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Abstract: Thanks to their exceptional spatial, spectral and

temporal resolution, highly-coherent free-electron beams

have emerged as powerful probes for material excita-

tions, enabling their characterization even in the quan-

tum regime. Here, we investigate strong light–matter cou-

pling through monochromatic and modulated electron

wavepackets. In particular, we consider an archetypal

target, comprising a nanophotonic cavity next to a sin-

gle two-level emitter. We propose a model Hamiltonian

describing the coherent interaction between the passing

electron beam and the hybrid photonic–excitonic target,

which is constructed using macroscopic quantum electro-

dynamics and fully parameterized in terms of the electro-

magnetic dyadic Green’s function. Using this framework,

we first describe electron-energy-loss and cathodolumines-

cence spectroscopies, and photon-induced near-field elec-

tron emission microscopy. Finally, we show the power of

modulated electrons beams as quantum tools for themanip-

ulation of polaritonic targets presenting a complex energy

landscape of excitations.

Keywords: quantum emitter; cavitymode; polaritonic state;

modulated electron beam; spectroscopy; microscopy

1 Introduction

Much research attention has focused lately on the strong-

coupling (SC) phenomena that emerge when quantum emit-

ters (QEs), such as organic molecules, solid-state vacancies,
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or quantum dots, are placed within the near-field of pho-

tonic resonators, such as Fabry–Perot cavities, metamate-

rial devices, or nanoantennas [1]–[3]. In setups involving

macroscopic ensembles of QEs, the formation of polaritons

(hybrid light–matter states) has opened the way for the

manipulation of matter for purposes such as the modifica-

tion of material properties or the control of chemical reac-

tions [4], [5]. The high complexity of these systems, however,

makes their theoretical description extremely challenging,

which severely limits the capability of current theories to

reproduce experimental results [3], [6]. Complementarily,

polariton formation in systems comprising a single (or few)

QEs [7]–[9] have been investigated for quantum light gen-

eration [10], [11] in studies that have also shed light into

different aspects of light–matter SC at themacroscopic scale

[12]. However, the inherent dark character of these micro-

scopic systems [13], which must feature large light–matter

interaction strengths and small radiative losses, prevents

their full characterization by far-field, optical means.

Traditional electron-beam-based optical characteriza-

tion methods [14], [15], such as electron-energy-loss spec-

troscopy (EELS) or cathodoluminiscence (CL) microscopy,

present extraordinary spatial and spectral resolutions,

approaching the subnanometric and milielectronvolt

ranges, respectively [16], [17]. Thesemake them ideal for the

exploration of light–matter SC and polaritonic states

in nanophotonic samples involving only a few excitons

[18]–[21]. Moreover, in the last years, advances in ultrafast

optical control of free-electron wavepackets reached the

femtosecond scale, matching the optical period of visible

light [22]. These are behind the emergence of techniques

such as photon induced near-field electron microscopy

(PINEM), that exploits the synchronous interaction between

free-electrons and spatially-confined pulsed laser fields [23].

Developments in PINEM theory [24], [25] and, generally,

in the description of electron–photon interactions

[26]–[28], together with the extraordinary degree of

optical modulation (in time and momentum space) of

electron beams attainable today [29]–[31], have made

possible their use to imprint, exchange and manipulate

quantum coherence in optical and material excitations,

sustained by micro- and nano-cavities [32]–[37] and
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QEs [38]–[40], respectively. Only very recently, similar

ideas have been proposed for hybdrid excitonic-photonic

systems, where light–matter SC takes place. By means of

phenomenological studies, it has been shown theoretically

that electron–polariton interactions offer opportunities in

areas such as sensing [41] and quantum information [42].

Here, we present a model Hamiltonian describing

the quantum interaction between a modulated electron

wavepacket and a polaritonic target comprising a single

QE (treated as a two-level system) and a nanophotonic

cavity. The Hamiltonian is constructed using the frame-

work of macroscopic quantum electrodynamics (QED)

[43]–[46] and is fully parameterized in terms of the

electromagnetic dyadic Green’s function. For simplicity,

we consider a cavity with spherical symmetry, and to

unveil clearly quantum-coherent effects in the light–matter

SC, we restrict its Hilbert space to the lowest (degen-

erate), dipolar modes that it supports. We explore the

polariton energy ladder of the hybrid photonic–excitonic

system through both the free-electron wavepacket and

photon spectra in EELS-, CL- and PINEM-like setups.

Finally, we demonstrate the power of modulated electron

beams to probe and control light–matter states in the SC

regime.

2 Target-probe system and model

Hamiltonian

The target-probe system that we have chosen to assess

the ability of free electrons to explore light–matter SC is

depicted in the toppanel of Figure 1.We consider ananopho-

tonic cavity (typically a metal nanoparticle), sustaining a

dipolar-like confined mode overlapping with the dipole

moment, 𝜇QE = 1 e nm (parallel to x-axis), of a QE placed in

close proximity of the nanoparticle surface (the QE-cavity

distance is similar to the cavity radius itself, bc−QE ≈ R), also

along the x-direction. The free-electron wavepacket, with

energies in the order of 10 keV, passes through the com-

pound target along the ẑ direction with impact parameters

be−c and be−QE with respect to cavity and QE, respectively.

QE and cavity are, unless specified otherwise, at resonance,

with ℏ𝜔c = ℏ𝜔QE = 2 eV. This enables us to neglect the

contribution from higher order, multipolar modes in the

QE-cavity interaction. To maximize their coupling, we set

R = 10 nm, which corresponds to modal dipole moments of

𝜇cx, y = 40 e nm [47]. In the following, we employ this ideal-

ized, but feasible, system as a test-bed to explore the phe-

nomenology resulting from the electron probing of polari-

tonic states.

Figure 1: Top: sketch of the system under consideration: an electron

wavepacket with central velocity 𝑣0 ẑ and kinetic energy Ek passes

through a target system composed of a nanoparicle cavity and a QE.

The nanoparticle radius is 10 nm and its spectrum is restricted to two

degenerate dipolar cavity modes with energy ℏ𝜔c = ℏ𝜔QE = 2 eV,

at resonance with the QE. Bottom: illustration of the energy levels of Ĥ0
for target (left) and electron beam (right). The z-dipolar cavity mode is

uncoupled from the QE, while the x-dipolar one is strongly coupled to it,

giving rise to non-degenerate polaritonic states.

In Sections S1–4 of the Supplementary Material (SM),

we provide details of the derivation of the system Hamilto-

nian and its parametrization using macroscopic QED. The

small size of the cavity allows us to use the quasi-static

approximation for the dyadic Green’s function employed

in the electromagnetic description of the target and pass-

ing electrons. The impact of retardation and nonlocal

effects, beyond the quasi-static picture, is also discussed in

Section S4 of the SM. The systemHamiltonian can bewritten

as Ĥ = Ĥ0 + ĤI , with

Ĥ0 = ℏ
∑
i=x,z

𝜔câ
†
i
âi + ℏ𝜔QE𝜎̂

†𝜎̂+

+
∑
k

Ekĉ
†
k
ĉk + ℏg

c−QE
x

[
â†
x
𝜎̂ + âx𝜎̂

†], (1)

ĤI = +ℏ
∑
i=x,z

∑
q

ge−c
q,i

b̂q

[
â†
i
− âi

]
sign(q)

+ ℏ
∑
q

g
e−QE
q b̂q

[
𝜎̂ − 𝜎̂†

]
sign(q). (2)

Ĥ0 describes the free dynamics of target and electron beam

independently, and ĤI their interaction. This Hamiltonian
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captures the terms previously used to study free electron

interaction with optical modes [34]–[36], QEs [38]–[40],

and polaritonic systems [41], [42]. We also note that the

parametrization through macroscopic QED allows retriev-

ing the classical results from EELS theory (see Section S4 of

the SM). Also importantly, the general form of the Hamil-

tonian parameters in terms of the dyadic Green’s func-

tion provided in Sections S1 and 2 of the SM allows the

investigation of electron–polariton interactions beyond our

model system, to other experimentally relevant nanopho-

tonic platforms.

In Equations (1) and (2), âi (i = x, z) are the annihilation

operators for the degenerate dipolar cavity modes (note

that, by symmetry, we can consider only those within the

xz-plane in Figure 1), 𝜎̂ = |g⟩⟨e| is the two-level-system low-

ering operator for the QE excitons, and ck is the operator

describing the annihilation of free-electron population in

the wavepacket component with momentum k and energy

Ek = (ℏk)2∕2me. The fourth term in Equation (1) accounts

for the cavity-emitter coupling in the rotating wave approx-

imation with strength (see Section S4 of the SM)

g
c−QE
x =

𝜔QE

3

√√√√𝜋

2

(
R

bc−QE

)3 𝜇2
QE

ℏ𝜔c𝜖0b
3
c−QE

. (3)

Note that the QE only couples with the cavity mode with an

effective dipole moment along x-direction.

The two Holstein-like terms in Equation (2) describe

the target-probe interaction, where b̂q =
∑

kĉ
†
k−qĉk is the

ladder operator that shifts the free-electron momentum by

an amount q, which is transferred to or from the cavity

modes (first terms) or QE exciton (last term). Note that,

contrary to the QE, the passing electrons couple to both the

x- and z-dipolar cavity modes. As detailed in Sections S3 and

4 of the SM, the electron-cavity and electron-QE coupling

strenghts can be written as

ge−c
q,x

= eℏk0
3meL

q2K1(|q|be−c)
√

1

ℏ𝜖0

𝜋

2

R3

𝜔c

, (4)

ge−c
q,z

= eℏk0
3meL

q2K0(|q|be−c)
√

1

ℏ𝜖0

𝜋

2

R3

𝜔c

, (5)

g
e−QE
q =

ek0q
2𝜇QE

2𝜋meL𝜖0𝜔QE

K1(|q|be−QE), (6)

where ℏk0 = me𝑣0 ≫ ℏ|q| is the incoming momentum of

the passing electrons, which is ∼4 orders of magnitude

larger than the momentum they exchange with the cavity-

emitter target (|q| ∼ 𝜔c,QE∕𝑣0). This fact enables us to oper-
ate under the so-called nonrecoil approximation [14]. K0.1(⋅)
are modified Bessel functions of the second kind, and we

have assumed positive impact parameters (bi− j > 0 for all

i, j). L is a length scale introduced in the particle-in-a-

box quantization of the electron momentum, we anticipate

that all the physical observables calculated in the following

will not depend on this quantity, formally introduced for

clarity.

We are interested in employing the electron beam as

a tool to explore light–matter SC in the target. Therefore,

we will proceed by diagonalizing (analytically) the bare

Hamiltonian, Ĥ0, accounting for the cavity-QE interactions

at all orders in the coupling strength g
c−QE
x and obtaining

the polaritonic eigenstates of the target. On the contrary,

taking advantage of the fact that the incoming electrons

only alter the target weakly, the interaction Hamiltonian,

ĤI , will be treated perturbately, only considering processes

up to second order of interaction in ge−c
q,i

and g
e−QE
q . The

bottom panel of Figure 1 illustrates the energy levels of the

target (left) and electrons (right). Note that the energy scales

are very different as, as indicated above, Ek ≫ ℏ𝜔c,QE. The

sketch of the ground and first excitation manifolds for the

target shows an uncoupled z-dipolar cavity mode and the

emergence of polaritonic states as a result of the hybridiza-

tion of the x-dipolar cavity mode and the QE exciton. The

eigenstates of Ĥ0 can be expressed as a product of the

free electron states, |k⟩, the Fock states of the uncoupled

cavity mode, |n⟩z, and the polaritonic states. If cavity and

QE are at resonance (which is the reference configuration

for our study), these can be simply written as |N,±⟩ =
(|N⟩x|g⟩± |N − 1⟩x|e⟩)∕√2 in the Nth manifold, with ener-

gies ℏ𝜔N,± = ℏ
(
N𝜔c,QE ±

√
Ng

c−QE
x

)
[1], [2], [5]. Therefore,

we have

Ĥ0|𝜙⟩ = E𝜙|𝜙⟩, (7)

for the bare system, with |𝜙⟩ = |n⟩z⊗ |N,±⟩⊗ |k⟩ and

E𝜙 = ℏ𝜔cnz + ℏ𝜔N,± + Ek .

3 Electron-target interaction

Weuse the scatteringmatrix formalism [37]–[39] to describe

the alteration of the target states by the passing elec-

trons, which amounts to applying the propagator for the

interaction Hamiltonian in the interaction picture Ŝ(t) =
 exp

(
− i

ℏ
∫
t

−∞ĤI,int(𝜏)d𝜏
)
, with  being the time ordering

operator, and ĤI,int(𝜏) = eiĤ0𝜏∕ℏĤIe
−iĤ0𝜏∕ℏ. The plasmonic

nature of the cavity translates into optical mode lifetimes

in the range of several tens of femtoseconds, while the QE

lifetime is of the order of hundreds of ps. The electron-target

interaction time can be estimated from the ratio 𝜆c∕4𝑣0 ≃ 2

fs (where we have assumed a size for the subwavelengh-

confined cavity mode of 𝜆c∕4), which is at least one order

of magnitude faster than the lifetime of the target states
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[48]. Thus, using the quasi-instantaneous character of the

electron-target interaction, we can describe the mixing of|𝜙⟩ that they induce through
Ŝ(t→∞) = Ŝ = exp

(
−i

∑
𝜙,𝜙′

hI,𝜙,𝜙′ |𝜙⟩⟨𝜙′|
)
, (8)

hI,𝜙,𝜙′ = 𝛿E𝜙,E𝜙′
L

ℏ𝑣0

⟨
𝜙|ĤI|𝜙′

⟩
. (9)

TheKronecker delta in Equation (9) accounts for energy

conservation in the electron-target interaction. It is obtained

by taking the discrete limit of the continuous delta function

[38], 𝛿(
(
E𝜙 − E𝜙′

)
∕ℏ)→ (L∕2𝜋𝑣0)𝛿E𝜙,E𝜙′ , which is a conse-

quence of the particle-in-a-box quantization of the electron

wavepacket. This introduces a discrete resolution in wave-

vector Δk = 2𝜋∕L, and energy ΔEk = hv0∕L. The L factor

in Equation (9) cancels with the 1∕L factors in the expec-

tation values ⟨𝜙|ĤI
||𝜙′⟩ embeded in the coupling strengths

in Equations (4)–(6), which makes the propagator Ŝ(t→∞)

independent of this auxiliary length scale. By relating the

initial and final free-electronmomenta through themomen-

tum exchanged with the target, k = k′ − q, it is possible to

write

𝛿E𝜙,E𝜙′
≈ 𝛿

(
q𝑣0, 𝜔c

(
nz − n′

z

)
+𝜔N,± −𝜔N′,±′

)
(10)

where we have used the notation 𝛿i, j = 𝛿(i, j) for clarity.
Note that in previous works exploring the electron-beam-

probing of optical cavities [34] and QEs [38], all the momen-

tum and energy exchanged with the target was in multiples

of 𝜔c,QE∕𝑣0 and 𝜔c,QE, since the latter was the only energy

scale present in the system. Here, the cavity-QE SC and

the resulting polaritonic ladder gives rise to a much more

complex landscape of electron-target interactions.

Figure 2 shows the adimensional matrix elements

hI,𝜙,𝜙′ that connect the ground state of the target, |𝜙⟩ =|G⟩ = |0⟩z⊗ |0⟩±⊗ |k⟩ and the different states of the first
excitation manifold of Ĥ0. With the cavity and QE parame-

ters introduced above, we obtain g
c−QE
x ≈ 80 meV, which is

in accordance with the light–matter interaction strengths

reported experimentally in different nanophotonic-based

polaritonic systems at the single QE level [8], [9]. Due to

the structure of the interaction Hamiltonian, the evaluation

of Equation (9) for ||𝜙′⟩ = |1±⟩ = |0⟩z⊗ |1,±⟩⊗ |||k − 𝜔1±
𝑣0

⟩
and ||𝜙′⟩ = |1z⟩ = |1⟩z⊗ |0⟩⊗ |||k − 𝜔c

𝑣0

⟩
yields [41]

hI,G,1± = L

ℏ𝑣0

[
ge−c
𝜔1,±∕𝑣0,x

± g
e−QE
𝜔1,±∕𝑣0

]
, (11)

hI,G,1z =
L

ℏ𝑣0
ge−c
𝜔c∕𝑣0,z

. (12)

Figure 2: Matrix elements, hI,G,𝜙′ , connecting the target ground state

with states of the first excitation manifold as a function of the free

electron-QE distance and the electron speed. (a) Upper polariton |1+⟩,
(b) lower polariton |1−⟩, (c) z− dipolar mode |1z⟩. Note that we are
omitting the electronic part of the wavefunction, see main text. Solid,

dashed, and dotted-dashed white lines plot the isocurves hI,G,𝜙′ = 0,

hI,G,𝜙′ = 10−3, and hI,G,𝜙′ = −10−3, respectively. The vertical color arrows
indicate the configurations considered in Figure 3.

Equation (11) illustrates the power of electron beams for

the exploration of light–matter SC. In optical-based spectro-

scopic techniques, which operate under the far-field, laser-

like pumping of the polaritonic target, the driving ampli-

tude of the cavity is orders of magnitude larger than the

QE. This is a consequence of the dipole mismatch between

them, which is 𝜇cx,z∕𝜇QE ≃ 40 for the small nanoparticle

in our system (see Section S4 of the SM). In these setups,

the polariton population takes place through the cavity, and

hence, it is exactly the same (except for dispersion effects)

for lower and upper states. When employing a very local-

ized excitation, the electron beam in our case, it is possible

to make the absolute value of two terms in Equation (11)

similar through the tuning of the probe parameters that

come into play in the interaction with the target. In this

regime, one of the polariton states becomes completely dark

to the passing electron, enabling the selective probing of

the other one, as all the interaction dynamics will occur

solely through it. This phenomenology is similar to the
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polariton-blockade mechanism [42] recently proposed as a

resource for quantum information processing.

Figure 2 render hI,G,1+ (a), hI,G,1− (b) and hI,G,1z (c), as a

function of the electron-QE impact parameter, be−QE, and the

central velocity of the electron wavepacket normalized to

the speed of light, 𝑣0∕c. We can observe that all the matrix

elements decrease with larger distance and lower velocity

(see dashed white lines), although only hI,G,1− completely

vanishes within the parameter range considered, as indi-

cated by the white solid line in panel (b). As expected from

the setup we have chosen, see Figure 1, the electron probes

more efficiently the polaritonic states than the z-dipolar cav-

ity mode at small be−QE. Only at large 𝑣0∕c, the three panels
acquire similar absolute values, although the elements for

the lower polariton change sign and become negative in this

regime. The study provided in these three panels serves as

a guide for the design the electron-beam configurationmost

appropriate to interrogate a given state of thefirst excitation

manifold in the light–matter SC target.

The adimensional matrix elements in Figure 2 acquire

values that range between −1 and 1, which means that the
propagator in Equation (8) can be treated perturbatively in

different orders of electron-target interaction for most of

the configurations analyzed. Note that all the results that

follow lie within this perturbative regime. Using the Tay-

lor expansion for the exponent function, we can write Ŝ =∑
𝜙,𝜙′S𝜙,𝜙′ |𝜙⟩⟨𝜙′||, with
S𝜙,𝜙′ = 𝛿𝜙𝜙′ − ihI,𝜙,𝜙′ − 1

2

∑
𝜙′′
hI,𝜙,𝜙′′hI,𝜙′′,𝜙′ +… (13)

which shows explicitly the mixing of the states of Ĥ0 by

the passing electrons to all orders in the coupling strengths

given by Equations (4)–(6).

The quasi-analytical character of the approach intro-

duced above provides us with deep insights into the phe-

nomenology of target-probe interactions. In the following

sections, we will use it to unveil how the electron-induced

state mixing described by Equation (13) can be exploited for

the probing of the polaritonic states in our model cavity-QE

system. We will focus first on incoming electrons with a

well-defined momentum, and then proceed to explore how

modulated electron beams can be used to further character-

ize light–matter SC phenomena through the engineering of

the electron wavefunction.

4 CL, EELS and PINEM in polaritonic

targets

There are two strategies that allow extracting information

from the target through the electron probing: through the

radiation spectrum of the cavity (we neglect the emission

from the QE) into the far-field, as it is done in CL setups,

and through the energy lost/gained by the electron beam

itself, like in EELS or PINEM experiments. We consider the

former first, whose characterization is given by its power

spectrum [49]

I(𝜔) = lim
T→∞

1

2𝜋T

T

2

∫

− T

2

dt

∞

∫
−∞

d𝜏
⟨
𝜉†(t + 𝜏)𝜉(t)

⟩
e−i𝜔𝜏 , (14)

where 𝜉 = 𝜇cx, y (âx + âz) is the dipole moment operator

of the cavity (describing the coherent light emission [10]

by its two degenerate modes) and 𝜉(t) = eiĤ0t∕ℏ𝜉e−iĤ0t∕ℏ

describes its evolution in time under the bare Hamiltonian

in Equation (1). The expectation value in Equation (14) is

firstly taken over the state
|||𝜙 f

⟩
= Ŝ|G⟩, which results from

the fast target-probe interactionwhen the former is initially

in its ground state. We have briefly discussed the lifetime

of the target states to justify the approximations inherent

to Equation (8). However, our model is based on a purely

Hamiltonian description of the target, given by Equation (7).

Therefore, the spectrum obtained from Equation (14) will

consist of a weighted sum of delta Dirac functions. In the

following, we will introduce a phenomenological broaden-

ing, 𝜎, for the spectral features, to account for the finite

lifetime of the target states, by making the replacement

𝛿(𝜔)→ 𝜎

2𝜋

1

𝜔2+𝜎2∕4 . This Lorentzian lineshape is obtained

in the Lindbladian description of open quantum systems

[50], [51].

Figure 3(a) shows CL-like spectra obtained for aloof

electrons with impact parameters be−QE = 1 nm, be−c =
11 nm, and different velocities, indicated by the vertical

color arrows in Figure 2. The far-field intensity spectra are

broadened by 𝜎, set to 0.02 eV, an optimistic estimation for

plasmonic lifetimes [48] (1∕𝜎 = 30 fs). They are normalized

to I0, the intensity at the polariton maxima in the limit

𝑣0 → 0 (see below). Three spectral maxima are apparent,

which originate from the upper and lower polaritons, at

2.08 and 1.92 eV, respectively, and the uncoupled z− dipole

cavitymode at 2 eV. For slow electrons (blue, 𝑣0 = 0.02c), the

spectrum is dominated by the polariton peaks, which have

similar weights. This indicates that the electron-target inter-

action is mainly taking place through one of the polariton

constituents. Indeed, |ge−QEx |≫ |ge−c
𝜔1±∕𝑣0,x

| in this case, due

to the small value of the QE impact parameter. As expected

from Figure 2(c), there is not an intermediate peak in this

spectrum, as ge−c
𝜔c∕𝑣0,z

is negligible in this configuration.

The spectrum for higher electron velocities, 𝑣0 = 0.08c

(orange), does not present the peak at 1.92 eV, which indi-

cates that the lower polariton has become dark to the
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(a)

(b)

Figure 3: Far-field light intensity versus photon frequency for passing

electrons with be−QE = 1 nm and be−c = 11 nm. (a) Power spectra for

three different electron velocities, indicated by the vertical arrows in

Figure 2: 0.02c (blue), 0.08c (orange) and 0.18c (green). (b) Height

of the three maxima in I(𝜔) as a function of 𝑣0∕c. Vertical lines indicate
the configurations considered in (a).

incoming electron beam. Note that g
e−QE
x ≃ ge−c

𝜔1±∕𝑣0,x
and

hI,G,− vanishes in this case. At even larger velocities, 𝑣0 =
0.18c (green), the spectral peaks are, in general, lower, but

the three of themare clearly visible. In this configuration, all

thematrix elements acquire comparable values. Our results

reveal the complex dependence of I(𝜔) on 𝑣0∕c, far from
any monotonic trend. In Figure 3(b) we analyze it in more

detail, by displaying the height of the CL peaks as a function

of the electron velocity. We find that the upper polariton

peak is always the largest, while the lower polariton (z−
dipole mode) is the second largest for low (large) 𝑣0. In

the limit 𝑣0 → 0, the upper and lower polariton maxima

acquire the same value, I0, employed for normalization.

We can also observe that three far-field intensity maxima

approach in the limit of large electron velocity in Figure 3(b).

In SM, Section S4, a detailed discussion on the relationship

between the peaks of I(𝜔) and the electron-target couplings

in Equations (4)–(6) is provided.

We investigate next the fingerprint of the target-probe

interaction in the wavefunction of the passing electron

beam. For this purpose, we focus on the reshaping of the

momentum distribution of the electron wavepacket, mea-

sured by the difference in the population of the states |k⟩
before and after the coupling with the QE-cavity system.

Expressed in terms of the number operator n̂k = ĉ†
k
ĉk , this

difference is given by

Δnk =
⟨
n̂k

⟩
−

⟨
n̂k

⟩0
(15)

where the superscript 0 indicates that the expectation value

is evaluated for the electronwavefunction prior to the inter-

action. Figure 4(a)–(c) plots this population difference ver-

sus (k − k0)
𝑣0
𝜔c

(where k0 is the central electron wavevec-

tor) and half the detuning between the cavity mode and

the QE, Δ = (𝜔c −𝜔QE)∕2 (no longer at resonance in our

analysis). The panels correspond to different initial states of

the cavity-QE target, parameterized through the variable f ,

the amplitude of the first excited state of the x-dipole cavity

mode,

||𝜙0⟩ = |0⟩z⊗
[√

1− f 2|0⟩x + f |1⟩x
]
⊗ |g⟩⊗ ||k0⟩. (16)

This eigenstate of Ĥ0 for vanishing g
c−QE
x mimics the weak,

coherent driving of the cavity by a laser field polarized along

x-direction. Note that, we have used the bare basis above,

instead of the polaritonic basis employed in the previous

section.

In Figure 4(a), we consider an EELS-like configuration,

with the target initially in its ground state, ||𝜙0⟩ = |G⟩ ( f =
0). This setup has been previously investigated in the con-

text of polariton formation in nanophotonic systems [19],

[20], [41]. The incoming electron beam is monochromatic,

presenting a single wave-vector component, k = k0 and

𝑣0 = 0.02c (blue arrow in Figure 2). We can observe that

the electron population is transferred to k < k0, the region

of energy loss, while, as expected, the energy gain region

(k > k0) remains null. At zero detuning,Δ = 0, twomaxima

in Δnk > 0 (yellow color) are apparent, corresponding to

the polaritonic states in the first excitation manifold, |1,±⟩.
These emerge in the region k − k0 ≃ −𝜔c

𝑣0
. The momentum

transfer maxima for non-zero detuning disperse, giving

rise to the imprint of the anticrossing profile characteristic

of light–matter SC [4], [8], [9], [21], [41] into the electron

wavepacket. At |Δ| > |gc−QEx |, two asymptotic branches are
apparent, one vertical, corresponding to the x-dipole cavity

mode (fixed 𝜔c), and one diagonal, given by the QE exci-

ton (variying 𝜔QE). Like in Figure 3, a phenomenological

wave-vector broadening 𝜎∕𝑣0 has been introduced in the

map. The resulting lineshapes are indicated by the solid and

dashed lines, which correspond to the isocurves Δnk = 0

and |Δnk| = 10−5, respectively.
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Figure 4: Momentum reshaping experienced by an incident

monochromatic electron beam (k = k0, 𝑣0 = 0.02c) in its interaction with

a polaritonic target as a function of the half cavity-QE detuning

Δ = (𝜔c −𝜔QE)∕2. In panel (a), the cavity is initially in its ground state in
an EELS-like configuration. In panels (b) and (c), the initial state

of the cavity is given by Equation (16) with f = 0.1 and 0.5, respectively,

mimicking a PINEM setup. Panel (d) shows far-field emission spectra for

the targets in the three panels above andΔ = 0. Black solid (red dashed)

lines plot the intensity after (before) the interaction with the incoming

electrons. Thin grey lines render the different contributions to I(𝜔). They

correspond to the transitions between the ground state and the |1,±⟩
polaritons and z-dipolar optical mode, and between polaritonic states|2,±⟩ and ||1,±′⟩.

As shown in Figure 4(b), by pumping weakly the cavity

mode ( f = 0.1), and under a monochromatic electron beam

with k = k0 and 𝑣0 = 0.02c, a region of Δnk > 0 emerges

in the energy-gain side of the momentum transfer map.

This indicates that, as a result of the interaction with the

target, the electron wavepacket can acquire momentum

components larger than k0 thanks to the population in

the first excitation manifold of the cavity. This setup mim-

ics a PINEM experiment, in which the passing electrons

exchanges energy with an optically-driven resonator. We

can observe that the anticrossing profile in the energy-gain

region is the fainted mirror image of the energy-loss one,

with asymptotic branches given by fixed 𝜔c and −Δ. At
higher driving, f = 0.5 in Figure 4(c), the magnitude of

the energy gain anti-crossing becomes comparable to its

energy loss counterpart, as the amplitude of |0⟩x and |1⟩x
in Equation (16) are the same. We can also observe extra

branches in the energy loss region, that follow −Δ instead

of Δ. These Δnk maxima originate from the promotion of

polaritonic population from thefirst to the second excitation

manifold in the interaction with the passing electrons (dis-

cussed in more detail below), and illustrates that the power

of PINEM in polaritonic systems for electron wavepacket

shaping is well beyond that of EELS.

To complement our study, we plot in Figure 4(d) the

emission spectrum calculated from Equation (14) under the

driving conditions in panels (a)–(c) and for zero cavity-QE

detuning (Δ = 0). Red dashed and black solid lines render

I(𝜔) (in log scale) before and after the interaction with the

electron beam. At f = 0 (EELS-CL configuration), I(𝜔) = 0

prior to the electron arrival, and the final spectrum is dom-

inated by two maxima originated from the radiative decay

of the |1,±⟩ polaritons to the ground state. The lineshapes
for these two contributions are rendered in thin grey lines.

Due to their lower weight, other spectral contributions also

plotted in grey thin lines, are not apparent in I(𝜔). The cen-

tral one corresponds to the z− dipole cavity mode (weakly

excited by the passing electrons), and the small ones next to

it result from the |2,±⟩ to |1,±⟩ transitions, with frequen-

cies 𝜔2,± −𝜔1,± = 𝜔c,QE ± (
√
2− 1)g

c−QE
x .

Figure 4(d) also presents intensity spectra for the two

optically-driven cavities in panels (b) and (c), evaluated

at f = 0.1 and 0.5, respectively. In both cases, the ini-

tial spectra present the two main polaritonic peaks only,

whose height increases with f . In the final I(𝜔), multiple

contributions can be identified. Apart from the two main

ones, whose amplitude barely varies with respect to f =
0, and the central z− dipole feature which is indepen-

dent of f , we can observe that the weight of the |2,±⟩
to |1,±⟩ transitions grow considerably with increasing

optical driving. Moreover, two additional side peaks are

apparent, due to another set of second-to-first manifold

transitions, |2,±⟩ to |1,∓⟩, with frequencies 𝜔2,± −𝜔1,∓ =
𝜔c,QE ± (

√
2+ 1)g

c−QE
x . These transitions are also behind

the extra branches in the energy-loss side branches of
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Figure 4(c) at small detuning. Our results evidence that the

alteration of I(𝜔) due to the passing electron is negligible

for cavities under significant optical pumping, a direct con-

sequence of the weak character of the target-probe inter-

action [38], [39]. Thus, to fully exploit the probing abilities

of electron wavepackets, the strength of their coupling to

the polaritonic target must be enhanced. In the next section

we explore the use of different degrees of freedom of the

incoming electron wavefunction for this purpose.

5 Modulated electron beams

In the previous section, we have shown that, in a PINEM

setup, electron wavefunctions with a rich momentum dis-

tribution can be generated from monochromatic electron

beams through their interaction with a pumped cavity-QE

target. By letting the electrons drift after the interaction,

the various momentum components separate in space, giv-

ing rise to a series of peaked electron wavepackets. These

are usually termed as modulated electron beams. Indeed,

in recent years, much research attention have focused

on different approaches to generate modulated electron

wavefunctions through then interaction with optical sys-

tems [52]–[54]. Here, we explore the probing capabilities

that these modulated electrons bring when interacting with

a cavity-QE system, and show that quantum degrees of

freedom associated to the electron wavefunction become

particularly relevant in the exploration of polaritonic

states.

In this section, we will use the same formalism as in

the previous one, but for convenience, we will explicitly

deal with target and probe degrees of freedom separately.

As a starting point, the bare Hamiltonian eigenstates in

Equation (7) as |𝜙⟩ = ||𝜑e⟩⊗ ||𝜓t⟩, where the first (second)
wavefunction characterizes the electron beam (target) state.

Similarly, the interaction Hamiltonian in Equation (2) can

bewritten as ĤI =
∑

qĤI,q b̂q, separating target and electron

operators, and the scattering matrix in Equation (8) as

Ŝ = exp

⎛⎜⎜⎝−i
∑
𝜓i,𝜓 j

hI,𝜓i,𝜓 j
|𝜓i⟩⟨𝜓 j| b̂q𝜓i ,𝜓 j

⎞⎟⎟⎠
=

∑
𝜓i,𝜓 j

𝜓i,𝜓 j
|𝜓i⟩⟨𝜓 j| b̂q𝜓i ,𝜓 j

, (17)

with hI,𝜓i,𝜓 j
= L

ℏ𝑣0
⟨𝜓i

||ĤI,q𝜓i ,𝜓 j

|||𝜓 j

⟩
, and where q𝜓i,𝜓 j

=
(E𝜓i

− E𝜓 j
)∕ℏ𝑣0 is the electron-target momentum

exchange (set by energy conservation and the non-recoil

approximation). The scattering matrix amplitudes 𝜓i,𝜓 j

have the same form as Equation (13), but replacing the

states |𝜙⟩ by |𝜓⟩, and the matrix elements hI by the hI

ones above. The structure of the scattering matrix in

Equation (17) allows its analytical implementation through

the exploitation of the simple algebra of the b̂q operators,

as detailed in Section S6 of the SM. This is where the power

of our approach resides, as it makes it possible to obtain

analytical expressions for the observables of interest.

We consider now a modulated electron beam, ini-

tially prepared in a superposition of momenta of the form||𝜑e⟩ = ∑
kB(k)|k⟩ (with ∑

k |B(k)|2 = 1). This wavefunction

can describe, for instance, a comb with a set of amplitude

peaks equally spaced in momentum space. We assume that

the target is prepared initially in one of its polaritonic

eigenstates, ||𝜓m⟩ = |n⟩z⊗ |N,±⟩. If, for convenience, we
employ its density matrix description of the target, we have

𝜌0
t
= ||𝜓m⟩⟨𝜓m

||. After the interaction with the modulated

electrons, it reads

𝜌t =
∑
k

⟨k|Ŝ||𝜑e⟩𝜌0t ⟨𝜑e
||Ŝ†|k⟩

=
∑
𝜓i,𝜓 j

𝜓i,𝜓m

∗
𝜓 j,𝜓m

|𝜓i⟩⟨𝜓 j|

×
[∑

k

B(k)B∗(k − q𝜓i,𝜓 j
)

]
. (18)

The expression above shows that the population of

the target states are completely independent from the elec-

tronmomentum distribution [37], as ⟨𝜓s
||𝜌t||𝜓s⟩ = |𝜓s,𝜓m

|2.
Furthermore, ⟨𝜓s

||𝜌t||𝜓s⟩ ≃ ⟨𝜓s
||𝜌0t ||𝜓s⟩ = 𝛿s,m (𝜓,𝜓 = 1 to

first order in the electron-target interaction), which shows

that initial populations remain largely unchanged after the

interaction with the electron. On the contrary, the coher-

ences can be manipulated by appropriately designing the

electron wavefunction [37]. Thus, by shaping B(k) as a

finitemomentum combwith spacing q𝜓m1
,𝜓m2

, the coherence⟨
𝜓m1

|||𝜌t|||𝜓m2

⟩
will be modified, while leaving the rest of the

target density matrix unaltered.

Next, we focus our attention on targets prepared in

a superposition of polaritonic states of the form ||𝜓0
t

⟩
=

cos 𝜙
|||𝜓m1

⟩
+ ei𝜃 sin 𝜙

|||𝜓m2

⟩
. Then, the population of a

given polaritonic state ||𝜓s⟩ after interaction with the mod-
ulated electron beam has the form

⟨𝜓s
||𝜌t||𝜓s⟩ = cos2 𝜙

|||𝜓s,𝜓m1

|||2 + sin2 𝜙
|||𝜓s,𝜓m2

|||2

+ Re

{
e−i𝜃 sin 2𝜙𝜓s,𝜓m1


∗
𝜓s,𝜓m2

×
∑
k

B(k)B∗(k − q𝜓m2
,𝜓m1

)

}
, (19)
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which explicitly shows that for arbitrary initial target state,

the final polaritonic populations can vary thanks to the

coherences in 𝜌0
t
(before the target-probe interaction) and

the modulation of the electron beam encoded in B(k). See

more details in Section S6 of the SM. The last term indicates

that by targeting the transition between the polaritonic

states involved in ||𝜓0
t

⟩
, the impact of themodulation on the

populations can bemaximized. This ability (showcased here

for a general target) of modulated electrons to transform

coherences into populations is what enables them to induce

Rabi dynamics in QEs [38] and makes it possible using them

to implement quantum state tomography protocols [39].

To illustrate the implications of Equation (19), we con-

sider a particular target-probe configuration. The initial

electron wavefunction is set to a comb of the form ||𝜓e⟩ =∑N∕2
n=−N∕2

|k0+nqmod⟩√
N+1

with N = 100. Note that it implies the

exchange of up to 50 photons in its preparation (well within

reach of recent PINEM experiments [55]). The polaritonic

target is initially in the state

|||𝜓0
t

⟩
= 1

2
|0⟩z⊗ [√

3|0⟩x + ei𝜃|1⟩x]⊗ |g⟩, (20)

where 𝜃 is a real number. Note that this wavefunction can

be expressed as a linear combination of the target ground

state and the |0⟩z⊗ |1,±⟩ polaritonic states.
In Figure 5(a) and (b), we analyze the population

differences (given by the diagonal terms of Δ𝜌t = 𝜌t −
𝜌0
t
) induced by the passing electrons on the ground and

the three first-excitation target states. We consider the

three central electron velocities indicated in Figure 2

(blue, orange and green in increasing 𝑣0∕c), and two

different initial state configurations, given different values

of 𝜃 in Equation (20) (dashed and dotted lines). In all cases,

be−c = 11 nm. For reference, the population differences for

a non-modulated (N.M.) electron beam are plotted in solid

lines (note that these are independent of 𝜃). In panel (a),

the modulation spacing is at resonance with the upper

polariton, qmod = 𝜔1,+∕𝑣0, in panel (b), with the lower one,
qmod = 𝜔1,−∕𝑣0.

As expected, Figure 5(a) displays a significant popu-

lation transfer only between the ground state (left) and

the upper polariton (right), which is larger for lower elec-

tron velocity, following the monotonic dependence in the

emitter-target coupling in Figure 2(a). Moreover, we can

observe that for 𝜃 = −𝜋∕2 the upper polariton gains pop-

ulation (as in the non-modulated case), while it gets depop-

ulated for 𝜃 = 𝜋∕2. Note that this parameter sets the phase,
and therefore the sign, of the contribution of the initial

coherences to the final populations given by the last term

in Equation (19). We can see how this can be leveraged to

control the flow of population among polaritonic states. The

momentum spacing in B(k) is set to yield the most efficient

energy transfer between the ground and lower polariton

states in Figure 5(b). The non-monotonic dependence of the

populations on the electron velocity in this case is inherited

from Figure 2(b). Again, varying 𝜃 inverts the direction of

the population transfer.

Apart from analyzing the effect of electron modulation

on the target populations, we also investigate its impact

on the cavity power spectrum given by Equation (14),

now evaluated for the state that results from applying the

scattering matrix on Equation (20). Importantly, this is a

Figure 5: Impact of the electron modulation on the target population transfer (a)–(b) and cavity power spectrum (c)–(d). In the top (bottom) panels,

the momentum modulation is at resonance with the transition between the ground state and upper (lower) polariton state, qmod = 𝜔1,+∕𝑣0
(qmod = 𝜔1,−∕𝑣0). Three different electron central velocities are considered: 0.02c (blue), 0.08c (orange) and 0.2c (green), and the impact parameter
be−c is set to 11 nm. In all panels, two different initial state phases, 𝜃 are considered: 𝜋∕2 (dashed lines) and−𝜋∕2 (dotted lines). The solid lines
correspond to a non-modulated (N.M.) electron beam, and the solid black lines in (c) and (d) plot the cavity spectrum before the interaction with

the passing electrons.
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far-field magnitude that can be easily accessed experimen-

tally. Figure 5(c) and (d) plot I(𝜔) for qmod = 𝜔1,+∕𝑣0, and
qmod = 𝜔1,−∕𝑣0, respectively. The black solid line renders

the cavity spectrum before the interaction with the electron

beam, Iinit. We can observe that only the upper polariton

peak is shaped by the passing electrons in (c), and the lower

polariton one in (d). This illustrates the far-field fingerprint

of the population manipulation in panels (a) and (b). In

both cases, only the emission from the targeted transition

through qmod is modified, keeping the spectrum around

the other features unaltered. Importantly, as we observed

in the polariton populations, the initial coherences, whose

contribution to the spectrum depends on 𝜃, set whether the

altered emission peak increases or decreases with respect

to I init.

Figure 5 indicates that the coherences, rather than the

populations, in 𝜌0
t
dictate the manner in which the popula-

tion transfer and the spectrumreshaping take place through

the interaction with the modulated electron beam. To gain

insight into this result, we simply evaluate Equation (19) for

polaritonic states that are initially populated, i.e., bymaking

s = m1, for example. It is then straightforward to see then

that, in the first two terms, |𝜓m1,𝜓m1
|2 = 1 and |𝜓m1,𝜓m2

|2 =|hI,𝜓m1,𝜓m2
|2 to first order in the electron-target interaction.

On the contrary, we have 𝜓m1,𝜓m1
∗
𝜓m1,𝜓m2

= hI,𝜓m1,𝜓m2
to first

order in the last one. Thus, we find that, while the first terms

are independent or quadratic on the electron-target inter-

action strength, the last is linear, which makes it the leading

one. Moreover, it is easy to show that
∑

k B(k)B∗(k− qmod) =
N∕(N+ 1) ≃ 1 for a finite, but long, electron comb, also con-

tributing to make the initial coherences crucial in establish-

ing the effect of the passing electrons on the target. Note

that adding a running phase difference between the differ-

ent momentum peaks of the initial electronic wavefunction

as ||𝜓e⟩ = ∑N∕2
n=−N∕2e

in𝜉 |k0+nqmod⟩√
N+1

yields an extra phase fac-

tor in the modulated contributions of Equation (19), which

allows to externally control the internal dynamics of the

target.

Finally, we pay attention to the effect that the target-

probe interaction has on the modulated electron beam.

The fact that the population transferences induced by mod-

ulated beams are larger than the non-modulated ones

means that the energy balance of the interaction can be

altered through the modulation itself. Thus, it is possible,

in principle, to pump or deplete the target. In Figure 6, we

explore the net energy change experienced by the passing

electrons

ΔE =
∑
k

EkΔnk, (21)

Figure 6: Expectation value of the energy change of the electron in units

ℏ𝜔c . Main panels show the case of modulated electrons, showcasing that

net energy gain and loss is achievable by modulating the electron. On

each panel we show the modulation spacing and also the phase factor of

the initial target state. The inset corresponds to the case of a non-modu-

lated electron, where there always is net energy loss. The result in this

case is independent of the phase factor.

whereΔnk is defined in Equation (15). As the initial electron
wavefunction, we take the finite comb in Figure 5 and the

target is prepared in the state given by Equation (20).

The four panels in Figure 6 displayΔE in units ofℏ𝜔c as

a function of the central electron velocity and impact param-

eter, be−QE. The results for the initial target state with 𝜃 =
−𝜋∕2 (𝜃 = 𝜋∕2) are shown in the left (right) maps, and the
modulation is set at resonance with the ground transition to

the upper (top) and lower (bottom) polariton. For reference,

the map for non-modulated electrons is shown as an inset

with the same parameter range, illustrating that the passing

electrons can only lose energy in the non-modulated setup,

andΔE is larger for smaller impact parameter and electron
velocity. The situation is rather similar for 𝜃 = −𝜋∕2. For
this state phase, there emerges only a narrow region of

small 𝑣0∕cwhere the electron beamgains energy for qmod =
𝜔1,−∕𝑣0. Apart from it, the maps resemble the EELS one,

and the target populations always increases by the effect of

the passing electrons. For 𝜃 = 𝜋∕2 (right), the net energy
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change maps are very different. Fast electron beams gain

energy for both qmod (althoughΔE is larger for the transition
between the ground and upper polariton), and lose it at low

velocities and impact parameters. Here, the target is popu-

lated/depopulated depending on 𝑣0 and be−QE. The richness

of the net energy loss/gain landscape in Figure 6 follows

from the coupling strengths in Figure 2, as the leading order

in the electron-target interaction is linear in hI . Thus, we

can link the gain-loss transitions in the lower maps with

the change in sign in hI,G,1− in Figure 2(b). All maps are

equivalent in the limit of small 𝑣0 and be−QE, as hI → 1 in

this limit and the electron modulation becomes irrelevant.

Our results also showcase the power of polaritonic systems

to re-shape and altermodulated electron beams through the

energy of its natural transitions and the phase involved in

its initial state preparation.

6 Conclusions

We have presented a comprehensive study of the prob-

ing of polaritonic systems by electron beams. The target is

composed by a nanophotonic cavity supporting two dipolar

modes, and a quantum emitter strongly coupled to one of

them. Usingmacroscopic QED,we have built amodel Hamil-

tonian describing the interaction between probe and target,

fully parameterized in terms of the dyadic Green’s func-

tion in the quasi-static approximation. We have analyzed

the effect of electron–polariton interactions on different

observables, including the electronmomentumdistribution

and net energy change, and the polaritonic state popula-

tions and the light emission spectrum by the target. Our

investigation has proceeded by increasing the complexity

on the electron beamand target preparation, fromEELS and

CL to PINEM, and finally PINEM with modulated electron

beams. All these described using the same, unifying theo-

retical model. Our results show that free electrons, through

themodulation of theirwavefunction, are a powerful probe,

and also a suitable tool for the manipulation, of quantum

targets with a complex energy ladder of (bright and dark)

excitations, such as polaritonic systems.
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