bulk dispersion (black line) and uncoupled frequencies (bare
photon frequency wyg, diagonal green solid line; longitudinal optical phonon frequency wr,o, horizontal
green solid line) according to alternative model 2. The horizontal dashed line corresponds to the
transverse optical phonon frequency. (d) Coupling strength as a function of wavevector according to
the MoC model (Gyc, red dashed line), the alternative model 1 (|G|, cyan short-dashed line) and
the alternative model 2 (GAz, green solid line). In all panels, the bulk dispersion is the same (black
lines, corresponding to the one obtained for Gy,c = 0.3wmat ), all frequencies and the coupling strength
are normalized by wmat = wro and the results are plotted as a function of the normalized wavevector

ck /wmat-
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Proceeding in the same manner but for the alternative model 2 in Table 1, we obtain a second set

of coupled harmonic oscillations that also give the same dispersion.

x;c + wl%$§f + 2GA2 \/ wrﬁztwkxmat =0, (S52a)
. 2
Tmat + (wrﬁit) Tmat + 2GA2 \/ Wégtwkxz = 0, (S52b)

wrélit = \/WIQnat + 4G§mc = \/W%o + 4G%/IOC = WLO; (S52c)
GA2 = Grjoe— e = Ghtoc - (S52d)
\% wmatwk wmat + 4GMoC
A2

where, in this case, the dressed frequency is that of the matter excitation ws;.

The different coupled harmonic oscillator models are compared in Fig. S3. The bulk dispersion
obtained for Gyoc = 0.3wpmat = 0.3wTo (and corresponding values of G and GA2) is shown in panels
(a-c) by the black lines. As expected, the three models give identical results. The red dashed lines
in Fig. S3(a) show the frequencies of the uncoupled modes (i.e. the frequencies that are obtained
if the coupling is ignored) of the MoC model given by Eq. (S49), corresponding to the frequency
of the transverse optical mode, wro, and of the free photons in the material of permittivity €,
wg. Figure S3(b) shows the corresponding result for the alternative model 1, with the uncoupled
modes (cyan short-dashed line) being in this is case the TO photon at frequency wro and the dressed
photon at frequency w,fl. Last, the uncoupled frequencies of the alternative model 2 are indicated
by the solid green line in Fig. S3(c) and correspond to the LO phonon frequency wro and of the
free photons wg. The coupling strength that need to be used in each of this models to reproduce the
same bulk dispersion is shown in Fig. S3(d) (red dashed line corresponds to the coupling strength
in the MoC model, Gy, = 0.3wmat; the cyan short-dashed line corresponds to the coupling strength
in the alternative model 1, GA!; the green solid line to the coupling strength in alternative model 2,
GA?). These results thus stress that the same bulk dispersion can be obtained using different classical
coupled harmonic oscillator models.

Last, we emphasize that the possibility of obtaining the same dispersion with both the MoC model
(Eq. (S49)) and the second alternative model (Eq. (S52)) indicates that the bulk dispersion can
be obtained with classical coupled harmonic oscillator models that use a coupling term that can be
proportional to either the oscillator amplitude (alternative model 2) and to its derivative (MoC model).
These two models offer a very different picture of the opening of the Reststrahlen band (we do not

discuss here the first alternative model because it does not have a simple physical interpretation):

e According to the second alternative model (Eq. (S52)), the dressed matter excitation in the cou-
pled equations corresponds to the longitudinal optical phonon frequency, w2, = | /w%o +4G3, . =
wLo, the renormalized coupling strength G2 becomes zero for photons of energy (or momen-
tum) tending to zero, and (GA2)2 scales linearly with photon energy. Thus, in this picture, i)
the square of the coupling term is proportional to the energy of the photons, ii) the longitudinal
optical phonon appears as the resonant matter excitation in the harmonic oscillator equations,
and can be interpreted as the dressed matter excitation of the ’bare’ transverse optical phonon,
iii) the (dressed) matter excitation and the photons do not couple at low energies and iv) at
large energy /momentum, the coupling becomes infinite. The arbitrarily large coupling strength
at large momenta explains why, in the two limits of large detuning (wy — 0 and wy — 00), two

different asymptotic frequencies (wro and wro respectively) are obtained, i.e., it explains the
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opening of the Reststrahlen band.

e In contrast, in the MoC model, (i) the coupling constant is independent of the photon energy,
and (ii) the transverse optical phonon coincides with the bare matter excitation . In this case,
the Reststrahlen band opens because the coupling is proportional to the time derivative of the

oscillation amplitudes.
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