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Abstract: Spectroscopy is a technique that analyzes the
interaction between matter and light as a function of wave-
length. It is the most convenient method for obtaining quali-
tative and quantitative information about an unknown sam-
ple with reasonable accuracy. However, traditional spec-
troscopy is reliant on bulky and expensive spectrome-
ters, while emerging applications of portable, low-cost and
lightweight sensing and imaging necessitate the develop-
ment of miniaturized spectrometers. In this study, we have
developed a computational spectroscopy method that can
provide single-shot operation, sub-nanometer spectral res-
olution, and direct materials characterization. This method
is enabled by a metasurface integrated computational spec-
trometer and deep learning algorithms. The identifica-
tion of critical parameters of optical cavities and chemical
solutions is demonstrated through the application of the
method, with an average spectral reconstruction accuracy
of 0.4nm and an actual measurement error of 0.32 nm.
The mean square errors for the characterization of cavity
length and solution concentration are 0.53 % and 1.21 %,
respectively. Consequently, computational spectroscopy can
achieve the same level of spectral accuracy as traditional
spectroscopy while providing convenient, rapid material
characterization in a variety of scenarios.
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1 Introduction

In numerous scientific disciplines, spectroscopic analysis
represents a fundamental and powerful tool that utilizes the
absorption, emission, or scattering properties of materials
in response to electromagnetic radiation (light) to reveal
information about their composition and structure [1], [2].
This instrumental technique plays a pivotal role in the
characterization and analysis of materials science, food sci-
ence, nanotechnology, biology and chemistry, among other
fields. For instance, the refractive index of thin film mate-
rials can be quantified by ellipsometry, while the char-
acteristic absorption peaks of optical fiber materials and
their quality can be readily identified by absorption spec-
troscopy [3]. Fourier transform infrared spectrometers are
frequently employed to identify the chemical composition
and solution concentration of chemical and biological sam-
ples that are commonly encountered in the food, environ-
mental and medical industries, where characteristic absorb-
ing and extinctive spectral features are studied [4]. Surface-
enhanced Raman spectroscopy (SERS) is a highly sensitive
spectroscopic method that enhances the Raman scattering
of molecules and allows for the structural fingerprinting of
low concentration analytes through the plasmon-mediated
amplification of electric fields or chemical enhancement [5].
The extraordinary spectral resonance of plasmonics and the
dielectric metasurface can be readily investigated through
light transmission/reflection/scattering measurements [6].
The spectral information encodes a wealth of information
not only about the material composition, but also the critical
parameters of the photonic structure and cavity configura-
tion, among other things. Consequently, it is of paramount
importance to develop accurate and accessible spectro-
scopic techniques.

The recent rapid development and wide application
of deep learning tools has enabled the direct inverse
design and optimisation of photonic devices using a large
amount of materials (or structures) and their corresponding
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spectral data [7], [8]. A deep learning approach can analyze
the scattering spectra of silicon nanostructures within the
diffraction-limited region and output digital information,
which breaks the limits of optical information storage and
already surpasses the blu-ray disc technology [9]. Recently,
a deep neural network has also been employed to char-
acterize the critical geometric and material parameters of
unknown plasmonic nanostructures through simple trans-
mission spectra [10], suggesting a simple and intelligent
approach to material characterization using spectroscopic
techniques.

Neverthless, high-quality spectroscopic data is typi-
cally obtained using conventional spectrometers. Conven-
tional spectrometers typically comprise monochromators
and Fourier transform spectrometers. Monochromators
typically employ prisms or gratings to divide the light source
into monochromatic light [11]. This process is conducted
sequentially, necessitating a sufficiently long optical path
to separate different wavelengths and achieve high spec-
tral resolutions. Fourier transform spectrometers use the
Michelson interferometer, which generates an interference
pattern by creating a path difference between two light
beams using movable mirrors [12]. The long optical length
and bulky dispersive elements in these conventional spec-
trometers impede the adoption of low-cost, portable, fast
and accurate spectroscopic analysis in everyday scenarios.

In contrast to conventional geometric optics, nanopho-
tonic structures can extend the length of the optical path
to millions of times larger than their physical dimen-
sions. Nanophotonic structures themselves exhibit a dis-
tinctive light-matter interaction, known as the response
function. Recently, with the assistance of appropriate com-
putational algorithms based on compressive sensing theory,
the spectral information can be accurately decoded and
reconstructed by a multitude of miniature spectrometers
[13]-[15]. The integration of photonic crystal structures or
metasurfaces with complementary metal oxide semicon-
ductor (CMOS) or charge-coupled device (CCD) sensors has
led to the development of compact and low-cost spectral
analysis tools [16], [17]. These innovations use interference
patterns generated within photonic structures to encode
and decode spectral information [15], [18]-[21]. Further-
more, computational spectrometers can reconstruct high-
resolution spectral images from low-resolution images or
sparse sampling data through deep learning, which effec-
tively compresses spectral data, removes noise, and uses
parallel computing capabilities to process large amounts
of spectral data in real-time [22]-[25]. These advances
facilitate the development of spectrometers with minimal
signal correlation, which significantly improves the accu-
racy of spectral reconstruction and analysis. In addition to
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nanophotonic integrated image sensors, research on semi-
conductor nanowires has also achieved dynamic control of
the photon response, making significant contributions to
the miniaturization of spectroscopic instruments [26]. If the
spectroscopic data can be collected by computational spec-
trometers, structural and material analysis can be easily
decoded by deep learning algorithms, enabling a snapshot
type of portable, low-cost computational characterization
tool. Meng’s work has demonstrated that machine learning
combined with filter arrays can be applied to material clas-
sification in theoretical simulations [27].

This work presents a novel snapshot computational
spectroscopy (SCS) tool consisting of a metasurface inte-
grated computational spectrometer (MICS) and a deep neu-
ral network (DNN), which is capable of rapid material anal-
ysis. The principle of operation is illustrated in Figure 1.
The structural and material information of the sample of
interest is contained in the transmission/reflection spec-
tra, which are then captured by a snapshot light intensity
image taken by the metasurface integrated CCD imager. The
spectral information is then decoded by the reconstruction
algorithm and fed into a deep neural network for direct clas-
sification and regression. All computationally reconstructed
spectra achieve comparable spectral detection accuracies to
those of traditional spectrometers, while the overall size of
the computational spectroscopic tool is only approximately
100 mm X 50 mm X 50 mm, with a spectral sampling speed
of less than 1s. This approach provides a novel theoretical
framework for the rapid and accurate prediction of material
properties, while simultaneously addressing the need for
portability, miniaturization, accuracy and speed of spectral
acquisition and analysis.

2 Methods

2.1 The design and fabrication
of metasurface filter array

The accuracy of spectral reconstruction is related to the
size and correlation of metasurface arrays as previously
discussed [28]. For better spatial resolution required in
spectral imaging, a small filter array is desirable; however,
this necessitates a low response function correlation for
accurate spectral reconstruction. Conversely, a large filter
array encodes spectra with sufficient data points, and the
reconstruction accuracy is almost unaffected by the array
correlation coefficient if the array size is greater than 7 X
7 structures from previous investigations [28]-[30]. In our
work, in order to achieve a high level of spectral reconstruc-
tion accuracy, we selected a 10 X 10 large array structure
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Figure 1: Schematics of snapshot computational spectroscopy enabled (SCS) by metasurface integrated computational spectrometer (MICS) and deep
neural network (DNN). The white light source irradiates the material to be tested to form spectral information, which is then encoded by an encoder
and recorded by CCD image sensor. The spectral information is then decoded by reconstruction algorithm, and finally fed into a DNN for direct

characterization.

as an encoder from the filter design database based on our
previous inverse design approach. Afterwards, a thin layer
of UV glue is spin coated on the surface of the CCD sensor to
bond the processed metasurface array chip (with sapphire
substrate) to the sensor surface after ultraviolet radiation.
The metasurface array chip can thus be integrated onto the
CCD sensor as illustrated in Figure 2(a) and (b).

In order to optimize the array design, the Lumerical
FDTD Solutions software was employed to obtain the filter
design database, which contains five hundred metasurfaces
with different transmittances (response functions) resulting
from different shapes, sizes, orientations and periods of the
meta-atoms. This is illustrated in Figure 2(c). This metasur-
face database is relatively small as we need to consider the
nanofacrication feasibility and effective response in the visi-
ble domain. In order to select the optimized array structure
with the least correlation in this relatively small database,
the parameterized design of the metasurface was fed into a
deep neural network (DNN) along with the corresponding
transmission spectra, as show in Figure S1(a). The loss func-
tion was defined to minimize the discrepency between the
model output and target output, including a regularization
term to assess the correlation of different structural groups.
The transmission spectra of all designs are computed by for-
ward propagation through the network, and an algorithm
is used to adjust the parameters of the metasurface struc-
tures to minimize the loss function. Through this method,
we are able to select 100 filter designs with the lowest

correlation from the validation results and the final array
exhibits an average correlation value of 0.681 which is suffi-
cient for accurate spectrum reconstruction [28]. In addition,
the actual correlation value deviates from the design a bit
due to unavoidable nanofabrication error induced spectral
response discrepancy, our simulation correlation is 0.57.

Following the selection the structural parameters, the
sapphire substrate was coated with a 100 nm thick silicon
film through plasma-enhanced chemical vapor deposition
(PECVD), which was identical to the simulated conditions.
Each fabricated metasurface filter in the array is approx-
imately 15 pm in size, with a 2 pm spacing between each
other, resulting in a total array size of 170 pm X 170 pm.
The metasurface patterns are transferred to the silicon film
by electron beam lithography (EBL) followed by reactive
ion etching (RIE) to obtain the ultimate metasurface filter
array chip. Subsequently, the transmission spectra of each
metasurface in the fabricated encoder chip was measured
by using MStarter ABS with a spot size of 5 um and a wave-
length range from 400 nm to 900 nm. Figure 2(d) illustrates
the simulated and experimental response functions for six
representative metasurface structures. There is unavoid-
able spectral response discrepancy between the simula-
tion and fabrication due to unavoidable nanofabrication
errors. All the 100 transmissive response functions are con-
verted into a response matrix equation T;(4), and the actual
measured array correlation is calculated and presented in
Figure 2(e).
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Figure 2: The metasurface array structures and their response functions. (a) Photograph of metasurface array mounted on a CCD image sensor.
(b) An image of the 100 metasurface filter array under a microscope. (c) Scanning electron microscope of representative metasurfaces, including
structures with different shapes of crosses, circles, squares, and varied diameters, periodicities, and angles between rows. (d) The simulated
transmission spectra corresponding to the six structures shown in Figure c and the transmission spectra measured by MStarter ABS micro area

spectrometer. (e) The correlation matrix of the overall transmission spectra of the 100 metasurface filter array.

2.2 The calibration of computational
spectrometer and spectral
reconstruction

In the construction of a miniaturized computational spec-
trometer, a white LED point light source is employed for
the purpose of system miniaturization. In order to con-
vert the scattered light from the point source into uniform,
parallel light, a thin convex lens is installed behind the
light source. The thin convex lens is capable of shaping the
light into parallel beams, which are necessary for subse-
quent CCD signal collection. Given that there is always a
photon loss during the photosensing process, it is of the
utmost importance to calibrate CCD light intensity sensitiv-
ity, denoted by #(4) prior to reconstruction. The calibration
ultilizes a monochromator with its optical path illustrated in
Figure S2(a). The operational mode may be either reflection
or transmission, as illustrated in Figure S2(b) and (c). The
CCD industrial camera model we use is MV-CU120-10 GM,
with a single pixel size of 1.85 pm X 1.85 pm. The response
curve as shown in Figure S3. The composition or structure

of the sample may either absorb or scatter light, resulting
in a unique spectral fingerprint. Subsequently, the spectral
information is collected by the CCD image and converted
into an electrical signal for subsequent decoding processing,
following its entry into the metasurface array encoder. For
calibration purposes, the monochromator was employed
to sequentially scan the wavelength range from 400 nm to
900 nm with a 0.4 nm bandwidth. At each wavelength, the
light intensity signals were collected using a CCD and a pho-
tometer. The incorporation of the light intensity sensitivity
n(4) of the CCD image sensor, calculated and incorporated
into the reconstructed spectrum, can result in a more real-
isticand accurate signals, thereby improving the accuracy of
spectral reconstruction. Finally, the incident spectrum I(4)
can be reconstructed using the collected CCD image sensor’s
electrical signals S;, the response matrix equation T;(4), and
the spectral sensitivity 7(4) through the spectral reconstruc-
tion formula (1), as previously described in numerous works
[14], [16], [17], [31]. The detailed principle can be obtained in
Figure S4.
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2.3 The training of deep neural network
for spectral characterization

Furthermore, in order to perform computational character-
ization with high accuracy and efficiency, a DNN network
was constructed. The DNN comprises of a 1 X 1,251 input
layer for the reconstructed spectra from 400 to 900 nm, 3
X 2,000 fully connected hidden layers, a 1 X n regression
network output layer, and a 1 X m classification network
output layer (where n is the number of labels required for
the regression network output, and m is the number of
labels for the classification network output). The activation
function of the regression network is the rectified linear
unit (ReLU), while that of the classification network is the
Softmax function. The DNN neural network architecture is
shown in Figure S1(b). As demonstrated in our previous
research, experimental and simulated spectra exhibit com-
mon resonance features. An accurate experimental charac-
terization of the material property was demonstrated using
DNN training on mixed experimental data and simulated
data [10]. Learning from this, we have used only simulated
data for DNN training and the test dataset consists only
of experimental data. In this way, the burden of collecting
sufficient experimental data as a training dataset is greatly
reduced.

3 Results

3.1 The spectral reconstruction accuracy
analysis

In order to verify the precision and accuracy of our minia-
turized computational spectrometer, we collected spectral
information from each sample using both high-precision
commercial UV-Vis—NIR spectrometer (Agilent Cary5000)
and our MICS approach. First, we validated the reconstruc-
tion accuracy of simple spectra from narrow pulse spec-
tra in the 400 nm-900 nm wavelength range. The narrow
pulse spectra were obtained over a wavelength range of
450 nm-850 nm with a 50 nm pulse interval and a spectral
full width at half maximum (FWHM) of 4 nm, as shown
in Figure 3(a). The dashed lines represent the transmission
spectra measured by the Cary5000, while the solid lines
represent the transmission spectra reconstructed by MICS.
An enlarged spectral peak comparison of a 650 nm pulse
signal is shown on the right. The reconstructed spectra of
incandescent and LED light sources have high reconstruc-
tion accuracy, as shown in Figure 3(b) and (c). We also
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reconstructed a narrow spectrum with a peak shift differ-
ence of only 0.4 nm, demonstrating that our spectral recon-
struction accuracy reached 0.4 nm, as shown in Figure S5.

In order to validate the spectral reconstruction accu-
racy and resolution for actual nanophotonic structures and
chemical solutions, a number of cases have been selected
for test and comparison. The first group comprises two
metasurfaces comprising circular nanoposts with a period
0f1,300 nm and a diameter of 700 nm. One of these metasur-
faces has been spin coated with a thin layer of NOA 63 with
arefractive index value of 1.56, situated above the metasur-
face (Figure S6(a)). The transmission spectra of each sample
were measured and are shown in Figure 3(d). The dashed
line represents the measurement by the Cary5000, while the
solid line represents the measurement by MICS. The sec-
ond group comprises circular nanopost metasurfaces with
the following parameters: Period = 400 nm, Diameter =
300 nm, and P = 300 nm, D = 200 nm (Figure S6(b)). Their
transmission spectra are shown in Figure 3(e). The third
group is composed of methyl blue solutions with a concen-
tration difference of 0.01 g/L (Figure S6(c)), and its transmis-
sion spectrum is shown in Figure 3(f). The fourth group is
composed of a simple metal-dielectric-metal multilayer film
configuration, where the top metal layer is Ag, the bottom
layer is Au, and the insulator layer is methyl methacrylate
(MMA). The dielectric thickness of the insulator layer is
280 nm and 340 nm, respectively (Figure S6(d)). Their trans-
mission spectra are shown in Figure 3(g). A direct compari-
son of the reconstructed and measured spectra reveals that
the computational spectrometer is capable of accurately
reproducing the spectral characteristics of the measured
data.

A quantitative analysis was conducted on four aspects
of the above spectra, including the mean square error (MSE),
peak shift error, amplitude error and full width at half max-
imum (FWHM) error in reconstructed spectra. The results
presented in Figure 3(h)-(k)Figure 3(h) — (k) demonstrate
that the average MSE for all spectral reconstructions was
1.28 x 107, the average peak shift error for all recon-
structed spectra was 0.32 nm, and the average peak ampli-
tude error was 0.6 %, the FWHM error is 0.437 nm. The anal-
ysis revealed that the reconstruction offset error of a minia-
turised computational spectrometer was 0.32 nm, which
was smaller than its spectral resolution of 0.4 nm. Conse-
quently, the reconstruction accuracy of MICS is 0.4 nm, with
a reconstruction accuracy of 99.4 %, closely matching the
spectra detected by traditional spectrometers. Within the
current study range of 400 nm-900 nm, the MICS can be
employed as a substitute for traditional spectrometers for
spectral analysis.
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Figure 3: Spectral reconstruction accuracy analysis. (a) The left image shows the spectra of pulse light with a full width at half maximum (FWHM) of
4 nm and intervals of 50 nm in the 400 nm-900 nm range, detected by both traditional spectrometers and miniature computational spectrometers.
The dashed lines represent the results from Agilent Cary5000, while the solid lines are the results from MICS. The right image shows the enlarged
spectral detection results for the pulse spectrum centered at 650 nm. (b) And (c) measured and reconstructed spectra of two different light sources.
(d) Transmission spectra of a metasurface before and after spin-coating of an optical adhesive NOA 63, detected by both types of spectrometers.

(e) The reflection spectra of two optical metasurfaces with different periods and diameters. (f) The transmission spectra of the methyl blue solution

concentration with a difference of 0.01 g/L. (g) The transmission spectra of metal-dielectric-metal multilayer film with different dielectric layer
thicknesses. (h)-(k) Mean squared error of spectrum, average peak shift error, average amplitude error and FWHM error in (a), (d)-(g).

3.2 Material and structural computational
characterization

The application of the SCS technique to the characterisation
of a simple optical cavity is demonstrated, based on the
highly accurate spectral information sensed by the MICS
technique. The Fabry—Pérot (FP) cavity is a common optical
cavity employed in a variety of laser, spectrometer, and opti-
calinstrument applications. An FP cavity is composed of two
parallel mirrors and an adjustable cavity length. This phe-
nomenon of wavelength-dependent interference can either
enhance or diminish the transmission spectrum, resulting
in the formation of peaks. The characterisation of the FP cav-
ity length typically relies on sophisticated tools such as scan-
ning or tunneling electron microscopes for cross-sectional
examination. The precise relationship between the cavity
length and the peak wavelength can be expressed as 2nd =
mA, where n is the refractive index within the cavity, d is the
cavity thickness, m is an integer, and A is the wavelength of
the transmitted light. If the total path length is an integer
multiple of the wavelength of the light, the reflected light

waves will constructively interfere, forming interference
peaks.

In accordance with the constructive interference condi-
tion, as the cavity length of the FP cavity increases, the wave-
length supporting constructive interference shifts to longer
wavelengths, as illustrated in Figure 4(b). Consequently, the
identification of the peak positions of the transmission spec-
tra allows for the characterisation of the cavity length. As
deep neural networks (DNNs) can map the physical rela-
tionship between structure and spectra with high accuracy,
we have incorporated a DNN to analyse the reconstructed
spectra, with the aim of predicting the material type, cav-
ity length and cavity configuration, among other things, in
an intelligent manner. The initial training set comprised
three-layer FP cavities simulated using Lumerical FDTD
Solutions, with varying thicknesses and materials. The train-
ing set included two metals (Au, Ag) and three dielectrics
(PMMA, MMA, Al,0,) with dielectric layer thicknesses rang-
ing from 300 nm to 900 nm, at 10 nm intervals, totalling
26,000 datasets. The degree of fit between the simulated
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Figure 4: The application of snapshot computational spectroscopy. (a) Schematic diagram of the Fabry-Pérot (FP) cavity. (b) Transmission spectra of
FP cavities with different dielectric cavity lengths measured by Carry5000. (c) Transmission spectra of FP cavities with different dielectric cavity lengths
measured by MICS. (d) Schematic diagram of the solution samples with different concentrations. (e) Transmission spectra of methyl blue solutions
with different concentrations measured by Carry5000. (f) Transmission spectra of methyl blue solutions with different concentrations measured by
MICS. (g) Loss curve after the DNN network training is complete. (h) Changes in the success rate of prediction for the regression and classification
networks during the hyperparameter optimization process. (i) Statistics of the mean squared error between the predictions from data obtained from
Cary5000 and MICS. (j) Confusion matrix for predicting solute types using classification networks.

and experimental spectra was found to be between 91.2 %
and 98.0 % after data normalization and preprocessing, as
illustrated in Figure S7-S9. The entire set of simulated data
was employed as the training set for the DNN network, with
the trained DNN subsequently used for the prediction of
experimental spectra.

Subsequently, 100 sets of FP cavities with different met-
als, dielectrics, and thicknesses were measured using MICS
and Cary 5000, which served as the test set for the pre-
trained DNN network to analyze its prediction success rate.
The DNN network has two outputs: one is the classifica-
tion network output, which is designed to predict the type
of metal and dielectric material present in the FP cavity,
and the other is the regression network output, which is
intended to predict the thickness of the FP cavity dielectric
layer. The prediction performance for different dielectric
layer thicknesses is illustrated in Figure S10(g) and (h). The
dielectric layer of aluminum oxide exhibited the highest
MSE, with a prediction error of 0.76 nm by Cary 5000 and
0.81 nm for MICS. The lowest mean square error (MSE) was
observed for MMA, with a prediction error of 0.23 nm for
Cary 5000 and 0.25 nm for MICS, respectively. Both types of
spectrometers achieved a 100 % success rate in predicting

the type of materials, as demonstrated in Figure S10(a)-(f),
which present the confusion matrices for the predictions
made by the two spectroscopic data sets.

Another typical application example is the spectro-
scopic analysis of chemical solutions. When light passes
through a solution, a portion of the light is absorbed by
the solute present within the solution. The quantity of light
absorbed is contingent upon the nature and concentra-
tion of the solute, and this relationship is elucidated by
Beer’s Law. The law states that the absorption of light at
a specific wavelength is directly proportional to the con-
centration of the solute, with the formula A = ¢ X ¢ X [,
where A is the absorbance, € is the molar absorptivity, ¢
is the molar concentration of the solute, and [ is the path
length of the light through the solution. Transmission spec-
tra demonstrate the intensity of light that has traversed the
solution, reflecting the quantity of light that has not been
absorbed. Figure 4(e) illustrates the manner in which the
transmission spectrum of a methylene blue solution varies
with concentration. Given that different solutions exhibit
varying absorption coefficients, transmission spectra can
be employed to ascertain the nature and concentration
of solutions. In the absence of knowledge regarding the
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concentration of the solution, it is necessary to characterise
the solution’s properties using a range of common methods,
including spectrophotometry, titration, conductivity deter-
mination and nuclear magnetic resonance spectroscopy,
among others.

In order to illustrate the SCS technique in chemical solu-
tion characterisation, four types of solutions were selected,
each containing a different chemical: methylene blue (Bs),
rhodamine (AR), Cu** ions and Fe** ions. The concentra-
tions of Bs and AR ranged from 0.01 g/L to 1 g/L, while those
of Cu** and Fe* ranged from 1 g/L to 100 g/L, resulting in a
total of 80 datasets. All the measured experimental spectra
were used for training purposes. In order to expand the
dataset size, random errors were added for data augmen-
tation, resulting in a total of 720 datasets. Of these, 80 %
were selected for training, while the remaining 20 % were
used for testing. As the selection of hyperparameters can
directly impact the performance and efficiency of models in
deep learning and cannot be automatically updated during
training, we also incorporated hyperparameter optimisa-
tion. The hyperparameters that were optimized included
the number of neurons, the activation function, the number
of epochs, the batch size, and the number of optimization
rounds, which were set at 10. Hyperparameter optimization
can markedly enhance model performance, prevent over-
fitting, accelerate training, and accommodate diverse data
characteristics.

Figure 4(i) illustrates the efficacy of the classification
and regression networks during hyperparameter optimiza-
tion. A regression network for the FP cavity is considered
successful if the predicted thickness error is less than 1 nm
from the actual thickness error. For solutions, a success is
defined when the concentration error is less than 2 %. The
DNN network loss curve is depicted in Figure 4(h). Upon
inputting the test dataset of solutions into the trained DNN
network, the prediction results for varying solution concen-
trations are presented in Figure S11(c) and (d), with an over-
all concentration mean square error of 1.8 %. The results of
solution type predictions by both the Cary 5000 and MICS
are shown in Figure S11(a) and (b), respectively, with 100 %
accuracy. The overall mean squared error (MSE) for the
FP cavities and solutions is displayed in Figure 4(j), which
demonstrates that the chemical solution characterisation
by both spectrometers exhibits negligible differences in the
predicted errors.

4 Discussion

The operational scope of traditional spectrometers is
contingent upon the spectral range of gratings and

DE GRUYTER

photodetectors, whereas computational spectrometers are
also constrained by the dynamic range of encoders and
image sensors. The operational range of the computational
spectrometer described in this article extends from 400 nm
to 900 nm, corresponding to the photosensitive range of the
CCD image sensor and the design of the metasurface array
encoder. However, this does not preclude the potential
applications of this MICS technology in the ultraviolet
and infrared bands. Furthermore, in order to expand the
application of the SCS technique in reality, it is necessary
to collect sufficient spectral data for various materials in
order to form pretrained DNN tools. This necessitates the
acquisition of a considerable quantity of experimental
spectral data and the subsequent training of DNN.

5 Conclusion

The combination of a MICS hardware and a DNN software
tool can form a snapshot computational spectroscopic tech-
nique, which can rapidly and accurately identify a sample’s
critical properties such as the DNN network and chemi-
cal solution concentration. This represents an innovative
alternative to traditional spectrometers and provides a new
theoretical foundation for the rapid and precise charac-
terisation of materials. In the future, by optimising the
design and fabrication of encoders and photodetectors, the
sampling range of miniature computational spectrometers
can be broadened to the ultraviolet and infrared regions,
with the potential for further miniaturisation. The integra-
tion of a metasurface with two-dimensional photodetectors
enables the realization of an ultraminiature configuration
with micrometer dimensions. The technology is compatible
with the CMOS technology, which facilitates the integration
of MICS within a smartphone. This integration enables the
development of truly portable SCS applications for spec-
tral detection and material characterization in a range of
biomedical, food and environmental test scenarios.

Supporting Information

Supporting information includes spectral reconstruction
algorithm, spectral detection of different substances, feasi-
bility analysis of FP cavity prediction and analysis of predic-
tion results of the DNN networks.
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