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Supplementary Section S1. In-plane permittivity and transmission spectrum of WS2  

Sample fabrication. We mechanically exfoliate WS2 from a synthetic crystal (HQ Graphene) using 

tape (SPV 9205, Nitto Denko Co.) on optically transparent polydimethylsiloxane films (PDMS, Gel-

Pak PF-80-X4) deposited on glass substrates. 

Optical measurements. We measure the transmission spectrum at room temperature using Köhler 

illumination through a microscope objective (20x Nikon CFI Plan Fluor ELWD, NA = 0.45). The signal 

is sent through an optical fiber to a spectrometer (Andor Shamrock 330i, with an Andor Newton 970 

EMCCD camera cooled to −75 oC). We retrieve the in-plane permittivity by fitting the transmission 

spectrum using the transfer-matrix method and a superposition of 4 Lorentzian oscillators, namely: 

 휀(퐸) = 휀B +∑  푓 /(퐸  exciton −퐸 −
=
= 푖훾 퐸), where 휀B is a background permittivity, 푓  is the 

oscillator strength of the exciton with subindex 푖, 퐸  exciton is the corresponding exciton peak energy, 

훾  is the linewidth of the exciton absorption band, and E = ħω is the photon energy.   

Supplementary Figure S1 | Retrieving the in-plane permittivity of monolayer WS2. a, Experimental 
transmission spectrum of monolayer WS2 on PDMS (pink) and fitted spectrum (brown). b, Retrieved 
in-plane permittivity of monolayer WS2 obtained by fitting the transmission spectrum using the transfer-
matrix method and a permittivity model with 4 Lorentzians. 
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Supplementary Section S2. Symmetry requirement for guiding light in atomically thin 

waveguides 

We examine a slab waveguide model that includes a monolayer of WS2, characterized by a refractive 

index nML and surrounded by media with refractive indices n1 and n2 (Supplementary Figure S2a). We 

aim to understand how differences in these refractive indices impact the cutoff thickness for both the 

transverse electric (TE) and transverse magnetic (TM) modes, which is a critical parameter that defines 

the minimum thickness at which the waveguide can support a given mode. By solving Maxwell‘s 

equations for both modes, we find the cutoff thicknesses in Supplementary Equations S1 and S2: 

ℎcutoff, TE
monolayer =

tan− −

ML−

( ML − )
                                      S1 

ℎcutoff, TM
monolayer =

tan− ML −

ML−

( ML − )
                                 S2 

In the case of a symmetric slab waveguide with n1 = n2, the cutoff thicknesses for the fundamental TE 

and TM modes are zero. We plot the relation between the cutoff thickness and the refractive index 

mismatch ∆n = n2  − n1. The cutoff thickness for both TE and TM modes at the wavelengths of 615 and 

608 nm decreases when ∆n is reduced, as illustrated in Supplementary Figure S2b. The cutoff thickness 

dependence suggests a sensitivity of waveguiding on small changes in refractive index. In the case of a 

single-layer-thick slab, it is crucial to limit ∆n below 5% for the TE mode to ensure light guiding. The 

TM mode is even more susceptible to refractive index mismatch: the mode ceases to exist for index 

variations of 0.006% in a PDMS environment. As the wavelength increases compared to the 

wavelengths above, the requirements for the symmetric index environment become less stringent for the 
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TE and TM modes, thus increasing the cutoff thickness at a given refractive-index mismatch 

(Supplementary Figure S2c). 

Supplementary Figure S2 | The guided mode in a monolayer is very sensitive to asymmetries in 
the environment refractive index. a, Monolayer WS2 waveguide between two homogenous media 
with refractive indices n1 and n2. b, Cutoff thickness for guiding light depends on the difference in 
refractive indices (Δn) between the top and bottom cladding materials at a wavelength of 615 nm and 
608 nm for TE and TM modes, respectively. Whe show results for n1 corresponding to PDMS (blue) 
and air (red). c, Cutoff thickness condition at different wavelengths for both TE and TM modes when 
n1 = nPDMS. 

 

Supplementary Section S3. Finding the guided modes 

We perform numerical simulations for a layered waveguide system using the transfer-matrix method (as 

described in the Methods section) for monolayers and heterostructures using different complex planes. 

Our dispersion calculations rely on finding the correct poles in the complex plane. To find a guided 

mode, we search for the roots of M22 = 0 in the complex plane, which provides the first iteration of the 

solution for our numerical calculation. In the complex- approach, we sweep the complex values of  

while keeping the wave vector  real and fixed. The complex-plane shows the position of the zero at 

a particular value of =15 µm-1 for the TE and TM modes (Supplementary Figure S3a, top and bottom). 

In contrast, in the real-valued  approach, we tune while  remains constant (Supplementary Figure 



5 
 

S3b). Then, we use this initial solution in our simulation to evaluate the dispersion and its corresponding 

propagation characteristics.  

This methodology remains applicable to both the complex-ω and complex-β approaches. In the 

complex-ω approach, the acquired ω from the mode solution is then employed to evaluate the 

permittivity in the complex plane, using the 4-Lorentzian model (see above). As a result, the permittivity 

for the complex-ω approach encompasses two branches, one related to the TE mode and another one 

associated with the TM mode, each requiring an independent determination of a complex ω value 

(Supplementary Figure S4). On the contrary, the complex-β approach involves the determination of the 

real and imaginary parts of β with a permittivity defined at each real value of ω (Supplementary Figure 

S1). 

Supplementary Figure S3 | Example of the evaluation of the first-iteration solutions for TE and 
TM modes. Map of the M22 matrix element in: a, the complex-ω plane; b, the complex-β plane.  
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Supplementary Figure S4 | Example of permittivity of monolayer WS2 in the complex-ω plane. a, 

Real and imaginary parts of the permittivity versus the real part of the photon energy E = ħω in the 

complex-ω plane for TE and TM modes. b, Real and imaginary parts of the permittivity versus the 

imaginary part of the energy for the TE and TM solutions.  

 

Supplementary Section S4. Field distribution for TE and TM modes in heterostructures  

Using the transfer-matrix method for monolayers and heterostructures, we evaluate the field distribution 

of the supported TE and TM modes. These two types of waveguide modes have markedly different field 

distributions. For the TE mode, the normalized tangential electric field component shows a symmetric 

distribution at E = 2 eV (Supplementary Figure S5). In contrast, the TM magnetic field distribution is 

anti-symmetric with respect to the middle plane of the hBN spacer. This field component goes through 

zero at the center of the hBN film.  
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Supplementary Figure S5 | Normalized field components for a heterostructure. a, Normalized 
electric field for the TE mode at photon energy E = 2 eV. b, Normalized magnetic field for the TM 
mode at E = 2.0223 eV. The heterostructure has an hBN spacer thickness of 70 nm for ease of 
visualization.  

 

Supplementary Section S5. Additivity rules for out-of-plane momentum in 

heterostructures 

Consider a heterostructure composed of two monolayers with thickness tmonolayer and surface conductivity 

σ, separated by a spacer material with thickness h = 2a and permittivity ε2. This heterostructure is 

placed in a homogenous medium with permittivity ε1 (Supplementary Figure S6). 

Supplementary Figure S6 | Evaluation of decay constants. Schematic of a heterostructure comprising 
two monolayers with surface conductivity σ, and a spacer material with thickness h = 2a and 
permittivity ε2. The structure is placed in a homogeneous environment with permittivity ε1. 
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TE mode 

For medium n in the homogeneous regions in the heterostructure and using Maxwell’s equations, we 
can write the fields:  

퐸 = (퐴 푒 + +퐵 푒 − )푦,̂ 

퐻 = −푖
휔휇0
∇×퐸 , 

퐻 // = 푖
휔휇0

휕퐸
휕푧

= −푘
휔휇0

(퐴 푒 + −퐵 푒 − ), 

퐵 = 퐴 = 0. 

In medium I and III, as shown in Supplementary Figure S6, we have: 

                                               푞 = 훽 − 휀 푘    and   푘 = 푖푞,                         S3 

where q is the out-of-plane decay constant, β is the propagation constant (or in-plane wave vector), k0 is 

the free-space wavenumber, and kz is the component of the wave vector in the out-of-plane direction 

(perpendicular to the propagation direction).   

In medium II, we have:   푚 = 휀 푘 − 훽    and    푘 = 푚,                 S4 

where m is a parameter related to the decay constants with units of inverse length.   

In the infinitesimally thin monolayer approximation, the boundary conditions at the interfaces are 
퐸+ = 퐸− and 퐻+ −퐻− = 휎푛̂ × 퐸.             

At the upper monolayer (z = a), we obtain: 
퐴 푒− = 퐴 푒 +퐵 푒−    and 

− 푖푞
휔휇0
퐴 푒− + 푚

휔휇0
(퐴 푒 −퐵 푒− ) = 휎퐴 푒− . 

At the lower monolayer (z = − a), we have:   

퐵 푒− = 퐴 푒− +퐵 푒    and 

− 푚
휔휇0

(퐴 푒− −퐵 푒 ) − 푖푞
휔휇0
퐵 푒− =  휎퐵 푒− . 

We can then write all the boundary conditions as a matrix equation:  

⎝
⎜⎜
⎜⎜
⎛

−1 푒 푒− 0
−푖푞 − 휎휔휇0 푚푒 −푚푒− 0

0 푒− 푒 −1
0 −푚푒− 푚푒 −푖푞 − 휎휔휇0⎠

⎟⎟
⎟⎟
⎞

⎝
⎜⎜⎜
⎜⎛
퐴 푒−
퐴
퐵

퐵 푒− ⎠
⎟⎟⎟
⎟⎞ = 0. 
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For the mode to exist, the matrix determinant should be zero: 

푒− (−푖푞 − 휎휔휇0 −푚) − 푒 (−푖푞 − 휎휔휇0 +푚) = 0, 

                                         − − 0
+ + 0

= ±푒− .                                    S5 

Next, we investigate the decay constant for a monolayer, an hBN film, and a heterostucture: 

 Only monolayer (no hBN): this is equivalent to setting 푎 = 0: 

                                           푞 = 푖푞휔휇 = 2푞monolayer.                            S6 

 Only hBN (no monolayer): this is equivalent to setting ߪ = 0: 

                                                                       −
+ = ±푒− .                                  S7 

The lowest-order solution, taking the positive sign, is:  

푖푚 + 푞 = 푒−  (푖푚− 푞), 

푞 = 푖푚 − −
− + = 푚 tan(푚푎), 

푞 +푚 = (휀 − 휀 )푘 = 푅 . 

Using the small-thickness approximation, Equation S7 is satisfied when m ~ R: 

                                     푞hBN = 푅 tan(푅푎)                                       S8 

 Heterostructure with two WS2 monolayers and hBN as a spacer: 

Replacing Equation S6 in Equation S5, we obtain  

                                                           − − monolayer
+ − monolayer

= ±푒− .                              S9 

Let us define 푞 ̃= 푞 − 2푞monolayer and  − ̃
+ ̃= ±푒− . Solving in the same way as in Equations S7 

and S8, we obtain 

푞 ̃= 푅 tan(푅ℎ), 

푞 = 푅 tan(푅ℎ) + 2푞monolayer = 푞hBN + 2푞monolayer. 

TM mode 

For medium n: 

퐻 = (퐴 푒 + +퐵 푒 − )푦,̂ 

퐸 = 훻×퐻 , 

퐸 = − = (퐴 푒 + −퐵 푒 − ). 

We use the same approach as in the TE mode:  

At the upper monolayer (z = a):  

퐴 푒− = (퐴 푒 −퐵 푒− ), 
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퐴 푒− −퐴 푒− −퐵 푒− = −휎 퐴 푒− . 

At the bottom monolayer (z = − a): 

− 퐵 푒− = (퐴 푒− −퐵 푒 ), 

퐴 푒− +퐵 푒 −퐵 푒− = 휎 퐵 푒− . 

Let us set 퐾 =  and 퐾 = . We write all the boundary conditions as a matrix equation:  

⎝
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎛
−1 − 푒 푒− 0

− 푒 − 푒− 0

0 푒− 푒 −1 −

0 − 푒− 푒 −
⎠
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎞

⎝
⎜⎜⎜
⎜⎛
퐴 푒−
퐴
퐵

퐵 푒− ⎠
⎟⎟⎟
⎟⎞ = 0. 

For a mode to exist, the matrix determinant should be zero: 

푒− −1 − − − 푒 −1 − + =0, 

푒− 1 − 1 + − 푒 1 + 1 + = 0. 

Let us also set = 훷,  = 휓, and (1 + 훷)휓 = 휂. 

 Only monolayer (no hBN): this is equivalent to setting a = 0: 

1 − (1 + 훷)휓 = ±(1 + (1 + 훷)휓). 

Taking the positive sign solution:  

1 − (1 + 훷)휓 = 1 + (1 + 훷)휓, 

(1 + 훷)휓 = 0 with 휓 = 0 not possible, 

훷 = −1, 푖휎푞 = −휔휀 휀 , 푞 = = 2푞monolayer. 

 Heterostructure:  

푒− (1 − 휂) − 푒 (1 + 휂) = 0, 

푒− (1 − 휂) = ±푒 (1 + 휂), 

휂 = ∓푒 +푒−

±푒 + 푒−
. 

We take the positive sign and work out the 푎 → 0 limit: 

휂 = −푖 tan(푚푎),    

1 + = −푖 tan(푚푎), 

+ = −tan(푚푎), 

1
푞
− 1
푞monolayer

= −푎휀
휀

tan(푚푎)
푚푎

~ − 푎휀
휀

, 
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푞 = 1
1

푞monolayer
− 푎휀휀

= 휀
휎
푖휔휀 − 푎휀

, 

휎 = −푖휔휀 휀m푡monolayer, 

푞 = − 2휀
휀 ℎ + 2휀m푡monolayer

. 

To calculate the minimum thickness of the spacer, we set the denominator to zero: 

ℎcutoff = −
2 푅푒{휀m}푡monolayer

휀
. 

Therefore, when utilizing this analytical theory and applying the small-thickness approximation in the 

complex-β plane with a real ω, the cutoff length is independent of the permittivity of the substrate and 

superstrate, and it depends only on the properties of the spacer. We identify the following cutoff 

thicknesses for different spacer materials: 5.33 nm for air, 2.64 nm for PDMS, and 1 nm for hBN. Above 

these values, the effective total permittivity becomes positive, and the structure can no longer support 

the usual TM mode. The TE mode, in contrast, has no cutoff. 

Supplementary Section S6. Influence of the insulator spacer on the guided modes for the 

complex-ω and complex-β approaches 

The dependence of the TE guided mode on the spacer thickness in the complex-β approach agrees with 

the complex-ω one, as shown in Supplementary Figure S7a. However, the effect of increasing the spacer 

thickness on the TM mode in the complex-β approach is clearly different from the complex-ω approach, 

as shown in Supplementary Figure S7b. To clarify this difference, we evaluate the derivative of the 

propagation constant with respect to the spacer thickness, dβ/dh, which has the same sign as β2 

according to the previous derivation. When considering the complex-ω approach, where β takes a real 

value, the quantity dβ/dh is found to be positive. This indicates that the derivative increases as the 

thickness of the spacer increases, thereby positively impacting the TM mode. Conversely, in the 

complex-β approach, where β is primarily an imaginary number, the derivative dβ/dh is negative. This 

suggests that, as the spacer thickness increases, the derivative decreases, exerting an opposite influence 

on the TM mode compared to solving the mode in the complex-ω plane. 
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Supplementary Figure S7 | Spacer thickness dependence of the guided modes using the complex- 
ω and complex-β approaches. a, Comparison of the TE mode in the complex-ω and complex-β 
approaches for a heterostructure with varying hBN spacer thicknesses of 1 nm, 5 nm, and 10 nm. b, TM-
mode dispersion in the complex-ω and complex-β approaches for spacer thicknesses of 0.3 nm and 0.6 
nm. 


