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I. ADJOINT METHOD

Adjoint-based optimization has found applications in designing devices across various sci-
ence and engineering disciplines, including aerodynamics1,2, mechanical engineering3, and
photonics4–7. Notably, it has been used to create metasurfaces that can precisely control
diffractions6–8. Here, we present an adjoint-based topology optimization approach for de-
signing metasurface phase masks which induce predefined complex diffraction coefficients
of multiple orders.
The simulation setting for the periodic metasurface is illustrated in Figure S1. The design

variables ρ = (ρ1, ρ2, ..., ρN ) are set as continuous variables that range from 0 to 1 at each
pixel ri in the metasurfaces. The dielectric constant is given as

ϵi = ρiϵh + (1− ρi)ϵl, (1)

where ϵl and ϵh denote the low and the high index dielectric constants.
Complex diffraction coefficients are measured inside the photoresist. With the metasur-

face’s period denoted as Λ, the complex diffraction coefficient for the mth order beam can
be calculated as

tm(E,H) =

∫ r0+Λ

r0

[
E(r)×H−

m(r)−E−
m(r)×H(r)

]
· n dr (2)

where E−
m(r) and H−

m(r) represent the normalized diffracted order field which propagate in
backward direction.
In the main text, we define the objective function as

fobj =
∑
m

wm

∥∥tm − t̂m
∥∥2
2

(3)

where t̂m represent mth the desired complex diffraction coefficient. This objective func-
tions have the value of 0 when the diffractions are completely controlled to be the target
coefficients.
In order to obtain the graident of the objective function with respect to the design vari-

ables, we utilize the adjoint method. Suppose there is a small inclusion of dielectric pertur-
bation ∆ϵ at a specific point r′, the change of the objective function owing to the inclusion
can be represented as the overlap integral6.

∆fobj = 2ω2ϵ0∆ϵ(r′)∆V Re
(
E(r) ·Eadj(r)

)
, (4)

where the adjoint field Eadj is defined as

Eadj =
∑
m

wm

(
tm − t̂m

)∫ [
Ge(r

′, r)
(
−n×H−

m(r)
)
−Gh(r

′, r)
(
n×E−

m(r)
)]

· n dr (5)

where the overline indicates complex conjugation, andGe,Gh are the Green’s tensors. Thus,
the adjoint field is the sum of backward propagating beams with the angles specified by
diffraction, and only two simulations are needed to calculate gradient of the design variables
comprising phase masks.
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FIG. S1. Simulation setting for inverse design of phase mask.

To incorporate fabrication constraints, such as requirements for minimum grating feature
sizes and binarization of materials, we used auxiliary filters in the topology optimization
process. Initially, because of the constraints on the minimum line width that lithography
can produce, the window averaging filter is applied to remove small features.

ρ̃i =

∑
j∈Ni

wijρj∑
j∈Ni

ρj
, wij = R− |ri − rj | (6)

where R is the radius of the filter. Second, due to the necessity for the design spaces to
incorporate two different materials - the phase mask material (nh = 2.87) and the embedding
material (nl = 1.40) - a binary projection filter is utilized, which approximate step function
through tanh function as

ρ̄i =
tanhβη + tanhβ(ρ̃i − η)

tanhβη + tanhβ(1− η)
(7)

The hyperparameters β and η control the binarization strength and the threshold value,
respectively. During the optimization, β varies by every 30 iterations, from 10 to 500.

Lastly, the gradient can be calculated using the chain rule:

∂fobj
∂ρ

=
∂fobj
∂ϵ

· ∂ϵ
∂ρ̄

· ∂ρ̄
∂ρ̃

· ∂ρ̃
∂ρ

(8)
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II. LATTICE FORMATION

Because the reciprocal lattice vectors a relate to the real lattice vectors b as a ·b = 2πδij ,
we can find the relation between pattern length and period of phase mask as Eqs.3–8 in the
main text.
For the rectangular lattice, which can be formed by the selection of (−1,+1,+3) diffrac-

tion orders, the reciprocal vectors are defined as

a1 = 2∆kxx̂ (9)

a2 = 2∆kxx̂−∆krz ẑ (10)

where ∆kx = 2π/Λ and ∆krz =
√

k2PR −∆k2x −
√
k2PR − 9∆k2x for simple notation.

The corresponding real lattice vectors can be calculated as

b1 = 2π

(
1

2∆kx
x̂+

1

∆krz
ẑ

)
(11)

b2 = 2π

(
− 1

∆krz
ẑ

)
(12)

Therefore, the lengths of the rectangular pattern would be (Figure S2(a))

d1 = π/∆kx (13)

d2 = 2π/∆krz (14)

The square lattice is uniquely identified when π/∆kx = 2π/∆krz. In this case, the phase
mask period is determined by a specific length with a fixed wavelength and refractive index
of the photoresist.
For the centered-rectangular lattice, which can be formed by the selection of (−1,+1,+2),

the reciprocal vectors are defined as

a1 = 2∆kxx̂ (15)

a2 = ∆kxx̂−∆kcz ẑ (16)

where ∆kcz =
√
k2PR −∆k2x −

√
k2PR − 4∆k2x.

The corresponding real lattice vectors can be calculated as

b1 = π

(
1

∆kx
x̂+

1

∆kcz
ẑ

)
(17)

b2 = 2π

(
− 1

∆kcz
ẑ

)
(18)

Therefore, the lengths of the centered-rectangular pattern would be (Figure S2(b))

d1 = 2π/∆kx (19)

d2 =
√
(π/∆kx)2 + (π/∆kcz)

2 (20)

The hexagonal lattice is uniquely identified when ∆kx =
√
3∆kcz.
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FIG. S2. Lattices in real space. (a) Rectangular (b) Centered-rectangular (c) Oblique.

For the oblique lattice, which can be formed by the selection of (−2, 0,+1), the reciprocal
vectors are defined as

a1 = ∆kxx̂−∆koz1ẑ (21)

a2 = −2∆kxx̂−∆koz2ẑ (22)

where ∆koz1 = kPR −
√

k2PR −∆k2x and ∆koz2 = kPR −
√
k2PR − 4∆k2x.

The corresponding real lattice vectors can be calculated as

b1 = 2π

(
∆koz2

∆kx (2∆koz1 +∆koz2)
x̂− 2

2∆koz1 +∆koz2
ẑ

)
(23)

b2 = −2π

(
∆koz1

∆kx (2∆koz1 +∆koz2)
x̂− 1

2∆koz1 +∆koz2
ẑ

)
(24)

The lengths of the oblique pattern can be calculated as (Figure S2(c))

d1 = |b1,x|+ 2 |b2,x| = 2π/∆kx (25)

d2 = |b2| =
√

b22,x + b22,z (26)

where bl = bl,xx̂+ bl,z ẑ, l = 1, 2.

III. PATTERN LIBRARY

The intensity distribution results from the interference of multiple beam interference.
Focusing only on instances where the diffracted beam propagates within x − z plane, the
total electric field can be represented as9

Etot = Exx̂+Ey ŷ +Ez ẑ (27)

where

Ex =
∑
m

Em,pexp(ikm · r+ iφm,p) cos θm (28)

Ey =
∑
m

Em,sexp(ikm · r+ iφm,s) (29)

Ez =
∑
m

Em,pexp(ikm · r+ iφm,p) sin θm (30)

where the subscript p and s denote the polarizations, and θm is diffraction angles.
With the variation of the amplitude of electric fields (Em), relative phase (φm), and the

ratio of two polarized beams, a set of diverse patterns can be generated (Figure S3–S4).
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FIG. S3. Brute-force pattern generation for hexagonal lattice.
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FIG. S4. Brute-force pattern generation for rectangular lattice.
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IV. ERROR ANALYSIS

a. Fabrication error The fabrication errors may include disparities between the opti-
mized and fabricated mask geometries, as well as misalignments in two-layer masks. These
errors have the potential to impact the implementation of each diffraction efficiency, lead-
ing to shape deformations such as broken periodicity and non-uniform motifs in the final
patterns. We conducted simulations to examine the influence of fabrication errors on the
optimized structure of a centered rectangular lattice. In Figure S5 (a–b), the electric field
intensity and corresponding structures of the original design are represented. Intentionally
introducing 10 nm enlargement of the mask geometry results in patterns that are not sig-
nificantly deformed, as shown in Figure S5 (d). On the other hand, 10 nm erosion results
in somewhat noticeable changes S5 (c). Thus, in practice, the target mask geometry could
be scaled to a slightly (e.g., 5 nm) larger size to maximize the fabrication error margin.
Additionally, the pattern deformation due to misalignment, specifically 10 nm and 20 nm
in two layers, is illustrated in Figure S5 (e–f). While fabrication errors in the mask have
the potential to compromise the quality of the patterns, the requirements for fabrication
accuracy is not far from what can be achieved in reality. To further enhance robustness
to the fabrication error, we can adopt robust topology optimization method, which include
the performances of deformed structures also into the objective functions10. This approach
increases the tolerance towards fabrication errors to form desired patterns.

b. Intensity fluctuation We investigate the impact of laser source intensity fluctuations.
As illustrated in Figure S5 (g–h), we varied the threshold intensity by 30 % above and below
the original value. The resulting patterns indicate that the final pattern only undergoes a
change in motif size while maintaining regularity. These results are due to the high contrast
of intensity in the interference pattern. The commercially available laser sources used in
the PnP process exhibit sufficient intensity stability, ensuring uniformity in the patterned
structures. Moreover, the error-insensitive target interference mitigates the need for the
precise control of laser intensity in the PnP process.
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FIG. S5. Comparison of pattern formation under fabrication errors: (a, b) The interference of
the optimized mask and the resulting pattern. Expected patterns generated by (c) eroded and
(d) dilated masks, as well as misalignment of (e) 10 nm and (f) 20 nm in two-layer metasurface
masks. The patterns generated by incident light with (g) 30% higher and (h) lower intensity than
the original.
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