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Abstract: Optical imaging and single-molecule imaging, in

particular, utilize fluorescent tags in order to differentiate

observed species by color. The degree of color multiplexing

is dependent on the available spectral detection window

and the ability to distinguish between fluorophores of dif-

ferent colorswithin this window. Consequently, most single-

molecule imaging techniques rely on two to four colors for

multiplexing. DeepQR combines compact spectral imaging

with deep learning to enable 4 color acquisition with only 3

spectral detectionwindows. It allows rapid high-throughput

acquisition and decoding of hundreds of unique single-

molecule color combinations applied here to tag native RNA

targets. We validate our method with clinical samples ana-

lyzed with the NanoString gene-expression inflammation
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panel side by side with the commercially available NanoS-

tring nCounter system. We demonstrate high concordance

with “gold-standard” filter-based imaging and over a four-

fold decrease in acquisition time by applying a single snap-

shot to record four-color barcodes. The new approach paves

the path for extreme single-molecule multiplexing.

Keywords: spectral imaging; machine learning; gene

expression; RNA; single-molecule; NanoString

1 Introduction

Gene expression analysis is a powerful tool for exploring

physiological responses to environmental exposures, exter-

nal stimuli, and various disease states [1]. RNA sequenc-

ing is able to characterize the full RNA content of a

sample but requires reverse transcription and PCR ampli-

fication, which introduce bias to quantitative expression

analysis [2]. Native RNA nanopore sequencing has recently

become available and provides single-molecule information

at single-base resolution. However, the method requires

large amounts of input material and still suffers from tech-

nical drawbacks and high costs [3]. An outstanding goal in

single-molecule analysis is to capture extensive transcrip-

tome [4] or proteome [5] panels from small amounts of

a native unamplified sample. Fluorescence detection from

individual targetmolecules presents the ultimate sensitivity

but suffers from the low multiplexing capabilities offered

by standard optics. One way to increase the number of

uniquely detected tags is to arrange them as a sequence

of colors in a linear arrangement as introduced by NanoS-

tring Technologies, Inc. [6]. QR codes extend the information

content of linear barcodes by utilizing a second dimension

for encoding data. We adapt a similar concept in order

to encode color information in the second dimension. We

introduce DeepQR, an optical method that generates hun-

dreds of uniquemolecular identifiers for RNA targets, using

spectral imaging combined with machine learning-based

image registration. DeepQR exploits the visible spectrum

more efficiently than conventional filter-based microscopy,
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allowing for enhanced color multiplexing. Introducing

minute spectral shifts to the detected optical point spread

function (PSF) allows distinguishing between spectrally sim-

ilar fluorophores in the same color channel of the micro-

scope by uniquely shifting each color from the optical axis.

Thus, a conventional scientific monochrome camera can

simultaneously record multiple colors in the visible spec-

trum with a single snapshot.

To demonstrate DeepQR capabilities, we used the com-

mercially available NanoString fluorescent barcodes [6].

These are RNA-specific hybridization probes that report

on the identity of the captured RNA target. The probes

are designed as linear DNA color barcodes composed of

four fluorescent colors arranged in various combinations

at six positions along the 6.4 kb M13-DNA template [6]

(Figure 1(a)). These barcodes combinatorically generate 4

× 35 = 972 unique detectable color combinations (identical

colors at adjacent positions are prohibited to avoid barcodes

misidentification). We use tunable spectral imaging (CoCoS)

[7] to disperse the barcode emission spatially. Effectively, the

linear color barcode is transformed into a two-dimensional

QR-code-like image, with color encoded perpendicular to

the barcode axis, thus allowing the introduction of addi-

tional colors independent of conventional filter channels.

In addition, such a configuration allows acquiring all data

channels with a single snapshot, reducing acquisition time

by a factor of one over the number of colors and eliminating

the need for sequential multicolor imaging and chromatic

alignment [8].

We benchmarked DeepQR against the current state of

the art in single molecule transcriptomics, the NanoString

nCounter system. The nCounter gene expression platform

is a broadly used optical method for direct single-molecule

RNA expression quantification [9]. The four-color barcodes

capture RNA targets in solution by hybridization and then

extended linearly along the imaging surface. Counting the

various barcodes determines the gene expression profile

with high accuracy and sensitivity at the single-molecule

level. The nCounter system uses four color channels to

sequentially acquire the four-color NanoString barcodes

(Figure 1(a) top), resulting in 2,220 separate acquisitions

per sample. For direct comparison, we designed DeepQR

to simultaneously image the four-color barcodes with a

single acquisition (Figure 1(b)); therefore, DeepQR requires

only 555 acquisitions in order to resolve the same sample.

Importantly, we use a single filter with only three-color

channels for resolving all four colors, showcasing the abil-

ity to resolve two fluorophores in the same spectral win-

dow as the basis for the high multiplexing capabilities of

DeepQR.

2 Results and discussion

DeepQR harnesses the synergistic combination of deep neu-

ral networks (DNN) analysis with the continuously con-

trolled spectral-resolution (CoCoS) imaging scheme [7]. In

CoCoS, two direct-vision prisms (Figure S1) introduce con-

trolled spectral dispersion in a single axis such that all colors

can be imaged simultaneously on a monochrome camera

with a single snapshot (Figure 1(a) bottom). Unlike other

spectral imaging techniques, where the degree of dispersion

is fixed [10]–[15], in CoCoS dispersion may be optimized for

specific applications. Tuning the dispersion is crucial for

minimizing the spectral footprint of the barcodes, allowing

to maximize the density of resolved single molecules in the

FOV without introducing overlaps between molecules [8],

[11]. Moreover, the simultaneous acquisition with a single

emission filter also removes the need for fiducial mark-

ers used in nCounter to align the different color channels

(Figure S2 and Supplementary Note 1). This frees up∼9 %of

the field of view (FOV), allowing even higher barcode den-

sities and better throughput. DNNs perfectly complement

CoCoS as they can recognize even minute spectral changes

introduced to the PSF [13], [16], [17], therefore, allowing to

minimize further the dispersion required for efficient color

classification. The spectrally dispersed images are decoded

in DeepQR by a U-Net architecture DNN [18] (see methods

and Figure S3) that reconstructs each dispersed FOV into a

nondispersed multichannel image.

To demonstrate DeepQR capabilities, we performed a

clinical gene expression experiment registering the differ-

ential expression signature of patientswithulcerative colitis

(UC) using the commercial NanoString inflammation gene

expression panel.

First, we trained the U-Net to convert a single dispersed

image to four color channels representing the different flu-

orophores. For training, we imaged 1,120 FOVs of a single

RNA sample taggedwith theNanoString barcodes, acquiring

for each FOV a dispersed image and corresponding four

nondispersed color-filtered images, which were used as our

four-channels ground truth. The ground-truth images were

acquired by sequentially switching the excitation lasers and

emission filters to register each color separately. In con-

trast, the dispersed images were acquired in a single frame

through a multiband emission filter (Figures 1(b) and 2).

Our network was trained on 80 % of the dataset minimiz-

ing the mean absolute error (MAE) between ground-truth

and network predictions (see methods, Figures S4–6 and

Supplementary Note 2). The remaining 20 % were used to

validate and test the network’s performance on unseen

data.
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Figure 1: Resolving multicolor barcodes. (a) Illustration of a linear four-color barcode detected with two acquisition pipelines. Top, Standard color

imaging overlaying four images acquired with dedicated emission filters to resolve the ground truth (GT). Bottom, Color image reconstruction with

DeepQR: a single spectral image acquired by dispersing fluorescence emission with two direct-vision prisms is converted to a multi-color prediction

image (Pred) by a deep neural network (DNN) U-Net. (b) NanoString’s fluorophores spectra overlayed with the CoCoS system’s single three-band

emission filter. The three excitation lasers used for four-color detection are displayed as solid lines. Colored patches indicate the multiband emission

filter channels, showing that DeepQR allows resolving the overlapping spectra of Cy3 and AF594 using a single spectral channel. (c) Simulation of two

barcodes dispersed to create a spectral QR barcode. Left: The nondispersed labeled barcode, fluorophore names and colors are displayed to the left of

the simulated PSF. Right: The dispersed barcode allowing to interpret its composition with its unique spectral PSF. Using four fluorophores per

barcode allows to tag up to 972 unique RNA targets.
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Figure 2: Benchmarking deepQR RNA classification on NanoString’s inflammation panel’s 4-color barcodes. Examples of barcode classification using

DeepQR prediction. Leftmost two columns: simulated (Sim) and experimental (Disp) dispersed single frame acquisition excited by all three lasers,

capturing the barcode information in a 2D single color barcode. Prediction column (Pred): False color representation of the four-color U-Net

prediction, according to the dispersed images. Rightmost column (GT): False colored ground-truth overlays of sequential four-channel acquisition with

dedicated laser excitation and emission filter per channel and no dispersion (RPA 180◦). The name of the corresponding target gene is shown next to

each barcode.

After this training, the same pretrained network was

applied to reconstruct the dispersed images of other sam-

ples without additional training, resolving NanoString’s

four-color barcodes with a single frame instead of four. This

results inmore than 4-fold faster acquisition speeds (consid-

ering it takes∼50 ms to switch between filters), significantly
increasing turnaround times for gene expression analysis,

crucial for clinical point-of-care analyses.

Notably, two of the barcode colors, the green Cy3 and

yellow Alexa Fluor 594 fluorophores, were spectrally over-

lapping in the same channel of our system (Figure 1(b)).

With DeepQR’s classification, we could resolve them despite

their subpixel spectral displacement difference (Figure S7

and Supplementary Note 3). This shows that DeepQR offers

better resolution in color classification than that achievable

with standard spectral fitting [19], showcasing DeepQR’s

ability to resolve more color combinations than filter-based

imaging with the same spectral channels (Figure 1(b) and

(c)).

To evaluate how well DeepQR performed, we analyzed

gene expression profiles of four RNA samples obtained from

intestinal biopsies of two patients with ulcerative colitis

and two healthy individuals (seemethods). Previous reports

have shown a differential expression pattern in inflamma-

tory genes between healthy and inflamed intestines [20, 21].

We first compared the network’s multichannel predicted

output with the multichannel ground truth acquisition

(see Supplementary Note 2 and Figures S4–6). Although the

MAE between the trained network’s output and the ground

truth images was found to be well below the average pixel

value, this metric is greatly affected by noise in the FOV and

is insufficient to assess the network’s ability to accurately
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assign barcode colors. Therefore, we evaluated DeepQR’s

performance by directly comparing the network-predicted

and ground truth barcodes on a barcode-by-barcode basis

(Figures 2 and S8). For this purpose, we cropped the same

barcode coordinates in both datasets and performed pair-

wise comparisons. The analysis yielded a 93–95 % concor-

dance between the ground-truth and prediction readouts

(Figures 3(a) and S9), demonstrating the effectiveness of our

approach despite the suboptimal efficiency of the barcode

readout process. This pairwise comparison also enabled

us to assess the source of missed or erroneous network

classifications (Supplementary Note 4 and Figure S10). One

challenge in imaging multiple color markers excited with

a single laser is significant bleed-through between emis-

sion channels; in our case, the green fluorophore fluoresces

also into the yellow emission channel during ground-truth

acquisition. We addressed the bleed-through by registering

the yellow bleed-through component of the green markers,

establishing a global bleed-through correction function to

the yellow channel (Figure S11). We note that even bar-

codes solely composed of yellow and greenmarkers imaged

through the same spectral band were correctly classified,

such as the one for the IRF1 gene (Figure 2, top left).

In the final step, we compared the gene expression

count distributions obtained fromour experimental process

to those obtained from the nCounter system. We used the

(b)(a)

Figure 3: Readout comparison between deepQR prediction (Pred), ground-truth (GT) imaged with CoCoS microscopy, and NanoString’s nCounter

system. We compared four samples consisting of two healthy individuals (HC) and two patients with ulcerative colitis (UC) using NanoString’s

inflammation barcode panel. (a) A set comparison between matched pairs of barcodes that were eligibly read both in GT and Pred (termed common

barcodes). The area of circles corresponds with the number of barcodes in each set (GT or Pred) and the ratio of identical barcodes is presented

at the center. (b) Barcode distribution comparison of the 25 most abundant barcodes detected in the three methods.
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croppedbarcodes readout to generate global gene-count dis-

tributions for both ground-truth andnetwork predicted bar-

codes. Comparison of DeepQR’s prediction with the results

of the standard 4-color imaging of both ground-truth and

nCounter revealed a good alignment of the raw gene count

distributions (Figures 3(b) and S12).

To determine whether the barcode-prediction readout

is clinically applicable and sufficiently accurate for sam-

ple classification, we normalized the barcode distribution

according to the standard protocols used inNanoString gene

expression analysis pipeline (via ROSALIND® interface, as

described in methods). The results presented in Figure 4
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Figure 4: Gene expression analysis using DeepQR for ulcerative colitis detection. (a) Unsupervised clustering and heatmap representation

of the mean-subtracted normalized log2 barcode expression values, comparing four samples of healthy individuals and patients with ulcerative

colitis (UC) between the three detection methods: DeepQR prediction (Pred), ground-truth (GT), and the commercial NanoString nCounter system.

(b) Multidimensional scaling (MDS) plot showing the classification of healthy and UC samples between the three methods. (c) Log2 of normalized

barcode count distributions across all samples and readout methods.
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demonstrate that the DeepQRmethod can accurately recon-

struct the normalized gene expression distributions of the

four samples and correctly classify ulcerative colitis patients

in an unsupervised manner.

3 Conclusions

In conclusion,we demonstrate a novel approach for fast and

efficient color registration and multiplexing at the single-

molecule level. DeepQR is compatible with demanding mul-

ticolor single-molecule applications, enabling immediate

utilization in applications requiring highmultiplexing capa-

bilities. DeepQR provides a traditional multichannel output

compatible with standard downstream analyses and sup-

ports multiplexing of spectrally overlapping colors while

completing the entire color acquisition pipeline without

exchanging filters and at a fraction of the standard acqui-

sition time.

Specifically, we demonstrated that DeepQR resolves

four-color barcodes with 93–95 % accuracy using only three

spectral channels with two of the four colors spectrally

overlapped and excited with the same laser. This reso-

lution provides 972 distinctly resolvable barcodes com-

pared to 96 barcodes with conventional filter-based three-

channel microscopy. Consequently, this could be used for

addressing higher degree multiplexing sorely needed in

single-molecule transcriptome analysis. DeepQR recorded

the NanoString inflammation panel in less than a quar-

ter of the standard acquisition time and without any fidu-

cial markers, achieving results highly correlated with the

nCounter system. Beyond the similarity in gene count distri-

butions, the majority of differentially expressed genes were

identical in both methods (Figures S13 and 14, Table S1 and

Supplementary Note 5), which emphasizes the potential for

expanding the gene panel accessible by optical imaging and

enabling differential gene discovery for clinical purposes.

4 Methods

4.1 Sample preparation

Intestinal biopsies were obtained from two patients with

ulcerative colitis undergoing routine colonoscopies and two

healthy individuals as a control. Biopsies were immedi-

ately transferred to the laboratory in complete medium

(CM), consisting of RPMI 1640 supplemented with 10 %

fetal calf serum (FBS) 100 U/ml penicillin, 100 μg/ml strepto-
mycin, and 2.5 μg/ml amphotericin B (Fungizone) on ice (to

preserve the intact tissue alive). Samples were then washed

with sterile phosphate buffer saline (PBS) (Biological Indus-

tries) and cultured in CM supplemented with 100 μg/ml gen-
tamicin (Biological Industries) and 0.001 % DMSO (Sigma-

Aldrich) in an atmosphere containing 5 % CO2 at 37 ◦C for

18 h.

For RNA extraction, biopsies were homogenized in ZR

BashingBead Lysis Tube (Zymo Research) using a high-

speed bead beater (OMNI Bead Ruptor 24). Total RNA was

extracted using Trizol® (Invitrogen) according to a stan-

dard protocol. RNA concentration and qualitywere assessed

using NanoDrop Spectrophotometer (Thermo Scientific).

The 260/280 and 260/230 ratios in all samples were >1.8.

4.2 NanoString barcode hybridization
and readout

Two cartridges, each containing the same four samples,

were prepared according to themanufacturer’s instructions

using the nCounter Human Inflammation V2 Panel (NanoS-

tring). Briefly, hybridization buffer combinedwith the code-

set of interest is combined with 5 μl (400 ng) of total RNA
and incubated at 65 ◦C overnight. To remove all fiducial

markers for imaging on the CoCoS system, we extracted all

the imaging buffer containing the fiducialmarkers fromone

of the reagent plates prior to loading it onto the prep station.

Samples were then loaded onto the prep station and incu-

bated under high sensitivity program for 3 h. Following the

prep station, one cartridge was read using NanoString digi-

tal analyzer with the high-resolution option, while the other

was loaded with imaging buffer that did not contain the

added fiducial-marker beads and was read using DeepQR.

The raw barcode counts were output both by DeepQR and

digital analyzer in RCC files and were further normalized

and processed by the same analysis pipeline as described

below.

4.3 Optical setup

The optical setup was primarily equivalent to the one intro-

duced previously in ref. [7], with minor changes in the

choice of the emission telescope’s lenses (see schematic sys-

tem sketch in Figure S1).

4.4.1 Excitation

For excitation, we used three lasers (Cobolt AB, Sweden)

with wavelengths 488 nm (MLD 488, 200 mW max power),

561 nm (Jive 561, 500 mW max power), and 638 nm (MLD

638, 140 mW max power). All lasers were mounted on an
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in-house designed heatsink, which coarse aligned their

beam heights. Each laser beamwas passed through a clean-

up filter (LL01-488-12.5, LL01-561-12.5, LL01-638-12.5, Sem-

rock, USA) and expanded to 12.5–20× its original diameter

(3×LB1157-A, 3×LB1437-A, Thorlabs, USA). Amotorized shut-
ter (SH05, Thorlabs, USA) was used for modulating on/off

the solid-state 561 nm laser, while the diode lasers were

modulated directly on the laser head. The beams were then

combined into a single beam using long-pass filters (Di03-

R488-t1-25.4D, Di03-R561-t1-25.4D, Semrock, USA). To homog-

enize the excitation profile of the sample, the combined

beam was passed through an identical setup to the one

described in the work of Douglass et al. [22]. In short, the

combined beam was injected into a compressing telescope

(AC254-150-A-ML, AC254-050-A-ML, Thorlabs, USA) with a

rotating diffuser (24-00066, Süss MicroOptics SA, Switzer-

land) placed ∼5 mm before the shared focal points of the

telescope lenses (Figure S1). A series of 6 silver mirrors

(PF10-03-P01, Thorlabs, USA) was then used to align the

beam into a modified microscope frame (IX81, Olympus,

Japan), through two identical microlens arrays (2×MLA,
18-00201, Süss MicroOptics SA, Switzerland) separated by a

distance equal to the microlenses focal length and placed

inside the microscope frame. The homogenized beam was

reflected onto the objective lens (UPlanXApo 60× NA1.42,

Olympus, Japan) by a four-band-multichroic mirror (Di03-

R405/488/561/635, Semrock, USA). The sample was placed on

top of motorized XYZ stage (MS-2000, ASI, USA) with an

890 nm light-emitting diode (LED)-based autofocus system

(CRISP, ASI, USA), which enabled scanning throughmultiple

fields of view.

4.4.2 Emission

The emitted fluorescence light was gathered by the same

objective and transmitted through the multichroic mirror

onto a standardOlympus tube lens to create an intermediate

image at the exit of the microscope frame. This image was

passed through a filter wheel (Sutter Lambda 10-B, Sutter

Instruments, USA) with three emission filters: multiband

filter (FF01-440/521/607/694/809-25, Semrock, USA), 575/15

(FF01-575/15-25, Semrock, USA), or 620/14 (FF01-620/14-25,

Semrock, USA). Light was then directed into a magnify-

ing telescope (Apo-Rodagon-N 105 mm, Qioptiq GmbH, Ger-

many and Olympus’ wide field tube lens with 180 mm

focal length, #36–401, Edmund Optics, USA), with two com-

mercial direct vision prisms (117240, Equascience, France)

placed within the infinity space between the lenses and

mounted on two motorized rotators (8MR190-2-28, Altechna

UAB, Lithuania) controlling the prisms’ angles around the

optical axis. The final image was acquired on a back

illuminated sCMOS camera (Prime BSI, Teledyne Photomet-

rics, USA).

Image acquisition was coordinated using the micro-

manager software [23], controlling camera acquisition, laser

excitation, XY stage location, and prism rotator angles. The

camera and lasers excitation were synchronized using an

in-house built TTL controller based on an Arduino® Uno

board (Arduino AG, Italy) [24].

4.4 Image acquisition

Each of the four sample lanes was fully scanned laterally

and imaged, obtaining approximately ∼1,000 FOV per sam-
ple lane. In each one of the FOVs, a six-image acquisitionwas

taken with specifications according to Table 1:

The full lane acquisitions were stacked in FIJI [25],

resulting in a multi-FOV hyperstack with six channels that

were input to the deep learning (DL) analysis pipeline.

4.5 NanoString nCounter image acquisition

The nCounter experimental assay has been thoroughly

described previously [6] and is given here for comparison

completeness. Briefly, the barcoded samples mixed with

Tetra-speck microspheres (used as fiducial markers) are

stretched and immobilized on specialized slides. The slides

are scanned and each FOV is imaged four times with differ-

ent excitations and emission filters (Figure 1(a)) to detect the

four-colored barcodes sequentially. The Tetra-speck micro-

spheres are then used for image registration of the four dif-

ferent color channels and chromatic aberration correction

(Figure S2).

4.6 Deep learning analysis

Converting the dispersed image stacks to nondispersed, 4-

channels, multi-FOV hyperstacks was implemented with DL

using Tensor-flow and Open-CV packages in Python. The

full code is available for download from the Ebenstein lab’s

GitHub (https://github.com/ebensteinLab). The DL architec-

ture used was based on a U-Net architecture [18], a fully

convolutional encoder-decoder neural network. This archi-

tecture is indifferent to the dimensions of the input image

anduses skip connections between the encoder anddecoder

parts of the network to preserve spatial features encoded

in different levels and may have been lost in the encod-

ing process (see Figure S3 for architecture’s scheme). Each

layer consists of two sets of 3 × 3 convolution filters and

nonlinear activation layers, succeeded by a 2 × 2 down-

sampling or up-sampling operation for the encoder and

https://github.com/ebensteinLab
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Table 1: Image acquisition parameters. Consecutive frames were acquired according to the order listed in the table using the same laser intensities

and camera exposure.

Excitation RPA Emission filter Exposure time Laser intensities

All lasers simultaneously 178 Multiband filter

300 ms

638 laser: 0.28 kW/cm

All lasers simultaneously 180 Multiband filter 561 laser: 0.33 kW/cm

638 laser 180 Multiband filter 488 laser: 0.3 kW/cm

561 laser 180 620/14 (AF594)

488 laser 180 Multiband filter

561 laser 180 575/15 (cy3)

decoder parts, respectively. Due to our dispersion-to-color

conversion task, we adjusted the original U-Net architecture

such that the dimensions of the output image were changed

to four channels.

To train the DNN model, we used a full sample lane

hyperstack, consisting of 1,120 FOVs acquired with the

same parameters as in Table 1. The network’s input was

1,120, single-channel, dispersed FOVs paired with 1120 four-

channel FOVs as ground-truth. To artificially increase the

data for training, each 1,024 × 1,024 pixels2 FOV was seg-

mented into 49 overlapping crops of 256 × 256 pixels2 with

a 50 % overlap between adjacent crops. This dataset was

divided into 80 % training data, 10 % validation data, and

10 % test data and was trained over 200 epochs setting

the model’s weights to minimize the mean absolute error

(MAE) loss (Figure S4). The finalmodel’s weights were saved

according to the minimal validation loss. To further refine

the trained model and improve the distinction between the

green (Cy3) and yellow (AF594) fluorophores, we retrained

the network with the same dispersed input paired with the

green ground-truth channel only. This produced a second,

more accurate model for the green channel. We then used

the first model to predict the red (AF647), yellow (AF594),

and blue (AF488) channels and the second to predict the

green (Cy3) channel and combined their results to create

the output four-channel hyperstack. Since our model was

trained on 256 × 256 pixels2 patches, for prediction, we

divided the 1,024 × 1,024 pixels2 dispersed FOVs input into

16 patches of 256 × 256 pixels2. After prediction, we stitched

the predicted patches to enable visual comparison of the full

FOVs (Figure S15). Finally, we used the two models trained

on this sample lane to predict the results of the other four

sample lanes without additional training, allowing us to

extract the full distribution of barcodes from each sample.

To assess the amount of data needed to achieve optimal

results, we evaluated our training procedure over smaller

subsets of randomly selected FOVs showing the tradeoffs of

training on smaller datasets and reducing the number of

training epochs (see Figures S5 and S6 for results). To avoid

a nonrepresentative validation subset in training small

subsets of FOVs, we first filtered out any out-of-focus

or noisy FOVs by applying a set of criteria to the dis-

persed FOV. Any FOV with mean values >600 analog-to-

digital units (ADU), pixels standard deviation values out-

side 100–600 ADU, or maximal pixel value<3,000 ADU was

discarded.

4.7 Image analysis

FOV filtering: Prior to barcodes readout from the hyper-

stacks, we first removed out-of-focus or noisy FOVs to avoid

false barcode readouts. The filtration procedurewas carried

out in FIJI using the ground-truth hyperstacks as follows:

1. Sum all four hyperstack color channels to produce a

grayscale multi-FOV stack.

2. For each FOV measure, the mean and standard devia-

tion of all pixel values.

3. Filter out FOVs with mean values outside the 500–700

ADU range or standard deviations outside the 50–1,000

range.

Barcode detection and cropping: To reliably compare the

barcode readout between the ground-truth and prediction

hyperstacks, we wanted to compare readouts from the

same locations in both hyperstacks. Therefore, we detected

the barcodes on the ground-truth hyperstack by apply-

ing the multi-template matching plugin in FIJI [26] on the

color-channel-summedground-truth stack (see Figure S8 for

example workflow). This allowed us to localize all barcode-

like features in the ground-truth stack and to extract a

20 by 9 pixels crop from each of these locations both in

the ground-truth and prediction 4-channel hyperstacks. The

procedure was carried out as follows:

1. Sum all four hyperstack color channels to produce a

grayscale multi-FOV stack.

2. Apply the Multi-Template Matching plugin with a

cropped grayscale barcode template (complete param-

eter list is provided in Figure S8).
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3. Split the color channels of both ground-truth and pre-

diction hyperstacks.

4. Use FIJI ROI manager Multi-crop function to crop the

same barcode detections from all channels of both

ground-truth and prediction hyperstacks.

5. Merge the cropped barcode stacks channels to receive

multi-barcode hyperstacks, allowing a location-based

comparison between barcodes.

4.8 Bleed-through correction and barcode
readout

Onemajor issuewehad to overcome in resolving the correct

color sequence of the barcodes was the bleed-through from

the green (Cy3) channel to the yellow (AF594) channel. Due

to the spectral properties of these fluorophores and our

excitation wavelength, an emission filter-based separation

of the two fluorophores was insufficient, and postacquisi-

tion correction of the barcode images was employed (see

Figure S7). To readout the barcodes color sequence from the

cropped barcode stacks, we used a custom readout Matlab

code that follows these steps:

1. Import the barcode image stacks using built-in Matlab

functions for tiff file reading.

2. Create profiles alongboth barcode axes to extract initial

peaks locations in all channels using the built-inMatlab

function findpeaks.

3. Peaks along the barcode axis that are wider than the

nominal PSF were fitted by a two-Gaussians model to

resolve overlapping PSFs (which might occur due to

small focus deviations).

4. Localize the peaks in the red (AF647), green (Cy3), and

blue (AF488) channels by 2-d Gaussian fits at the initial

positions using FastPsfFitting Matlab functions written

by Simon Christoph Stein and Jan Thiart, which are

available on Matlab file exchange. The peak localiza-

tion of the yellow (AF594) channel is done after bleed-

through correction.

5. To characterize the bleed-through from the green to the

yellow channel, find all complete barcodes containing

six localizations without the yellow markers and at

least one localization in the green channel.

6. Estimate the mean parameters for the bleed-through

PSF according to the green marker PSF: x-shift, y-shift,

intensity ratio, and standard deviation ratio.

7. Use these parameters to subtract simulated bleed-

through PSFs from the yellow channel images accord-

ing to the green channel localization results and then

localize the yellow markers on the bleed-through cor-

rected images.

8. Combine all channels readout and perform quality

check (QC) according to known barcode limitations: six

markers per barcode, adjacent markers should have

different colors, minimal separation between adja-

cent markers along the barcode’s axis, and maximal

shift between markers along the perpendicular axis.

Barcodes that did not meet the QC limitations were

discarded.

9. The final barcode readout is then organized in a table

and enumerated according to its crop number in the

barcodes crop stack for the following ground-truth to

prediction barcode readout comparison.

4.9 Barcode to gene counts conversion

After reading the color code of the barcodes, a conversion

to the corresponding gene names was performed using the

RLF file provided with the nCounter dataset, containing the

code-set conversion between color-code and gene identity.

The total barcode reads of each barcode were counted

in the ground-truth and prediction tables and assigned to

their relevant genes according to the RLF. Only barcode

reads corresponding to the nCounter code-set were kept.

4.10 ROSALIND® NanoString gene
expression

For creating the gene expressionheatmap (Figure 4(a)), sam-

ple MDS plots (Figure 4(b)), and violin plots (Figure 4(c)),

data were analyzed by ROSALIND® (https://rosalind.bio/),

with a HyperScale architecture developed by ROSALIND,

Inc. (San Diego, CA). Normalization, fold changes and p-

values were calculated using criteria provided by NanoS-

tring. ROSALIND® follows thenCounter® AdvancedAnaly-

sis protocol of dividing countswithin a laneby the geometric

mean of the normalizer probes from the same lane. House-

keeping probes to be used for normalization are selected

based on the geNorm algorithm as implemented in the Nor-

mqPCR R library [27]. Fold changes and pValues are calcu-

lated using the fast method as described in the nCounter®

Advanced Analysis 2.0 User Manual. P-value adjustment is

performed using the Benjamini–Hochberg method of esti-

mating false discovery rates (FDR). Clustering of genes for

the final heatmap of differentially expressed genes was

done using the PAM (Partitioning Around Medoids) method

using the fpc R library [28] that takes into consideration the

direction and type of all signals on a pathway, the position,

role and type of every gene, etc. To effectively compare the

same four samples across the three analysis methods (GT,

Prediction, and NanoString’s nCounter), we used Rosalind’s

https://rosalind.bio/
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covariate correction analysis with the detection method

as a hidden covariate. The uncorrected gene expression

heatmap is presented in Figure S18.

4.11 Heatmap analysis

The two-color heatmap (Figures 4(a) and S18) represents the

mean-subtracted normalized log2 expression values, i.e., for

each gene, the average of the log2 normalized expression is

taken and subtracted from each sample’s expression.

4.12 Barcode detection performance
analysis

Ground-truth and prediction barcode detection perfor-

mances were compared to one another and to nCounter

readout of the same samples in a different experimental

run.

Ground-truth versus prediction comparison

To compare barcode detection performance between

ground-truth and prediction, we first filtered only the

“common barcode reads” where both the ground-truth and

prediction obtained valid barcode detection (barcodes that

passed our filtering QC). Out of these common valid reads,

we compared each barcode readout and counted the num-

ber of identical reads in both stacks (Figures 3(a) and S9).

The Venn diagram representation of the ratio of identical

barcodes out of all common barcodes was generated using

Darik Gamble’s “venn” Matlab script available online from

Matlab Central file exchange.

Histogram comparison of raw barcode counts

To compare the nCounter results to our readout, all RCC

files obtained from the NanoString digital analyzer were

first exported to csv files using the nSolver 4.0 software. The

barcodes obtained from our readout were counted accord-

ing to their color sequence using the built-in Matlab func-

tion “histcounts.” Finally, to assess our readout pipeline, the

raw barcode counts from the nCounter were compared to

our readout from the ground-truth and prediction stacks

by plotting the 25 most abundant endogenous genes in his-

tograms (Figure 3(b)).

4.13 PSFs simulations

All simulations were performed by a custom Matlab code

(code is provided as Supplementary Material). Here, we

provide a short description of the pipeline:

1. Excitation and emission spectra of 4 commercial flu-

orophores together with our 5-band emission filters

(FF01-440/521/607/694/809-25, Semrock, USA) for the

4-color barcodes simulations were downloaded from

Semrock’s SearchLight™ spectra viewer. Each of the

fluorophores’ spectrum was multiplied by the filter’s

spectrum to produce the actual spectrum imaged on

our camera.

2. The wavelength to pixels displacement calibration

curve of our CoCoS setup (which was calculated pre-

viously [7]) was adjusted according to the experimen-

tally used RPA by multiplying the entire curve by

sin((180-RPA)/2).

3. Barcodes fluorophore combinations were then simu-

lated by converting each fluorophore’s spectrum into

a diffraction-limited dispersed image. This was done

by assigning a Gaussian with unity amplitude and

1.2-pixel standard deviation to each wavelength in

the emission spectrum. Each Gaussian was displaced

according to the RPA-adjusted displacement curve and

summed together with other Gaussians. Finally, the

total summed intensity of all Gaussians was normal-

ized to unity and multiplied by an excitation effi-

ciency factor, which was calculated by the excitation

spectrum value (fractions only) at the excitation laser

wavelength.

4. This process was repeated for the randomly selected

fluorophores at the six barcode locations, and all

images were summed to provide the barcode’s spectral

image.

5. To further resemble the experimental images, a noise

model was added to all simulated spectral PSF images

using the imnoise function in Matlab. The noise model

used in this work was a sum of a Poisson distributed

shot-noise and Gaussian noise with a constant mean of

0.3 and 0.000625 variance.

Supporting Information

Additional experimental details and methods are provided

in the supporting information file (PDF).
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