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Abstract: Trapping and manipulating micro-objects and
achieving high-precision measurements of tiny forces and
displacements are of paramount importance in both phys-
ical and biological research. While conventional optical
tweezers rely on tightly focused beams generated by bulky
microscope systems, the emergence of flat lenses, par-
ticularly metalenses, has revolutionized miniature opti-
cal tweezers applications. In contrast to traditional objec-
tives, the metalenses can be seamlessly integrated into
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sample chambers, facilitating flat-optics-based light manip-
ulation. In this study, we propose an experimentally realized
transmissive and polarization-insensitive water-immersion
metalens, constructed using adaptive nano-antennas. This
metalens boasts an ultra-high numerical aperture of 1.28
and achieves a remarkable focusing efficiency of approxi-
mately 50 % at a wavelength of 532 nm. Employing this met-
alens, we successfully demonstrate stable optical trapping,
achieving lateral trapping stiffness exceeding 500 pN/(um
W). This stiffness magnitude aligns with that of conven-
tional objectives and surpasses the performance of previ-
ously reported flat lenses. Furthermore, our bead steer-
ing experiment showcases a lateral manipulation range
exceeding 2 pm, including a region of around 0.5pum
exhibiting minimal changes in stiffness for smoothly opti-
cal manipulation. We believe that this metalens paves
the way for flat-optics-based optical tweezers, simplify-
ing and enhancing optical trapping and manipulation pro-
cesses, attributing ease of use, reliability, high perfor-
mance, and compatibility with prevalent optical tweez-
ers applications, including single-molecule and single-cell
experiments.
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1 Introduction

Optical tweezers or traps (OTs) are optomechanical tools to
trap and manipulate the micro-objects by a tightly focused
laser beam. Since its inception in 1980s [1], OTs have been
widely used in physical and biological researches because of
their low damage, non-physical contact of objects, and high
precision [2]-[5]. However, traditional OTs rely on bulky
optical elements and long optical paths, making them dif-
ficult to be integrated into a compact platform and often
suffer from severe drifting noise [6]. Several optical meth-
ods have been reported to effectively reduce the drifting
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noise [7], [8], but at the expense of more complicated config-
urations. In this case, lab-on-a-chip optical trapping devices
[9]-[12] with portability and convenience are emerging.
Since the objective is the key element in a conventional
OT, it is essential to minimize its size before miniaturizing
the whole system. To achieve this goal, the flat lenses have
become one of the promising choices. The flat lenses, e.g.
metalenses [13]-[17] and Fresnel zone plates [18]-[20], are
thin film optical elements that control the phase, ampli-
tude and polarization of the light beam for high quality
focusing. In contrast with traditional objectives, they can be
integrated into the sample chambers, thus allowing a more
compact configuration and less drifting for OTs.

Several flat-lenses-based OTs have been proposed. For
example, Shen et al. [21] have proposed a metalens enabling
opticallevitation in vacuum. Though it successfully levitates
a nanoparticle with numerical aperture (NA) reaching 0.88
in air, its conventional designing strategy on the metalens
leads to an equivalently reduced trapping stiffness and effi-
ciency in aqueous medium, making it challenging to extend
its applicability to the realm of biophysics research. Schon-
brun et al. [22] and Markovich et al. [23] have demonstrated
the optical trapping of polystyrene microspheres through
the utilization of flat lenses with impressive NAs of 1.31 and
1.32, respectively. However, their achieved trapping stiffness
remains comparatively modest and is difficult to be opti-
mized since these lenses experience a notable reduction in
deflection efficiency for larger deflection angles, thereby
leading to a significant decrease in overall focusing effi-
ciency [24]. Conversely, flat lenses characterized by lower
NAs exhibit higher focusing efficiency while they are unable
to attain the requisite trapping stiffness necessary for effec-
tive manipulation of hiological objects [25], [26]. Therefore,
flat lenses simultaneously with high NA and high focusing
efficiency are indispensable for high-performance optical
trapping. Very recently, Xiao et al. have demonstrated a met-
alens simultaneously achieving a high NA of 1.2 and high
trapping stiffness up to 430 pN/(pm W) [27]. However, their
metalens OT relies on a reflective configuration and circu-
larly polarized light, which could potentially impose con-
straints on its broader applicability. For instance, numer-
ous OT applications require the detection of transmitted
light for force or torque measurement [28]-[30], as well
as the utilization of light polarization for versatile opti-
cal trapping and manipulation [31]-[33]. For these exper-
iments, a transmissive and polarization-insensitive metal-
ens is much preferable. In addition to optical trapping,
the capability of object manipulation is another essential
function of OTs for various applications [34]. Interestingly,
this aspect has rarely been addressed or demonstrated in
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prior studies employing metalens-based OTs. Consequently,
the applicability of these metalens-based OTs still remains
unclear.

For these purposes, in this paper, a water-immersion
metalens based on adaptive nano-antennas is designed for
optical trapping and manipulating. The nano-antennas are
formed as metagratings, which can achieve high deflection
efficiency at large deflection angles by generating a con-
tinuous full 2r phase gradient for arbitrary linearly polar-
ized incident beam even in aqueous environment. As a
result, the metalens is of high NA (1.28) and is insensitive
to polarization. We then experimentally demonstrate the
high focusing efficiency (~50 %) and stable optical trapping
of polystyrene beads with ~1.76 pm in diameter by using
this water-immersion metalens [Figure 1(a)] at the wave-
length of 532 nm. The measured lateral optical trapping
stiffness is 534 + 50 pN/(pm W) in x-direction and 668 +
59 pN/(um-W) in y-direction. To the best of our knowledge,
such trapping stiffness is much larger than most reported
results achieved by flat lenses, and it is comparable to the
conventional OTs based on objectives with similar NAs. By
using this metalens-based OTs, the bead can be laterally
manipulated for more than 2 pm and the trapping stiffness
remains approximately constant within a range of ~0.5 pm.
All these results provide an important guidance and founda-
tion for applying metalens-based OTs to various prevalent
OT experiments including single-molecule manipulation in
the future.

2 Design and characterization
of the metalens

Since many applications of OTs are in an aqueous envi-
ronment, our metalens is designed to work under water
immersion (refractive index 1.33). To achieve high focusing
efficiency, the proposed metalens with the hyperbolic phase
profile consists of polarization-insensitive nano-antennas
[35] [Figure 1(b)], each of which is composed of crystalline
silicon (c-Si) dimers with fixed diameters of 110 nm and
88 nm, respectively, and embedded in a protective sil-
ica layer (see Section 1 of Supplementary Material for the
period and gap details of the nano-antennas). As shown in
Figure 1(b), at the maximum deflection angle of 74° where
the corresponding NA is 1.28 [36], the deflection efficien-
cies of the nano-antennas [37], [38] for x-polarized and y-
polarized light beams are 58 % and 46 %, respectively. By
using the method in a previous work [35], the simulated
focusing efficiency of the metalens (55 pm in diameter) for
the unpolarized incident beam is about 60 %.
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Figure 1: Characteristics of the metalenses and nano-antennas. (a) Schematic of the optical trapping by a metalens. (b) Deflection efficiency of the
nano-antenna with different deflecting angles by x-polarized and y-polarized light beam. The inset is the sketch of the nano-antennas. (c) SEM images
of the metalens. The inset shows the nano-antennas on the periphery of the metalens.
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Figure 2: Experimental focusing performance of the metalens. (a) Experimental two-dimensional point spread function (PSF) of the metalens by
an unpolarized incident light at the wavelength of 532 nm. (b) One-dimensional PSF along the black dotted line of (a). (c) The three-dimensional PSF to

describe the experimental focal spot.

The metalens with a diameter of 400 pm was firstly fab-
ricated on a 270 nm-thick c-Si film of the silicon-on-insulator
(SOI) wafer by electron beam lithography and then it can
be obtained by transferring to a transparent silica substrate
[39], as shown in Figure 1(c).

The focusing efficiency and the full width at half max-
imum (FWHM) of the focal spot (Figure 2) for the unpo-
larized incident beam were experimentally characterized
(see Section 2 in Supplementary Material for the details of
the optical setup). The focusing efficiency of the metalens
reaches 50 %, through a circular aperture in the plane of
focus with a diameter of 3 X FWHM [14], [17]. The FWHM
was measured to be 417 nm, which was obtained from an
Airy fitting to the one-dimensional distribution along the
corresponding direction. Due to the restricted NA (1.2) of
the objective in the current optical setup, the accurate mea-
surement of the FWHM for the focus point is challenging.

The actual size of the focus spot can be determined using
the knife-edge method [40] or inferred from imaging with
a confocal microscope system [35]. This result is larger
than the theoretical value with the same NA and such a
discrepancy mainly attributes to the phase mismatching
between the ideal phase of the lens and the phase of the
nano-antennas.

3 Optical trapping
and manipulating performance

To demonstrate the optical trapping and manipulating capa-
bilities, a modified OT setup based on the metalens men-
tioned above was employed, as shown in Figure 3(a). In the
optical trapping experiments, the polystyrene beads with an
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Figure 3: Experimental optical trapping performance of the metalens. (a) Schematics of optical trapping setup. The inset figure is the image of
trapped bead in the sample chamber below the metalens. The position distribution of the trapped bead for the (b) X and (c) ¥ direction. (d) Spatial
distribution for the trapping bead centers. The corresponding power-spectral-density (PSD) of the trapped bead for the (e) X and (f) Y direction fitted

by a Lorentzian function.

average diameter of 1.76 pm were utilized. This bead size
is within the range of sizes of the commonly used beads
in the single-molecule OT experiments, making the bead
easy to be detected in our optical system. The input laser
power was firstly set to be ~30 mW for easiness to trap a
bead in the flow, and then reduced to 5 mW in the follow-
ing stiffness calibration. In this way, the corner frequency
of the calibration signal was guaranteed to be less than
half of the sampling frequency of the camera [41]. After
that, a frame-by-frame analysis of the recorded video of
the trapping bead at restricted Brownian motion state was
performed. The recording time was set to be 10 s at a frame
rate of 200 Hz. The image of each frame was mean-filtered
and cross-correlated [42] to track the central position of
the bead in motion. To quantitatively assess the trapping
performance of the metalens, we measured the trapping
stiffness by analyzing the Brownian motions of the trapped
beads. Both the mean-square-displacement (MSD) analysis
based on equipartition theorem [Figure 3(b—d)] and power
spectral density (PSD) evaluation [Figure 3(e) and (f)] were

employed for side-by-side comparison of the measured stiff-
ness [6]. Detailed description for MSD and PSD analysis can
be found in the Section 3 of Supplementary Material.

In our experiments, the measured trapping stiffness
from MSD analysis are 534 + 50 pN/(pm-W) and 668
+ 59 pN/(pm-W) at x and y-direction, respectively, while
the corresponding values from PSD analysis are 501 +
32 pN/(pm-W) and 628 + 42 pN/(pm-W), respectively (see
Section 4 of Supplementary Material for details). Both cases
show good accordance with each other within the range of
experimental errors. Table 1 shows the comparison of trap-
ping performance from several reported works achieved
by flat lenses. The present table is dedicated solely to
the literature that reports on metasurface lenses applied
in OT contexts; it does not encompass works involving
metalens or planar lenses used for imaging [14], [16], [17],
[19], [35], [41] or alternative application [43], [44]. As can be
seen, the trapping stiffness obtained here is over one order
of magnitudes larger than most of the previous reported
results with flat lenses and also larger than the most recent
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Table 1: Summary of previously reported experimental trapping performance of flat lenses in aqueous medium.

Reference NA Polarization Wavelength Beads type Kx Ky Calculation
(nm) pN/(um-W) pN/(um-W) method

This work 1.28 Polarization insensitive 532 1.76 pm diameter polystyrene 534 668 MSD
beads 501 628 PSD

Schonbrun et al. [22] 1.31 Linear polarization 976 2 pm diameter polystyrene 29.4 27.7 MSD
beads

Markovich et al. [23] 1.32 Linear polarization 980 2 pm diameter polystyrene 6.5 6.9 MSD
beads

Tkachenko et al. [24] 0.74  Linear polarization 1064 2 pm diameter polystyrene 13.52 33.72 MSD
beads

Plidschun et al. [25] 0.88 Elliptically polarization 660 2 pm diameter silica beads 103.8° PSD

Chantakit et al. [26] 0.60¢  Circular polarization 800 4.5 pm diameter polystyrene 9.5 PSD
beads

Xiao et al. [27] 1.20 Circular polarization 830 2 pm diameter latex beads 4302b PSD

Conventional objective  1.20  Polarization insensitive 532 1.76 pm diameter polystyrene 1097 1291 MSD
beads 888 1108 PSD

aThe flat lens OT is based on a reflective configuration. ®The reference reported the transverse trapping stiffness. “The reference reported the NA

in air and the polystyrene beads in aqueous environment.

result from Xiao et al. [27], thanks to both the high NA
and high focusing efficiency of our metalens. The mea-
sured stiffness is also comparable to that from a conven-
tional objective of similar NA, which is an essential step
for applying the metalens-based OT to the prevalent OT
applications including single-molecule studies. It is worth
noting that the averaged diameter of the beads used in our
optical trapping experiment is 1.76 pm, which is smaller
than those used in other studies listed in Table 1. How-
ever, when performing numerical simulation to evaluate the
trapping stiffness variation with different sizes of the beads
(Section 5 of Supplementary Material), we found that the
optical trapping stiffness for beads with the diameters of
1.76 pm is only ~13 % larger than that for 2 pm, and about
156 % larger than that for 4.5 pm. It’s worth noting that this
simulation result is consistent with previous reports. The
fact that trapping stiffness decreases monotonously with the
particle size within the range of 1-5 pm in diameters can be
attributed to the averaging of the intensity gradients over
sphere volumes larger than the dimensions of the focus, and
the compensation of the increasing repelling force from the
lateral scattering [45]. Therefore, the substantial increase in
trapping stiffness observed in this study cannot be solely
attributed to the variation in bead sizes employed during
the experiments.

Furthermore, many applications of OTs involve not
only effective trapping but also the manipulation of small
objects [46]-[48]. To address this, we extended our investi-
gation to demonstrate the manipulation capabilities of our
metalens-based OTs through a bead-steering experiment. As
depicted in Figure 3(a), altering the position of Lens 1 along

the optical path modifies the incident angle of the beam
onto the metalens, thereby causing the focal spot (i.e. trap)
to shift in a translational manner. In order to increase the
translational displacement, the tiled angle of the input laser
beam needs to be increased. At this point, due to the strong
off-axis aberration of our single layer metalens with hyper-
bolic phase profile for the obliquely incident light, it leads to
a deterioration in the focal spot and a decrease in focusing
[49], which inevitably reduce the trapping stiffness with
this increasing translational displacement. To assess the
range of effective trapping, we initially conducted numer-
ical simulations. Figure 4(a) shows the calculated focusing
efficiency in relation to focus displacement. Additionally, the
simulated PSFs for scenarios involving normal incidence
and a 1 pm displacement are also presented in Figure 4(a).
The outcomes reveal that the maximum focusing efficiency
reaches 60 %, occurring at normal beam incidence onto the
metalens. This efficiency progressively decreases with an
increase in translational displacement.

In the bead-steering experiment, the bead was effec-
tively trapped and manipulated by adjusting the transla-
tional stage for Lens 1 while utilizing a laser power of
5 mW. Interestingly, elevating the laser power to 18 mW
did not noticeably extend the range of mobility within
our experimental setup. Subsequently, the stiffness of the
bead’s trapping at different positions was determined via
the MSD method, with the results graphically displayed in
Figure 4(b). The effectiveness of trapping and manipulating
of beads are clearly shown in Figure 4(c), as well as Visual-
ization 1 and Visualization 2.
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Figure 4: Experimental optical manipulating performance of the metalens. (a) The simulated focusing efficiencies for different trap displacements.
The inset images are PSF at normal incidence to the metalens and PSF at 1 pm displacement. (b) Stiffness as a function of the bead position during
optical trap steering. The solid curve is a second order polynomial fitting for the stiffness points and the center of the fitting curve is set as the zero
point of the bead position. The steering region with the stiffness variation <5 % and the total steering region are highlighted in orange and gray,
respectively. (c) The image of trapped bead steered with the optical trap on X axis. Red dotted circles indicate the same location for the bead with
maximum trapping stiffness. Red cross and blue cross indicate the center of the red circle and the center of the tracked bead, respectively.

As observed, the stiffness of the bead exhibits min-
imal variation (<5 %) within the approximate range of
~=+0.25 pm surrounding the central position [marked as the
orange region in Figure 4(b)]. In contexts where precise
quantitative experiments are required, such as employing
dual optical trap assays for the stretching of a single DNA
molecule to measure its force-extension curve [50], main-
taining a relatively stable trap stiffness during trap steering
is crucial. This scenario could be effectively realized utiliz-
ing our metalens-based OTs, provided that the extent of trap
movement remains confined within the delineated orange
region in Figure 4(b).

However, when venturing beyond the orange region in
Figure 4(b), the stiffness of the optical trap diminishes with
the increment of bead displacement, as indicated within
the gray region in Figure 4(b). For instance, the measured
trapping stiffness experiences a decline to approximately
40 % of its maximum value when the trap’s position shifts
from the central point to a 1 pm displacement [as shown
in Figure 4(b)]. As confirmed by Figure 4(a), we posit that

this reduction in optical trap stiffness results from the
diminishing focusing efficiency [51], [52], rather than being
attributed to any coma aberration stemming from the met-
alens. Beyond the gray region in Figure 4(b), the bead would
eventually escape the optical trap. Remarkably, the maximal
maneuvering range for a bead was ascertained to exceed
2 pm.

It is essential to note that the demonstrated steer-
ing range is already applicable to a broad spectrum of
single-molecule experiments [29], [53]-[55]. Furthermore,
this steering range can be augmented by refining the capa-
bilities of the metalens. For example, by employing a met-
alens array [43], [44] to generate multiple focus spots, the
movement of the trapped object can be suitably relayed to
effectively expand its range of motion. A similar approach
has already been successfully showcased in the realm of
nano-photonic waveguides, specifically through the nano-
photonic standing-wave array trap system [9], [10]. Fur-
thermore, although the axial manipulating has not been
demonstrated in our bead-steering experiment, z-direction
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control can be potentially achieved by slightly adjusting the
steering lens to tune the convergence of the laser beam [6]
or utilizing the chromatism of the metalens [56] and tune
the wavelength of the laser to get different focal lengths
(see Section 6 of Supplementary Material). However, our
metalens-based OT is expected to employ dual optical trap-
ping assays. Such an assay only requires the lateral manip-
ulating and force measurement and has been widely used
in single-molecule experiments to study various biological
processes, such as DNA mechanics, RNA or protein folding,
protein-nucleic acid interactions, etc. [57]-[60]. For this pur-
pose, the ability of lateral trapping and manipulating has
been our focus in the bead-steering experiment.

4 Conclusions

We have demonstrated a transmissive-type and polariza-
tion-insensitive water immersion metalens simultaneously
with high NA and high focusing efficiency for optical trap-
ping and manipulation. The achieved trapping stiffness
is on the same order of magnitude as the conventional
objective-based OTs and much larger than most of previ-
ously reported values for metalens-based OTs. This metal-
ens is beneficial to the advance of integration and perfor-
mance of flat-optics-based OTs from the following aspects:
firstly, it can be easily integrated into the sample cham-
ber so that the size of the OT can shrink into a compact
flat-optics-based volume. Secondly, its integrated configura-
tion is inherently stable to keep the trapping position from
drifting away from the chamber surface, getting rid of the
complicated drift-reduction complements. Thirdly, our met-
alens is transmissive type, which is the same as an objective,
making it compatible with most conventional OT applica-
tions. For example, in a typical single-molecule experiment
with an OT, the transmitted light needs to be detected for
force [61], [62] or torque [30], [63] measurement. OTs based
on a reflective-type metalens would be difficult to separate
the transmitted light from the incident light. Fourthly, the
trapping performance of our metalens approaches the level
of conventional objectives, making it ready for many preva-
lent OT applications including single-molecule or single-cell
experiments. Finally, the polarization insensitive nature of
our metalens is especially useful when the polarization of
the light is utilized for some special OTs, such as angular
optical trap [28], [64] and other torque wrenches [65], [66], as
well as various OTs involving using vector beams [67]-[69].
This is in sharp contrast with most of the reported metalens
which can only response to a particular polarization state
(see Table 1).

D. Yang et al.: Optical trapping and manipulating with a polarization-insensitive metalens == 2787

Additionally, we show that our metalens-based OT
can achieve more than 2 pm manipulation distance and
~0.5 pm moving range with approximately constant stiff-
ness. Though these values are relatively small in com-
parison with conventional objective-based OTs, they are
still acceptable for many experiments, e.g., single-molecule
experiments with short (several hundred- to kilo-base pairs)
DNA samples. This also points out one of the directions to
further improve our metalens in the future.

As a summary, our metalens is transmissive and
polarization-independent, able to generate large optical
force due to its high stiffness and potentially allows diver-
sified operations in manipulation, enabling a novel, flexible
and reliable high-performance flat-optics-based OT for a
wide variety of studies.
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