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Abstract: Spectroscopy is a technique that analyzes the

interaction between matter and light as a function of wave-

length. It is themost convenientmethod for obtaining quali-

tative andquantitative information about anunknown sam-

ple with reasonable accuracy. However, traditional spec-

troscopy is reliant on bulky and expensive spectrome-

ters, while emerging applications of portable, low-cost and

lightweight sensing and imaging necessitate the develop-

ment of miniaturized spectrometers. In this study, we have

developed a computational spectroscopy method that can

provide single-shot operation, sub-nanometer spectral res-

olution, and direct materials characterization. This method

is enabled by a metasurface integrated computational spec-

trometer and deep learning algorithms. The identifica-

tion of critical parameters of optical cavities and chemical

solutions is demonstrated through the application of the

method, with an average spectral reconstruction accuracy

of 0.4 nm and an actual measurement error of 0.32 nm.

The mean square errors for the characterization of cavity

length and solution concentration are 0.53 % and 1.21 %,

respectively. Consequently, computational spectroscopy can

achieve the same level of spectral accuracy as traditional

spectroscopy while providing convenient, rapid material

characterization in a variety of scenarios.
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1 Introduction

In numerous scientific disciplines, spectroscopic analysis

represents a fundamental and powerful tool that utilizes the

absorption, emission, or scattering properties of materials

in response to electromagnetic radiation (light) to reveal

information about their composition and structure [1], [2].

This instrumental technique plays a pivotal role in the

characterization and analysis of materials science, food sci-

ence, nanotechnology, biology and chemistry, among other

fields. For instance, the refractive index of thin film mate-

rials can be quantified by ellipsometry, while the char-

acteristic absorption peaks of optical fiber materials and

their quality can be readily identified by absorption spec-

troscopy [3]. Fourier transform infrared spectrometers are

frequently employed to identify the chemical composition

and solution concentration of chemical and biological sam-

ples that are commonly encountered in the food, environ-

mental andmedical industries,where characteristic absorb-

ing and extinctive spectral features are studied [4]. Surface-

enhanced Raman spectroscopy (SERS) is a highly sensitive

spectroscopic method that enhances the Raman scattering

of molecules and allows for the structural fingerprinting of

low concentration analytes through the plasmon-mediated

amplification of electric fields or chemical enhancement [5].

The extraordinary spectral resonance of plasmonics and the

dielectric metasurface can be readily investigated through

light transmission/reflection/scattering measurements [6].

The spectral information encodes a wealth of information

not only about thematerial composition, but also the critical

parameters of the photonic structure and cavity configura-

tion, among other things. Consequently, it is of paramount

importance to develop accurate and accessible spectro-

scopic techniques.

The recent rapid development and wide application

of deep learning tools has enabled the direct inverse

design and optimisation of photonic devices using a large

amount ofmaterials (or structures) and their corresponding
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spectral data [7], [8]. A deep learning approach can analyze

the scattering spectra of silicon nanostructures within the

diffraction-limited region and output digital information,

which breaks the limits of optical information storage and

already surpasses the blu-ray disc technology [9]. Recently,

a deep neural network has also been employed to char-

acterize the critical geometric and material parameters of

unknown plasmonic nanostructures through simple trans-

mission spectra [10], suggesting a simple and intelligent

approach to material characterization using spectroscopic

techniques.

Neverthless, high-quality spectroscopic data is typi-

cally obtained using conventional spectrometers. Conven-

tional spectrometers typically comprise monochromators

and Fourier transform spectrometers. Monochromators

typically employ prisms or gratings to divide the light source

into monochromatic light [11]. This process is conducted

sequentially, necessitating a sufficiently long optical path

to separate different wavelengths and achieve high spec-

tral resolutions. Fourier transform spectrometers use the

Michelson interferometer, which generates an interference

pattern by creating a path difference between two light

beams using movable mirrors [12]. The long optical length

and bulky dispersive elements in these conventional spec-

trometers impede the adoption of low-cost, portable, fast

and accurate spectroscopic analysis in everyday scenarios.

In contrast to conventional geometric optics, nanopho-

tonic structures can extend the length of the optical path

to millions of times larger than their physical dimen-

sions. Nanophotonic structures themselves exhibit a dis-

tinctive light–matter interaction, known as the response

function. Recently, with the assistance of appropriate com-

putational algorithms based on compressive sensing theory,

the spectral information can be accurately decoded and

reconstructed by a multitude of miniature spectrometers

[13]–[15]. The integration of photonic crystal structures or

metasurfaces with complementary metal oxide semicon-

ductor (CMOS) or charge-coupled device (CCD) sensors has

led to the development of compact and low-cost spectral

analysis tools [16], [17]. These innovations use interference

patterns generated within photonic structures to encode

and decode spectral information [15], [18]–[21]. Further-

more, computational spectrometers can reconstruct high-

resolution spectral images from low-resolution images or

sparse sampling data through deep learning, which effec-

tively compresses spectral data, removes noise, and uses

parallel computing capabilities to process large amounts

of spectral data in real-time [22]–[25]. These advances

facilitate the development of spectrometers with minimal

signal correlation, which significantly improves the accu-

racy of spectral reconstruction and analysis. In addition to

nanophotonic integrated image sensors, research on semi-

conductor nanowires has also achieved dynamic control of

the photon response, making significant contributions to

the miniaturization of spectroscopic instruments [26]. If the

spectroscopic data can be collected by computational spec-

trometers, structural and material analysis can be easily

decoded by deep learning algorithms, enabling a snapshot

type of portable, low-cost computational characterization

tool. Meng’s work has demonstrated that machine learning

combined with filter arrays can be applied to material clas-

sification in theoretical simulations [27].

This work presents a novel snapshot computational

spectroscopy (SCS) tool consisting of a metasurface inte-

grated computational spectrometer (MICS) and a deep neu-

ral network (DNN), which is capable of rapid material anal-

ysis. The principle of operation is illustrated in Figure 1.

The structural and material information of the sample of

interest is contained in the transmission/reflection spec-

tra, which are then captured by a snapshot light intensity

image taken by the metasurface integrated CCD imager. The

spectral information is then decoded by the reconstruction

algorithmand fed into a deep neural network for direct clas-

sification and regression. All computationally reconstructed

spectra achieve comparable spectral detection accuracies to

those of traditional spectrometers, while the overall size of

the computational spectroscopic tool is only approximately

100 mm × 50 mm × 50 mm, with a spectral sampling speed

of less than 1 s. This approach provides a novel theoretical

framework for the rapid and accurate prediction ofmaterial

properties, while simultaneously addressing the need for

portability, miniaturization, accuracy and speed of spectral

acquisition and analysis.

2 Methods

2.1 The design and fabrication
of metasurface filter array

The accuracy of spectral reconstruction is related to the

size and correlation of metasurface arrays as previously

discussed [28]. For better spatial resolution required in

spectral imaging, a small filter array is desirable; however,

this necessitates a low response function correlation for

accurate spectral reconstruction. Conversely, a large filter

array encodes spectra with sufficient data points, and the

reconstruction accuracy is almost unaffected by the array

correlation coefficient if the array size is greater than 7 ×
7 structures from previous investigations [28]–[30]. In our

work, in order to achieve a high level of spectral reconstruc-

tion accuracy, we selected a 10 × 10 large array structure



H. Zhang et al.: Snapshot computational spectroscopy enabled by deep — 4161

Figure 1: Schematics of snapshot computational spectroscopy enabled (SCS) by metasurface integrated computational spectrometer (MICS) and deep

neural network (DNN). The white light source irradiates the material to be tested to form spectral information, which is then encoded by an encoder

and recorded by CCD image sensor. The spectral information is then decoded by reconstruction algorithm, and finally fed into a DNN for direct

characterization.

as an encoder from the filter design database based on our

previous inverse design approach. Afterwards, a thin layer

of UV glue is spin coated on the surface of the CCD sensor to

bond the processed metasurface array chip (with sapphire

substrate) to the sensor surface after ultraviolet radiation.

The metasurface array chip can thus be integrated onto the

CCD sensor as illustrated in Figure 2(a) and (b).

In order to optimize the array design, the Lumerical

FDTD Solutions software was employed to obtain the filter

design database, which contains five hundredmetasurfaces

with different transmittances (response functions) resulting

from different shapes, sizes, orientations and periods of the

meta-atoms. This is illustrated in Figure 2(c). This metasur-

face database is relatively small as we need to consider the

nanofacrication feasibility and effective response in the visi-

ble domain. In order to select the optimized array structure

with the least correlation in this relatively small database,

the parameterized design of the metasurface was fed into a

deep neural network (DNN) along with the corresponding

transmission spectra, as show in Figure S1(a). The loss func-

tion was defined to minimize the discrepency between the

model output and target output, including a regularization

term to assess the correlation of different structural groups.

The transmission spectra of all designs are computed by for-

ward propagation through the network, and an algorithm

is used to adjust the parameters of the metasurface struc-

tures to minimize the loss function. Through this method,

we are able to select 100 filter designs with the lowest

correlation from the validation results and the final array

exhibits an average correlation value of 0.681 which is suffi-

cient for accurate spectrum reconstruction [28]. In addition,

the actual correlation value deviates from the design a bit

due to unavoidable nanofabrication error induced spectral

response discrepancy, our simulation correlation is 0.57.

Following the selection the structural parameters, the

sapphire substrate was coated with a 100 nm thick silicon

film through plasma-enhanced chemical vapor deposition

(PECVD), which was identical to the simulated conditions.

Each fabricated metasurface filter in the array is approx-

imately 15 μm in size, with a 2 μm spacing between each

other, resulting in a total array size of 170 μm × 170 μm.
The metasurface patterns are transferred to the silicon film

by electron beam lithography (EBL) followed by reactive

ion etching (RIE) to obtain the ultimate metasurface filter

array chip. Subsequently, the transmission spectra of each

metasurface in the fabricated encoder chip was measured

by using MStarter ABS with a spot size of 5 μm and a wave-

length range from 400 nm to 900 nm. Figure 2(d) illustrates

the simulated and experimental response functions for six

representative metasurface structures. There is unavoid-

able spectral response discrepancy between the simula-

tion and fabrication due to unavoidable nanofabrication

errors. All the 100 transmissive response functions are con-

verted into a response matrix equation Ti(𝜆), and the actual

measured array correlation is calculated and presented in

Figure 2(e).
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Figure 2: The metasurface array structures and their response functions. (a) Photograph of metasurface array mounted on a CCD image sensor.

(b) An image of the 100 metasurface filter array under a microscope. (c) Scanning electron microscope of representative metasurfaces, including

structures with different shapes of crosses, circles, squares, and varied diameters, periodicities, and angles between rows. (d) The simulated

transmission spectra corresponding to the six structures shown in Figure c and the transmission spectra measured by MStarter ABS micro area

spectrometer. (e) The correlation matrix of the overall transmission spectra of the 100 metasurface filter array.

2.2 The calibration of computational
spectrometer and spectral
reconstruction

In the construction of a miniaturized computational spec-

trometer, a white LED point light source is employed for

the purpose of system miniaturization. In order to con-

vert the scattered light from the point source into uniform,

parallel light, a thin convex lens is installed behind the

light source. The thin convex lens is capable of shaping the

light into parallel beams, which are necessary for subse-

quent CCD signal collection. Given that there is always a

photon loss during the photosensing process, it is of the

utmost importance to calibrate CCD light intensity sensitiv-

ity, denoted by 𝜂(𝜆) prior to reconstruction. The calibration

ultilizes amonochromatorwith its optical path illustrated in

Figure S2(a). The operational mode may be either reflection

or transmission, as illustrated in Figure S2(b) and (c). The

CCD industrial camera model we use is MV-CU120-10 GM,

with a single pixel size of 1.85 μm × 1.85 μm. The response
curve as shown in Figure S3. The composition or structure

of the sample may either absorb or scatter light, resulting

in a unique spectral fingerprint. Subsequently, the spectral

information is collected by the CCD image and converted

into an electrical signal for subsequent decoding processing,

following its entry into the metasurface array encoder. For

calibration purposes, the monochromator was employed

to sequentially scan the wavelength range from 400 nm to

900 nm with a 0.4 nm bandwidth. At each wavelength, the

light intensity signals were collected using a CCD and a pho-

tometer. The incorporation of the light intensity sensitivity

𝜂(𝜆) of the CCD image sensor, calculated and incorporated

into the reconstructed spectrum, can result in a more real-

istic and accurate signals, thereby improving the accuracy of

spectral reconstruction. Finally, the incident spectrum I(𝜆)

can be reconstructed using the collected CCD image sensor’s

electrical signals Si, the responsematrix equation Ti(𝜆), and

the spectral sensitivity 𝜂(𝜆) through the spectral reconstruc-

tion formula (1), as previously described in numerousworks

[14], [16], [17], [31]. The detailed principle can be obtained in

Figure S4.
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Si = Ti

(
𝜆
)
∗ 𝜂

(
𝜆
)
∗ I

(
𝜆
)

(1)

2.3 The training of deep neural network
for spectral characterization

Furthermore, in order to perform computational character-

ization with high accuracy and efficiency, a DNN network

was constructed. The DNN comprises of a 1 × 1,251 input

layer for the reconstructed spectra from 400 to 900 nm, 3

× 2,000 fully connected hidden layers, a 1 × n regression

network output layer, and a 1 × m classification network

output layer (where n is the number of labels required for

the regression network output, and m is the number of

labels for the classification network output). The activation

function of the regression network is the rectified linear

unit (ReLU), while that of the classification network is the

Softmax function. The DNN neural network architecture is

shown in Figure S1(b). As demonstrated in our previous

research, experimental and simulated spectra exhibit com-

mon resonance features. An accurate experimental charac-

terization of the material property was demonstrated using

DNN training on mixed experimental data and simulated

data [10]. Learning from this, we have used only simulated

data for DNN training and the test dataset consists only

of experimental data. In this way, the burden of collecting

sufficient experimental data as a training dataset is greatly

reduced.

3 Results

3.1 The spectral reconstruction accuracy
analysis

In order to verify the precision and accuracy of our minia-

turized computational spectrometer, we collected spectral

information from each sample using both high-precision

commercial UV–Vis–NIR spectrometer (Agilent Cary5000)

and our MICS approach. First, we validated the reconstruc-

tion accuracy of simple spectra from narrow pulse spec-

tra in the 400 nm–900 nm wavelength range. The narrow

pulse spectra were obtained over a wavelength range of

450 nm–850 nm with a 50 nm pulse interval and a spectral

full width at half maximum (FWHM) of 4 nm, as shown

in Figure 3(a). The dashed lines represent the transmission

spectra measured by the Cary5000, while the solid lines

represent the transmission spectra reconstructed by MICS.

An enlarged spectral peak comparison of a 650 nm pulse

signal is shown on the right. The reconstructed spectra of

incandescent and LED light sources have high reconstruc-

tion accuracy, as shown in Figure 3(b) and (c). We also

reconstructed a narrow spectrum with a peak shift differ-

ence of only 0.4 nm, demonstrating that our spectral recon-

struction accuracy reached 0.4 nm, as shown in Figure S5.

In order to validate the spectral reconstruction accu-

racy and resolution for actual nanophotonic structures and

chemical solutions, a number of cases have been selected

for test and comparison. The first group comprises two

metasurfaces comprising circular nanoposts with a period

of 1,300 nmand a diameter of 700 nm. One of thesemetasur-

faces has been spin coated with a thin layer of NOA 63 with

a refractive index value of 1.56, situated above the metasur-

face (Figure S6(a)). The transmission spectra of each sample

were measured and are shown in Figure 3(d). The dashed

line represents themeasurement by the Cary5000, while the

solid line represents the measurement by MICS. The sec-

ond group comprises circular nanopost metasurfaces with

the following parameters: Period = 400 nm, Diameter =
300 nm, and P = 300 nm, D = 200 nm (Figure S6(b)). Their

transmission spectra are shown in Figure 3(e). The third

group is composed of methyl blue solutions with a concen-

tration difference of 0.01 g/L (Figure S6(c)), and its transmis-

sion spectrum is shown in Figure 3(f). The fourth group is

composed of a simple metal-dielectric-metal multilayer film

configuration, where the top metal layer is Ag, the bottom

layer is Au, and the insulator layer is methyl methacrylate

(MMA). The dielectric thickness of the insulator layer is

280 nm and 340 nm, respectively (Figure S6(d)). Their trans-

mission spectra are shown in Figure 3(g). A direct compari-

son of the reconstructed and measured spectra reveals that

the computational spectrometer is capable of accurately

reproducing the spectral characteristics of the measured

data.

A quantitative analysis was conducted on four aspects

of the above spectra, including themean square error (MSE),

peak shift error, amplitude error and full width at half max-

imum (FWHM) error in reconstructed spectra. The results

presented in Figure 3(h)–(k)Figure 3(h) – (k) demonstrate

that the average MSE for all spectral reconstructions was

1.28 × 10−4, the average peak shift error for all recon-

structed spectra was 0.32 nm, and the average peak ampli-

tude errorwas 0.6 %, the FWHMerror is 0.437 nm. The anal-

ysis revealed that the reconstruction offset error of a minia-

turised computational spectrometer was 0.32 nm, which

was smaller than its spectral resolution of 0.4 nm. Conse-

quently, the reconstruction accuracy of MICS is 0.4 nm, with

a reconstruction accuracy of 99.4 %, closely matching the

spectra detected by traditional spectrometers. Within the

current study range of 400 nm–900 nm, the MICS can be

employed as a substitute for traditional spectrometers for

spectral analysis.
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Figure 3: Spectral reconstruction accuracy analysis. (a) The left image shows the spectra of pulse light with a full width at half maximum (FWHM) of

4 nm and intervals of 50 nm in the 400 nm–900 nm range, detected by both traditional spectrometers and miniature computational spectrometers.

The dashed lines represent the results from Agilent Cary5000, while the solid lines are the results from MICS. The right image shows the enlarged

spectral detection results for the pulse spectrum centered at 650 nm. (b) And (c) measured and reconstructed spectra of two different light sources.

(d) Transmission spectra of a metasurface before and after spin-coating of an optical adhesive NOA 63, detected by both types of spectrometers.

(e) The reflection spectra of two optical metasurfaces with different periods and diameters. (f) The transmission spectra of the methyl blue solution

concentration with a difference of 0.01 g/L. (g) The transmission spectra of metal-dielectric-metal multilayer film with different dielectric layer

thicknesses. (h)–(k) Mean squared error of spectrum, average peak shift error, average amplitude error and FWHM error in (a), (d)–(g).

3.2 Material and structural computational
characterization

The application of the SCS technique to the characterisation

of a simple optical cavity is demonstrated, based on the

highly accurate spectral information sensed by the MICS

technique. The Fabry–Pérot (FP) cavity is a common optical

cavity employed in a variety of laser, spectrometer, and opti-

cal instrument applications. An FP cavity is composed of two

parallel mirrors and an adjustable cavity length. This phe-

nomenon of wavelength-dependent interference can either

enhance or diminish the transmission spectrum, resulting

in the formation of peaks. The characterisation of the FP cav-

ity length typically relies on sophisticated tools such as scan-

ning or tunneling electron microscopes for cross-sectional

examination. The precise relationship between the cavity

length and the peak wavelength can be expressed as 2nd =
m𝜆, where n is the refractive indexwithin the cavity, d is the

cavity thickness,m is an integer, and 𝜆 is the wavelength of

the transmitted light. If the total path length is an integer

multiple of the wavelength of the light, the reflected light

waves will constructively interfere, forming interference

peaks.

In accordancewith the constructive interference condi-

tion, as the cavity length of the FP cavity increases, thewave-

length supporting constructive interference shifts to longer

wavelengths, as illustrated in Figure 4(b). Consequently, the

identification of the peak positions of the transmission spec-

tra allows for the characterisation of the cavity length. As

deep neural networks (DNNs) can map the physical rela-

tionship between structure and spectra with high accuracy,

we have incorporated a DNN to analyse the reconstructed

spectra, with the aim of predicting the material type, cav-

ity length and cavity configuration, among other things, in

an intelligent manner. The initial training set comprised

three-layer FP cavities simulated using Lumerical FDTD

Solutions,with varying thicknesses andmaterials. The train-

ing set included two metals (Au, Ag) and three dielectrics

(PMMA, MMA, Al2O3) with dielectric layer thicknesses rang-

ing from 300 nm to 900 nm, at 10 nm intervals, totalling

26,000 datasets. The degree of fit between the simulated
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Figure 4: The application of snapshot computational spectroscopy. (a) Schematic diagram of the Fabry–Pérot (FP) cavity. (b) Transmission spectra of

FP cavities with different dielectric cavity lengths measured by Carry5000. (c) Transmission spectra of FP cavities with different dielectric cavity lengths

measured by MICS. (d) Schematic diagram of the solution samples with different concentrations. (e) Transmission spectra of methyl blue solutions

with different concentrations measured by Carry5000. (f) Transmission spectra of methyl blue solutions with different concentrations measured by

MICS. (g) Loss curve after the DNN network training is complete. (h) Changes in the success rate of prediction for the regression and classification

networks during the hyperparameter optimization process. (i) Statistics of the mean squared error between the predictions from data obtained from

Cary5000 and MICS. (j) Confusion matrix for predicting solute types using classification networks.

and experimental spectra was found to be between 91.2 %

and 98.0 % after data normalization and preprocessing, as

illustrated in Figure S7–S9. The entire set of simulated data

was employed as the training set for the DNN network, with

the trained DNN subsequently used for the prediction of

experimental spectra.

Subsequently, 100 sets of FP cavities with different met-

als, dielectrics, and thicknesses were measured using MICS

and Cary 5000, which served as the test set for the pre-

trained DNN network to analyze its prediction success rate.

The DNN network has two outputs: one is the classifica-

tion network output, which is designed to predict the type

of metal and dielectric material present in the FP cavity,

and the other is the regression network output, which is

intended to predict the thickness of the FP cavity dielectric

layer. The prediction performance for different dielectric

layer thicknesses is illustrated in Figure S10(g) and (h). The

dielectric layer of aluminum oxide exhibited the highest

MSE, with a prediction error of 0.76 nm by Cary 5000 and

0.81 nm for MICS. The lowest mean square error (MSE) was

observed for MMA, with a prediction error of 0.23 nm for

Cary 5000 and 0.25 nm for MICS, respectively. Both types of

spectrometers achieved a 100 % success rate in predicting

the type of materials, as demonstrated in Figure S10(a)–(f),

which present the confusion matrices for the predictions

made by the two spectroscopic data sets.

Another typical application example is the spectro-

scopic analysis of chemical solutions. When light passes

through a solution, a portion of the light is absorbed by

the solute present within the solution. The quantity of light

absorbed is contingent upon the nature and concentra-

tion of the solute, and this relationship is elucidated by

Beer’s Law. The law states that the absorption of light at

a specific wavelength is directly proportional to the con-

centration of the solute, with the formula A = 𝜖 × c × l,

where A is the absorbance, 𝜖 is the molar absorptivity, c

is the molar concentration of the solute, and l is the path

length of the light through the solution. Transmission spec-

tra demonstrate the intensity of light that has traversed the

solution, reflecting the quantity of light that has not been

absorbed. Figure 4(e) illustrates the manner in which the

transmission spectrum of a methylene blue solution varies

with concentration. Given that different solutions exhibit

varying absorption coefficients, transmission spectra can

be employed to ascertain the nature and concentration

of solutions. In the absence of knowledge regarding the
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concentration of the solution, it is necessary to characterise

the solution’s properties using a range of commonmethods,

including spectrophotometry, titration, conductivity deter-

mination and nuclear magnetic resonance spectroscopy,

among others.

In order to illustrate the SCS technique in chemical solu-

tion characterisation, four types of solutions were selected,

each containing a different chemical: methylene blue (Bs),

rhodamine (AR), Cu2+ ions and Fe3+ ions. The concentra-

tions of Bs and AR ranged from 0.01 g/L to 1 g/L, while those

of Cu2+ and Fe3+ ranged from 1 g/L to 100 g/L, resulting in a

total of 80 datasets. All the measured experimental spectra

were used for training purposes. In order to expand the

dataset size, random errors were added for data augmen-

tation, resulting in a total of 720 datasets. Of these, 80 %

were selected for training, while the remaining 20 % were

used for testing. As the selection of hyperparameters can

directly impact the performance and efficiency of models in

deep learning and cannot be automatically updated during

training, we also incorporated hyperparameter optimisa-

tion. The hyperparameters that were optimized included

the number of neurons, the activation function, the number

of epochs, the batch size, and the number of optimization

rounds, which were set at 10. Hyperparameter optimization

can markedly enhance model performance, prevent over-

fitting, accelerate training, and accommodate diverse data

characteristics.

Figure 4(i) illustrates the efficacy of the classification

and regression networks during hyperparameter optimiza-

tion. A regression network for the FP cavity is considered

successful if the predicted thickness error is less than 1 nm

from the actual thickness error. For solutions, a success is

defined when the concentration error is less than 2 %. The

DNN network loss curve is depicted in Figure 4(h). Upon

inputting the test dataset of solutions into the trained DNN

network, the prediction results for varying solution concen-

trations are presented in Figure S11(c) and (d), with an over-

all concentration mean square error of 1.8 %. The results of

solution type predictions by both the Cary 5000 and MICS

are shown in Figure S11(a) and (b), respectively, with 100 %

accuracy. The overall mean squared error (MSE) for the

FP cavities and solutions is displayed in Figure 4(j), which

demonstrates that the chemical solution characterisation

by both spectrometers exhibits negligible differences in the

predicted errors.

4 Discussion

The operational scope of traditional spectrometers is

contingent upon the spectral range of gratings and

photodetectors, whereas computational spectrometers are

also constrained by the dynamic range of encoders and

image sensors. The operational range of the computational

spectrometer described in this article extends from 400 nm

to 900 nm, corresponding to the photosensitive range of the

CCD image sensor and the design of the metasurface array

encoder. However, this does not preclude the potential

applications of this MICS technology in the ultraviolet

and infrared bands. Furthermore, in order to expand the

application of the SCS technique in reality, it is necessary

to collect sufficient spectral data for various materials in

order to form pretrained DNN tools. This necessitates the

acquisition of a considerable quantity of experimental

spectral data and the subsequent training of DNNs.

5 Conclusion

The combination of a MICS hardware and a DNN software

tool can form a snapshot computational spectroscopic tech-

nique, which can rapidly and accurately identify a sample’s

critical properties such as the DNN network and chemi-

cal solution concentration. This represents an innovative

alternative to traditional spectrometers and provides a new

theoretical foundation for the rapid and precise charac-

terisation of materials. In the future, by optimising the

design and fabrication of encoders and photodetectors, the

sampling range of miniature computational spectrometers

can be broadened to the ultraviolet and infrared regions,

with the potential for further miniaturisation. The integra-

tion of a metasurface with two-dimensional photodetectors

enables the realization of an ultraminiature configuration

with micrometer dimensions. The technology is compatible

with the CMOS technology, which facilitates the integration

of MICS within a smartphone. This integration enables the

development of truly portable SCS applications for spec-

tral detection and material characterization in a range of

biomedical, food and environmental test scenarios.

Supporting Information

Supporting information includes spectral reconstruction

algorithm, spectral detection of different substances, feasi-

bility analysis of FP cavity prediction and analysis of predic-

tion results of the DNN networks.
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