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1 Extended Calculations
We here present all the extended analytical calculations that support the results presented in the main
text.

1.1 Metal and Gain Medium Description

We start by the description of the materials composing the nanoshell.
Please note that all fields written without a tilde in this section correspond to real-valued quantities

(measurable in the physical world), while fields with a tilde represent the corresponding complex amplitudes.
1. Metal
We begin by describing how the field Em(r, 𝑡), where r is the spatial coordinate with its origin at

the particle center and 𝑡 is time, interacts with the electrons in the metallic nanoshell. This interaction is
modeled using Drude’s free-electron model:

𝑑2d
𝑑𝑡2

+ 2𝛾 𝑑d
𝑑𝑡

= 𝑒

𝑚e
Em, (S.1)

where d represents the displacement of the electron cloud from its equilibrium position, 𝑚e and 𝑒 are the
electron mass and charge, respectively, and 𝛾 is the ionic collision friction coefficient. We can then define
the collective polarization produced by this displacement as:

Πm = 𝑛e𝑒d, (S.2)
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here 𝑛e is the electron density in the metal. Substituting expression S.2 into S.1, and considering that the
plasma frequency is given by

𝜔2
p = 𝑛e𝑒

2

𝜖0𝑚e
, (S.3)

we can finally obtain the equation for the time evolution of Πm:

𝑑2Πm
𝑑𝑡2

+ 2𝛾 𝑑Πm
𝑑𝑡

= 𝜖0𝜔
2
pEm. (S.4)

Πm represents the dynamic component of the polarization in the metal. The total polarization experienced
by the metal also includes the passive contribution from the ionic lattice:

Pm = 𝜖0𝜒∞Em + Πm.

Within the rotating wave approximation, the electric field and polarizations can be written in the
following form:

Em(𝑡) = 1
2

[︀
Ẽm(𝑡)𝑒−𝑖𝜔𝑡 + Ẽ*

m(𝑡)𝑒𝑖𝜔𝑡
]︀

(S.5)

Πm(𝑡) = 1
2

[︀
Π̃m(𝑡)𝑒−𝑖𝜔𝑡 + Π̃*

m(𝑡)𝑒𝑖𝜔𝑡
]︀

(S.6)

Pm(𝑡) = 1
2

[︀
P̃m(𝑡)𝑒−𝑖𝜔𝑡 + P̃*

m(𝑡)𝑒𝑖𝜔𝑡
]︀
, (S.7)

where Ẽm(𝑡), Π̃m(𝑡), and P̃m(𝑡) represent a slow dependency on time (over times much slower than
1/𝜔).

If we now substitute expressions S.5-S.7 into equation S.4 and average over fast time variations (times
of order 1/𝜔), we can finally obtain the time evolution equation for the dynamic part of the polarization
in the metal region:

𝑑Π̃m
𝑑𝑡

− 𝜔(𝜔 + 2𝑖𝛾)
2(𝛾 − 𝑖𝜔) Π̃m =

𝜖0𝜔
2
p

2(𝛾 − 𝑖𝜔) Ẽm, (S.8)

which is Eq. (8) in the main article (where all tildas have been dropped by convention for readibility).
2. Gain Medium
The gain medium, made of emitters, can be modeled as a two-level system, where gain is achieved

by introducing a phenomenological pump in addition to the typical thermal bath normally used to model
purely absorbing elements. The two-level system is described through the optical Bloch equations in the
density matrix formalism:

𝑑𝜌12
𝑑𝑡

−
(︂
𝑖𝜔12 − 1

𝜏2

)︂
𝜌12 =

𝑖𝑁𝜇 · Eg
ℏ

(S.9)

𝑑𝑁

𝑑𝑡
+ 𝑁 − ̃︀𝑁

𝜏1
=

2𝑖(𝜌12 − 𝜌21)𝜇 · Eg
ℏ

. (S.10)

Here, the electric field of the gain medium, Eg, interacts with a single gain element of dipole moment
𝜇. Also, 𝜌𝑖𝑗 is the 𝑖, 𝑗 element of the density matrix. The time constants describing energy relaxation
processes (spontaneous emission) and phase relaxation processes are, respectively, 𝜏1 and 𝜏2. We define the
effective energy relaxation time 𝜏1, which combines the effect of pumping and spontaneous emission on the
population inversion 𝑁 :

𝜏1 = 𝜏1
𝑊𝜏1 + 1 .

The transition frequency between levels 1 and 2 (of respective energies 𝐸1 and 𝐸2) is

𝜔g = 𝐸2 − 𝐸1
ℏ

.
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The quantity 𝑁 = 𝜌22 −𝜌11 is the population inversion. When the gain element is subject to a phenomeno-
logical pump rate 𝑊 , the corresponding equilibrium value of 𝑁 with the thermal reservoir is 𝑁 = ̃︀𝑁 , given
by ̃︀𝑁 = 𝑊𝜏1 − 1

𝑊𝜏1 + 1 . (S.11)

The presence of ̃︀𝑁 in Equation S.10 means that, when the right-hand term of that equation is negligible,
the population inversion is driven to 𝑁̃ in a time of the order of 𝜏1. By choosing 𝑁̃ > 0 here, we are effectively
modeling a pump that drives the active elements to their excited state.

In this framework, the polarization of the gain medium, as arising from the collective behavior of the
population of gain elements, can be calculated as the following integral:

Pg = 𝜖0𝜒bEg + 𝑛

4𝜋

∫︁
Ψ

[𝜌12 + 𝜌*
12]𝜇𝑑Ψ (S.12)

where 𝜒b is the susceptibility of the dielectric host in which the gain elements are dispersed. The right side
of expression S.12 reflects the contribution of a population of gain elements with volume density 𝑛 and
dipole moments 𝜇 activated by the element of the density matrix 𝜌12 and its conjugate, which account
for the probability of transition. The distribution of dipoles is assumed to be randomly oriented, so that
the expression is averaged over all solid angles Ψ through the integral. Expression S.12 shows that if the
probability of transition were independent of the field in the gain region, the right term would just be
averaged out. However, Equation S.9 has a driving term on the right-hand side that favors the transition
of the gain elements whose dipole moment is parallel to the electric field Eg.

If we now define the active contribution to the polarization Πg as:

Πg = 𝑛

4𝜋

∫︁
Ψ

[𝜌12 + 𝜌*
12]𝜇𝑑Ψ, (S.13)

expression S.12 can be rewritten as:
Pg = 𝜖0𝜒bEg + Πg. (S.14)

Also, considering that it is possible to demonstrate that∫︁
Ψ

(𝜇 · Eg)𝜇𝑑Ψ = 4𝜋
3 𝜇2Eg,

one can rewrite the system of equations S.9-S.10 in terms of the time evolution of the dynamic part of the
polarization in the gain medium:

𝑑Πg
𝑑𝑡

−
(︂
𝑖𝜔g − 1

𝜏2

)︂
Πg = 𝑖𝑛𝜇2𝑁

3ℏ Eg, (S.15)

𝑑𝑁

𝑑𝑡
+ 𝑁 − ̃︀𝑁

𝜏1
= 𝑖

𝑛ℏ
(Πg − Π*

g) · Eg. (S.16)

Now, we use the rotating wave approximation again:

Eg(𝑡) = 1
2

[︀
Ẽg(𝑡)𝑒−𝑖𝜔𝑡 + Ẽ*

g(𝑡)𝑒𝑖𝜔𝑡
]︀

Πg(𝑡) = 1
2 [Π̃g(𝑡)𝑒−𝑖𝜔𝑡 + Π̃g(𝑡)*𝑒𝑖𝜔𝑡]

Pg(𝑡) = 1
2

[︀
P̃g(𝑡)𝑒−𝑖𝜔𝑡 + P̃*

g(𝑡)𝑒𝑖𝜔𝑡
]︀
,

where Ẽℎ(𝑡), Π̃ℎ(𝑡) and P̃ℎ(𝑡) represent again a slow dependency on time. When averaged over fast
variations in time, (S.15) and (S.16) become:

𝑑Π̃g
𝑑𝑡

−
[︂
𝑖(𝜔 − 𝜔g) − 1

𝜏2

]︂
Π̃g = 𝑖𝑛𝜇2𝑁

3ℏ Ẽg, (S.17)

𝑑𝑁

𝑑𝑡
+ 𝑁 − ̃︀𝑁

𝜏1
= − 𝑖

2𝑛ℏ (Π̃g · Ẽ*
g − Π̃*

g · Ẽg). (S.18)
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By defining the parameter 𝐺, which gives a measure of the level of gain brought into the system by
the gain medium elements under pumping:

𝐺 = 𝜏2𝜇
2

3ℏ𝜖0
𝑛 ̃︀𝑁, (S.19)

one can rewrite the system of equations S.17-S.18 as:

𝑑Π̃g
𝑑𝑡

−
[︂
𝑖(𝜔 − 𝜔g) − 1

𝜏2

]︂
Π̃g = − 𝑖𝜖0𝐺

𝜏2

𝑁̃︀𝑁 Ẽg, (S.20)

𝑑𝑁

𝑑𝑡
+ 𝑁 − ̃︀𝑁

𝜏1
= − 𝑖

2𝑛ℏ (Π̃g · Ẽ*
g − Π̃*

g · Ẽg). (S.21)

This system of equations governs the time evolution of the gain-enriched medium for different amounts
of the gain quantity 𝐺. These equations are the same as Eqs. (6)–(7) in the main article (where it is
reminded that all tildas were dropped out of notational convenience).

1.2 Steady-State Permittivities

From this point onwards, tildas will be meant implicitly for all fields and polarizations vectors and shall
be removed, i.e., we are now exclusively dealing with the slowly-evolving, complex amplitudes introduced
in the rotating-wave approximation.

When and if equation S.8 and system S.20-S.21 reach a steady state, one can calculate the permittivities
𝜖g and 𝜖m for the gain medium and the metal.

Starting with the metal permittivity, let us first consider the steady-state solution of equation S.8:

−𝜔(𝜔 + 2𝑖𝛾)
2(𝛾 − 𝑖𝜔) Πm =

𝜖0𝜔
2
p

2(𝛾 − 𝑖𝜔)Em,

from which one can calculate:

Πm = −
𝜖0𝜔

2
p

𝜔(𝜔 + 2𝑖𝛾)Em.

Replacing the previous result in equation 2, one gets:

Pm = 𝜖0

[︂
𝜒∞ −

𝜔2
p

𝜔(𝜔 + 2𝑖𝛾)

]︂
Em.

Thus, the electric displacement is:

Dm = 𝜖0Em + Pm

Dm = 𝜖0

[︂
1 + 𝜒∞ −

𝜔2
p

𝜔(𝜔 + 2𝑖𝛾)

]︂
Em,

meaning that the metal steady state permittivity is:

𝜖m = 𝜖∞ −
𝜖0𝜔

2
p

𝜔(𝜔 + 2𝑖𝛾) , (S.22)

where 𝜖∞ = 𝜖0(1 + 𝜒∞). Expression S.22 can be recognized as the Drude formula for metal permittivity,
which appears as Eq. (10) in the main article.

Let us now switch to the gain medium. The steady-state solution of equation S.20 is:

−
[︂
𝑖 (𝜔 − 𝜔g) − 1

𝜏2

]︂
Πg = − 𝑖𝜖0𝐺𝑁

𝑁̃𝜏2
Eg,
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from which one can calculate

Πg = 𝑖𝜖0𝐺𝑁

𝑁̃𝜏2

1

𝑖 (𝜔 − 𝜔g) − 1
𝜏2

Eg (S.23)

= 𝜖0𝐺𝑁Δ
𝑁̃

1
2 (𝜔 − 𝜔g) + 𝑖ΔEg, (S.24)

where we have defined the gain linewidth Δ = 2/𝜏2.
Therefore, replacing this expression into the expression for the electric displacement in the gain medium,

we get

Dg = 𝜖0Eg + Pg

= 𝜖bEg + Πg

=
[︂
𝜖b + 𝜖0𝐺𝑁Δ

𝑁̃

1
2 (𝜔 − 𝜔g) + 𝑖Δ

]︂
Eg,

where we define 𝜖b = 𝜖0(1 + 𝜒b), and the permittivity of the gain medium is:

𝜖g = 𝜖b + 𝜖0𝐺Δ
2 (𝜔 − 𝜔g) + 𝑖Δ

𝑁

𝑁̃
. (S.25)

To obtain the expression for 𝑁 , we calculate the steady state solution of equation S.21, which is:

𝑁 = 𝑁̃ − 𝑖𝜏1
2𝑛ℏ

(︀
Πg · E*

g − Π*
g · Eg

)︀
. (S.26)

By using equation S.24, we can calculate the right side of equation S.26, and obtain 𝑁 :

𝑁 = 𝑁̃ − 𝜖0𝐺𝜏1Δ2

𝑛ℏ𝑁̃
𝑁

1
Δ2 + 4 (𝜔 − 𝜔g)2 |Eg|2

𝑁

⎡⎢⎣Δ2 + 4 (𝜔 − 𝜔g)2 + 𝜖0𝐺𝜏1Δ2

𝑛ℏ𝑁̃
|Eg|2

Δ2 + 4 (𝜔 − 𝜔g)2

⎤⎥⎦ = 𝑁̃

𝑁 = 𝑁̃
Δ2 + 4 (𝜔 − 𝜔g)2

Δ2 + 4 (𝜔 − 𝜔g)2 + 𝜖0𝐺𝜏1Δ2

𝑛ℏ𝑁̃
|Eg|2

.

By introducing 𝐸sat =
√︀
𝑛ℏ𝑁̃/(𝜖0𝐺𝜏1), which can be rewritten as 𝐸sat = ℏ/𝜇

√︀
3/(𝜏1𝜏2)

𝑁 = 𝑁̃
4 (𝜔 − 𝜔g)2 + Δ2

4 (𝜔 − 𝜔g)2 + Δ2
(︂

1 +
|Eg|2

𝐸sat
2

)︂ . (S.27)

By replacing S.27 in equation S.24, we obtain:

Πg = 𝜖0𝐺Δ
2 (𝜔 − 𝜔g) + 𝑖Δ

4 (𝜔 − 𝜔g)2 + Δ2

4 (𝜔 − 𝜔g)2 + Δ2
(︂

1 +
|Eg|2

𝐸sat
2

)︂Eg

= 𝜖0𝐺Δ
2 (𝜔 − 𝜔g) − 𝑖Δ

4 (𝜔 − 𝜔g)2 + Δ2
(︂

1 +
|Eg|2

𝐸sat
2

)︂Eg.

Now, we are able to calculate the electric displacement in the gain medium:

Dg = 𝜖0Eg + Pg = 𝜖0

⎡⎢⎢⎣1 + 𝜒b +
[2 (𝜔 − 𝜔g) − 𝑖Δ]𝐺Δ

4 (𝜔 − 𝜔g)2 + Δ2
(︂

1 +
|Eg|2

𝐸sat
2

)︂
⎤⎥⎥⎦ Eg,
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from which we determine the permittivity, where 𝜖b = 𝜖0(1 + 𝜒b):

𝜖g = 𝜖b +
𝜖0 [2 (𝜔 − 𝜔g) − 𝑖Δ]𝐺Δ

4 (𝜔 − 𝜔g)2 + Δ2
(︂

1 +
|Eg|2

𝐸sat
2

)︂ . (S.28)

which is the expression for permittivity given in Eq. (11) of the main text.
Equation S.28 is the permittivity of the gain media in the saturated case, i.e. when 𝑁 ̸= ̃︀𝑁 . On the

other hand, in the “small-signal" regime, i.e. when 𝑁 = 𝑁̃ , we recover the linear Lorentzian permittivity:

𝜖g = 𝜖b + 𝜖0𝐺Δ
2(𝜔 − 𝜔g) + 𝑖Δ .

1.3 Boundary Conditions

The use of boundary conditions allows us to determine the coefficients of the Legendre polynomials present
in the potentials defining the polarization and the electric field in the different regions of the system.

To proceed with the boundary conditions, we first calculate the radial and polar spherical coordi-
nates components of the electric fields and polarizations, as derived from the potentials written down in
equations (16) to (20) from the main article:

𝐸𝑟
g = −𝜕𝜑1

𝜕𝑟
= −𝑝0 cos 𝜃

𝐸𝜃
g = −1

𝑟

𝜕𝜑1
𝜕𝜃

= 𝑝0 sin 𝜃

Π𝑟
g = −𝜕𝜓1

𝜕𝑟
= −𝑞0 cos 𝜃

Π𝜃
g = −1

𝑟

𝜕𝜓1
𝜕𝜃

= 𝑞0 sin 𝜃

𝐸𝑟
m = −𝜕𝜑2

𝜕𝑟
= −𝑝1 cos 𝜃 + 2𝑎3𝜌3𝑝2

cos 𝜃
𝑟3

𝐸𝜃
m = −1

𝑟

𝜕𝜑2
𝜕𝜃

= 𝑝1 sin 𝜃 + 𝑎3𝜌3𝑝2
sin 𝜃
𝑟3

Π𝑟
m = −𝜕𝜓2

𝜕𝑟
= −𝑞1 cos 𝜃 + 2𝑎3𝜌3𝑞2

cos 𝜃
𝑟3

Π𝜃
m = −1

𝑟

𝜕𝜓2
𝜕𝜃

= 𝑞1 sin 𝜃 + 𝑎3𝜌3𝑞2
sin 𝜃
𝑟3

𝐸𝑟
e = −𝜕𝜑3

𝜕𝑟
= 𝐸0 cos 𝜃 + 2𝑎3𝑝3

cos 𝜃
𝑟3

𝐸𝜃
e = −1

𝑟

𝜕𝜑3
𝜕𝜃

= −𝐸0 sin 𝜃 + 𝑎3𝑝3
sin 𝜃
𝑟3 .

1. Metal Outer boundary 𝑟 = 𝑎:
∙ Radial continuity:

𝐷𝑟
m|𝑟=𝑎 = 𝐷𝑟

e |𝑟=𝑎

(𝜖0𝐸𝑟
m + 𝑃 𝑟

m) |𝑟=𝑎 = (𝜖0𝐸𝑟
e + 𝑃 𝑟

e ) |𝑟=𝑎

𝜖∞𝐸𝑟
m|𝑟=𝑎 + Π𝑟

m|𝑟=𝑎 = 𝜖e𝐸
𝑟
e |𝑟=𝑎

𝜖∞
(︀
−𝑝1 cos 𝜃 + 2𝜌3𝑝2 cos 𝜃

)︀
− 𝑞1 cos 𝜃 + 2𝜌3𝑞2 cos 𝜃 = 𝜖e (𝐸0 cos 𝜃 + 2𝑝3 cos 𝜃)

− 𝜖∞𝑝1 + 2𝜖∞𝜌3𝑝2 − 𝑞1 + 2𝜌3𝑞2 = 𝜖e𝐸0 + 2𝜖e𝑝3
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∙ Tangential continuity:

𝐸𝜃
m|𝑟=𝑎 = 𝐸𝜃

e |𝑟=𝑎

𝑝1 sin 𝜃 + 𝜌3 sin 𝜃𝑝2 = −𝐸0 sin 𝜃 + sin 𝜃𝑝3

𝑝1 + 𝜌3𝑝2 = −𝐸0 + 𝑝3

2. Gain-metal boundary at 𝑟 = 𝜌𝑎: ∙ Radial continuity:

𝐷𝑟
m|𝑟=𝜌𝑎 = 𝐷𝑟

g|𝑟=𝜌𝑎

(𝜖0𝐸𝑟
m + 𝑃 𝑟

m) |𝑟=𝜌𝑎 =
(︀
𝜖0𝐸

𝑟
g + 𝑃 𝑟

g
)︀

|𝑟=𝜌𝑎

𝜖∞𝐸𝑟
m|𝑟=𝜌𝑎 + Π𝑟

m|𝑟=𝜌𝑎 = 𝜖b𝐸
𝑟
g |𝑟=𝜌𝑎 + Π𝑟

g|𝑟=𝜌𝑎

𝜖∞

(︂
−𝑝1 cos 𝜃 + 2𝜌3𝑎3𝑝2

cos 𝜃
𝜌3𝑎3

)︂
− 𝑞1 cos 𝜃 + 2𝜌3𝑎3𝑞2

cos 𝜃
𝜌3𝑎3 = −𝜖b𝑝0 cos 𝜃 − 𝑞0 cos 𝜃

− 𝜖∞𝑝1 + 2𝜖∞𝑝2 − 𝑞1 + 2𝑞2 = −𝜖b𝑝0 − 𝑞0

∙ Tangential continuity:

𝐸𝜃
m|𝑟=𝜌𝑎 = 𝐸𝜃

g |𝑟=𝜌𝑎

𝑝1 sin 𝜃 + 𝜌3𝑎3 sin 𝜃
𝜌3𝑎3 𝑝2 = 𝑝0 sin 𝜃

𝑝1 + 𝑝2 = 𝑝0

Therefore, from the boundary conditions, we obtain:

𝑝3 =−𝜖∞𝑝1 + 2𝜖∞𝜌3𝑝2 − 𝑞1 + 2𝜌3𝑞2 − 𝜖e𝐸0
2𝜖e

(S.29)

𝑝2 =(𝜖b − 𝜖∞) (𝑝3 − 𝐸0) + 𝑞0 − 𝑞1 + 2𝑞2
−2𝜖∞ − 𝜖b + 𝜌3 (𝜖b − 𝜖∞) (S.30)

𝑝1 =𝑝3 − 𝜌3𝑝2 − 𝐸0 (S.31)
𝑝0 =𝑝1 + 𝑝2. (S.32)

1.4 Steady-State Polarizability 𝛼𝛼𝛼

Let us now prove that Eq. (34) in the main article holds, with the classical expression for the polarizability
𝛼 as written in Eq. (28) :

𝛼

4𝜋𝑎3 =
(𝜖m − 𝜖e)(𝜖g + 2𝜖m) + 𝜌3(𝜖g − 𝜖m)(𝜖e + 2𝜖m)
(𝜖g + 2𝜖m)(𝜖m + 2𝜖e) + 2𝜌3(𝜖g − 𝜖m)(𝜖m − 𝜖e) (S.33)

To demonstrate this statement, we begin with calculating the steady-state solutions of equations (48)
to (50) of the main article:

𝑞0 = −
Γg𝑁

Ωg
𝑝0 (S.34)

𝑞1 = − Γm
Ωm

𝑝1 (S.35)

𝑞2 = − Γm
Ωm

𝑝2. (S.36)

From equation (52) of the article, we can deduce that

−2𝑖Ωg = 2 (𝜔 − 𝜔g) + 𝑖Δ.
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Recall now the expression for the permittivity of the gain medium in equation S.25:

𝜖g = 𝜖b + 𝜖0𝐺𝑁Δ
𝑁̃

1
2 (𝜔 − 𝜔g) + 𝑖Δ . (S.37)

Replacing the expression for −2𝑖Ωg in equation S.37, we obtain that

𝜖g = 𝜖b − 𝜖0𝐺𝑁Δ
𝑁̃

1
2𝑖Ωg

. (S.38)

Also, according to equation (53) in the article:

𝐺 = 2𝑖𝑁̃
𝜖0Δ Γg,

thus, equation (S.25) becomes

𝜖g − 𝜖b = −
𝑁Γg
Ωg

.

On the other hand, from equations (54) and (55), we obtain that

Γm
Ωm

=
𝜖0𝜔

2
p

𝜔 (𝜔 + 2𝑖𝛾)
= 𝜖∞ − 𝜖m.

Consequently, 𝑞0, 𝑞1, and 𝑞2 can be written as

𝑞0 = (𝜖g − 𝜖b) 𝑝0

𝑞1 = (𝜖m − 𝜖∞) 𝑝1

𝑞2 = (𝜖m − 𝜖∞) 𝑝2. (S.39)

We now simplify equation (44) of the main article by substituting the set of equations S.39 into it:

𝑝3 =−𝜖∞𝑝1 + 2𝜖∞𝜌3𝑝2 − (𝜖m − 𝜖∞) 𝑝1 + 2𝜌3 (𝜖m − 𝜖∞) 𝑝2 − 𝜖e𝐸0
2𝜖e

(S.40)

=−𝜖m𝑝1 + 2𝜌3𝜖m𝑝2 − 𝜖e𝐸0
2𝜖e

. (S.41)

Next, we simplify equation (45) by using equation (46) and substituting with the set S.39 again:

𝑝2 =
(𝜖b − 𝜖∞) (𝑝3 − 𝐸0) + (𝜖g − 𝜖b) 𝑝0 − (𝜖m − 𝜖∞) 𝑝1 + 2 (𝜖m − 𝜖∞) 𝑝2

−2𝜖∞ − 𝜖b + 𝜌3 (𝜖b − 𝜖∞)

=
(𝜖g − 𝜖b − 𝜖m + 𝜖∞)

(︀
𝑝3 − 𝜌3𝑝2 − 𝐸0

)︀
+ (𝜖g − 𝜖b + 2𝜖m − 2𝜖∞) 𝑝2

−2𝜖∞ − 𝜖b + 𝜌3 (𝜖b − 𝜖∞)

=
(𝜖m − 𝜖g) (𝑝3 − 𝐸0)

𝜖g + 2𝜖m + 𝜌3 (𝜖m − 𝜖g) .

We replace this result in equation 46 to obtain 𝑝1 in terms of 𝑝3 and 𝐸0:

𝑝1 = −𝐸0 −
𝜌3 (𝜖m − 𝜖g) (𝑝3 − 𝐸0)
𝜖g + 2𝜖m + 𝜌3 (𝜖m − 𝜖g) + 𝑝3

=
(𝜖g + 2𝜖m) (𝑝3 − 𝐸0)
𝜖g + 2𝜖m + 𝜌3 (𝜖m − 𝜖g) .

By using these expressions of 𝑝2 and 𝑝1 in equation S.41, we obtain:

𝑝3 = − 𝜖m
2𝜖e

(𝜖g + 2𝜖m) (𝑝3 − 𝐸0)
𝜖g + 2𝜖m + 𝜌3 (𝜖m − 𝜖g) + 𝜌3𝜖m

𝜖e

(𝜖m − 𝜖g) (𝑝3 − 𝐸0)
𝜖g + 2𝜖m + 𝜌3 (𝜖m − 𝜖g) − 𝐸0

2 ,

which after rearrangement, gives the proportionality relation between 𝑝3 and 𝐸0:

𝑝3 =
(𝜖g + 2𝜖m) (𝜖m − 𝜖e) + 𝜌3 (𝜖g − 𝜖m) (𝜖e + 2𝜖m)
(𝜖g + 2𝜖m) (2𝜖e + 𝜖m) + 2𝜌3 (𝜖g − 𝜖m) (𝜖m − 𝜖e)𝐸0. (S.42)

Since by definition of the polarizability [see Eqs. (21) and (29) of the article], we have 𝑝3 = 𝛼𝐸0/(4𝜋𝑎3),
we deduce that 𝛼 has indeed the form of equation S.33, or Eq. (28) in the main text.
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1.5 The Geometry Matrix

To express the matrix system of equations as stated in (60) of the article, let us recall expressions (44)–(47):

𝑝3 =−𝜖∞𝑝1 + 2𝜖∞𝜌3𝑝2 − 𝑞1 + 2𝜌3𝑞2 − 𝜖e𝐸0
2𝜖e

𝑝2 =(𝜖b − 𝜖∞) (𝑝3 − 𝐸0) + 𝑞0 − 𝑞1 + 2𝑞2
−2𝜖∞ − 𝜖b + 𝜌3 (𝜖b − 𝜖∞) ;

𝑝1 =𝑝3 − 𝜌3𝑝2 − 𝐸0;
𝑝0 =𝑝1 + 𝑝2.

It is now necessary to write all of these relations as linear functions of the main variables 𝑞0, 𝑞1, 𝑞2, as
well as 𝐸0.

By replacing equations (46) and (45) into equation (44), we get:

𝑝3 = 𝜖∞
2𝜖e

(︀
𝐸0 + 𝜌3𝑝2 − 𝑝3

)︀
+ 2𝜌3𝜖∞

2𝜖e
(𝜖b − 𝜖∞) (𝑝3 − 𝐸0) + 𝑞0 − 𝑞1 + 2𝑞2

−2𝜖∞ − 𝜖b + 𝜌3 (𝜖b − 𝜖∞) (S.43)

+ −𝑞1 + 2𝜌3𝑞2 − 𝜖e𝐸0
2𝜖e

(S.44)

= − 3𝜌3𝜖∞
𝐷

𝑞0 − (1 − 𝜌3)(𝜖b + 2𝜖∞)
𝐷

𝑞1 + 2𝜌3(1 − 𝜌3)(𝜖b − 𝜖∞)
𝐷

𝑞2 (S.45)

+ (𝜖∞ − 𝜖e)(𝜖b + 2𝜖∞) + 𝜌3(𝜖b − 𝜖∞)(𝜖e + 2𝜖∞)
𝐷

𝐸0, (S.46)

where, in order to have more compact formulas, we define:

𝐷 = (𝜖∞ + 2𝜖e)(𝜖b + 2𝜖∞) + 2𝜌3(𝜖b − 𝜖∞)(𝜖∞ − 𝜖e).

We then replace equation S.46 into equation (45), and obtain:

𝑝2 = − 𝜖∞ + 2𝜖e
𝐷

𝑞0 + 𝜖b + 2𝜖e
𝐷

𝑞1 − 2[(𝜖∞ + 2𝜖2) + 𝜌3(𝜖b − 𝜖∞)]
𝐷

𝑞2 + 3𝜖2(𝜖b − 𝜖∞)
𝐷

𝐸0. (S.47)

We can now calculate 𝑝1 by replacing S.46 and S.47 into (46):

𝑝1 = 2𝜌3(𝜖e − 𝜖∞)
𝐷

𝑞0−𝜌3(𝜖b + 2𝜖e) + (1 − 𝜌3)(𝜖b + 2𝜖∞)
𝐷

𝑞1+

+2𝜌3(𝜖b + 2𝜖e)
𝐷

𝑞2 − 3𝜖e(𝜖b + 2𝜖∞)
𝐷

𝐸0. (S.48)

Finally, we calculate 𝑝0:

𝑝0 = − (𝜖∞ + 2𝜖e) + 2𝜌3(𝜖∞ − 𝜖e)
𝐷

𝑞0−2(1 − 𝜌3)(𝜖∞ − 𝜖e)
𝐷

𝑞1+

−2(1 − 𝜌3)(𝜖∞ + 2𝜖e)
𝐷

𝑞2 − 9𝜖e𝜖∞
𝐷

𝐸0. (S.49)

We can thus rewrite the obtained expressions S.46–S.49 for 𝑝3, 𝑝2, 𝑝1, and 𝑝0 in the following form:

𝑝0 =𝑝00𝑞0 + 𝑝01𝑞1 + 𝑝02𝑞2 + 𝑝03𝐸0

𝑝1 =𝑝10𝑞0 + 𝑝11𝑞1 + 𝑝12𝑞2 + 𝑝13𝐸0

𝑝2 =𝑝20𝑞0 + 𝑝21𝑞1 + 𝑝22𝑞2 + 𝑝23𝐸0

𝑝3 =𝑝30𝑞0 + 𝑝31𝑞1 + 𝑝32𝑞2 + 𝑝33𝐸0.
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where the 𝑝𝑖𝑗 coefficients have been defined as:

𝑝00 = − 𝜖∞ + 2𝜖e + 2𝜌3(𝜖∞ − 𝜖e)
𝐷

𝑝01 = −2(1 − 𝜌3)(𝜖∞ − 𝜖e)
𝐷

𝑝02 = −2(1 − 𝜌3)(𝜖∞ + 2𝜖e)
𝐷

𝑝03 = −9𝜖e𝜖∞
𝐷

𝑝10 = 2𝜌3(𝜖e − 𝜖∞)
𝐷

𝑝11 = −𝜌3(𝜖b + 2𝜖e) + (1 − 𝜌3)(𝜖b + 2𝜖∞)
𝐷

𝑝12 = 2𝜌3(𝜖b + 2𝜖e)
𝐷

𝑝13 = −3𝜖e(𝜖b + 2𝜖∞)
𝐷

𝑝20 = − 𝜖∞ + 2𝜖e
𝐷

𝑝21 = 𝜖b + 2𝜖e
𝐷

𝑝22 = −2[𝜖∞ + 2𝜖e + 𝜌3(𝜖b − 𝜖∞)]
𝐷

𝑝23 = 3𝜖e(𝜖b − 𝜖∞)
𝐷

𝑝30 = −3𝜌3𝜖∞
𝐷

𝑝31 = − (1 − 𝜌3)(𝜖b + 2𝜖∞)
𝐷

𝑝32 = 2𝜌3(1 − 𝜌3)(𝜖b − 𝜖∞)
𝐷

𝑝33 = (𝜖∞ − 𝜖e)(𝜖b + 2𝜖∞) + 𝜌3(𝜖b − 𝜖∞)(𝜖e + 2𝜖∞)
𝐷

.

This gives us the system of Eqs. (56)-(59) as written down in the main article.

2 Exciting field and Emission Intensity
We here give some indication on how the dynamics of the nanoshell in the lasing regime was obtained, as
exposed in the “Above threshold” section of the main article.

Since we were interested in investigating situations of free lasing (no external drive), it seemed physical
to use zero-field initial conditions, and zero external probe, and then leave the lasing instability to grow
out of the numerical noise. This procedure, however, gives rise to prohibitively long computational times,
and becomes especially inefficient when computing spectra including many frequency points. This is why
as a numerical trick, we in fact applied a minute probe field 𝐸0 acting like a “seed” and driving the initial
steps of the instability faster. To produce the figures shown in Section 6, we chose to apply a field value
𝐸0 = 10−8𝐸sat.

To make sure nonetheless that the results we obtained were in the free lasing regime and that the
presence of the small 𝐸0 did not generate any forced oscillation regime, we verified that the final results
did not depend on the value chosen for 𝐸0. This is illustrated in the following Figure, where the emitted
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intensity 𝐼em(𝑡) has been calculated in the same conditions as Figs. 6 to 8 of the main article, namely,
at the frequency ℏ𝜔 = 2.811 eV and with a gain level 𝐺 = 1.01𝐺th. Results are shown for 𝐸0 = 10−10

to 10−7𝐸sat: it is seen that the obtained responses are indeed all exactly the same to within some time
translation, corresponding to the onset time of the lasing instability.
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Fig. 1: Identical results (to within a time translation) were obtained for all values of the field 𝐸0 used to accelerate the
numerical onset of the lasing instability, confirming that the nanolaser is in a free lasing regime.
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