

Support information

Theoretical study of a highly fault-tolerant and scalable adaptive radiative cooler

Bin Li,^a Jiaqi Hu,^a Changhao Chen,^a Hengren Hu,^a Yetao Zhong,^a Ruichen Song,^a Yunqi Peng,^a Xusheng Xia,^a Kai Chen^b and Zhilin Xia,^{a,}*

^aWuhan University of Technology, State Key Laboratory of Silicate Materials for Architectures, Wuhan, China

^bWuhan Zhongyuan Huadian Science and Technology Co., Ltd., Wuhan, China

*Corresponding author's e-mail: xiazhiln@whut.edu.cn

Supplement 1. Refractive index n and extinction coefficient k of the material

(1) Optical constants of POE

The relative dielectric function of the medium in the presence of light absorption is¹

$$\varepsilon(\omega) = \varepsilon_1(\omega) + i\varepsilon_2(\omega)$$

where $\varepsilon_1(\omega)$ is the real part of the relative dielectric function and $\varepsilon_2(\omega)$ is the imaginary part of the relative dielectric function.

Complex refractive index of the absorbing medium²:

$$\check{n}(\omega) = n(\omega) + ik(\omega)$$

where the real part $n(\omega)$ of the complex refractive index is the usually measured refractive index and the imaginary part $k(\omega)$ is the extinction coefficient.

The relationship between the complex refractive index and the complex relative dielectric function of the medium is given by:

$$[n(\omega) + ik(\omega)]^2 = \varepsilon_1(\omega) + i\varepsilon_2(\omega)$$

From the separate equality of the real and imaginary parts, we get

$$n(\omega)^2 - k(\omega)^2 = \varepsilon_1(\omega)$$

$$2n(\omega) k(\omega) = \varepsilon_2(\omega)$$

Using the above relations³, through the dielectric constant and dissipation factor of POE, we obtained the refractive index n (1.48) and extinction coefficient k (0.004) of POE. Optical constants for Ag from Ref⁴.

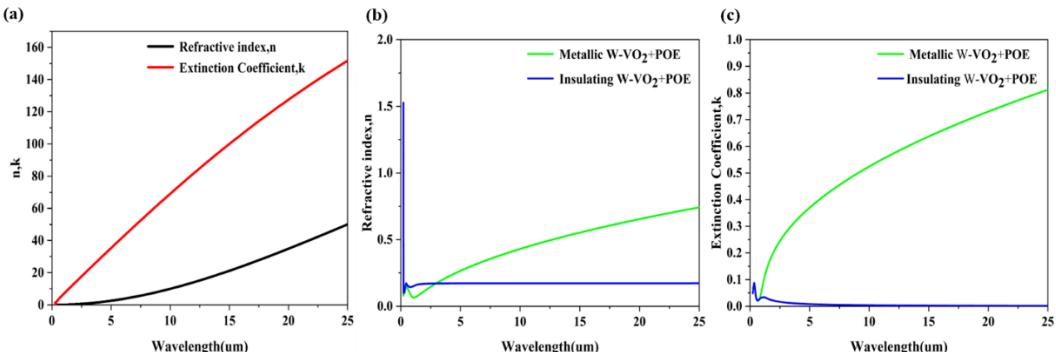
(2) Optical constants of W-VO₂

VO₂ is a typical phase transition material with its phase transition temperature near 68°C. The lattice distortion of vanadium dioxide can be fundamentally induced by a small amount of tungsten doping, which reduces its phase transition temperature and adjusts it to near room temperature⁵⁻⁷. Meanwhile, doping W hardly changes the optical properties of VO₂ before and after the phase transition. Because the amount of tungsten doping is relatively small, it has essentially no effect on the material's dielectric constant^{8, 9}. Therefore, in this paper, we use the optical constants of VO₂ as an approximate substitute for the optical constants of W-VO₂ in our calculations.

The optical constants of VO_2 were calculated from the literature^{10, 11} using the

42 same method as Fan et al¹²:

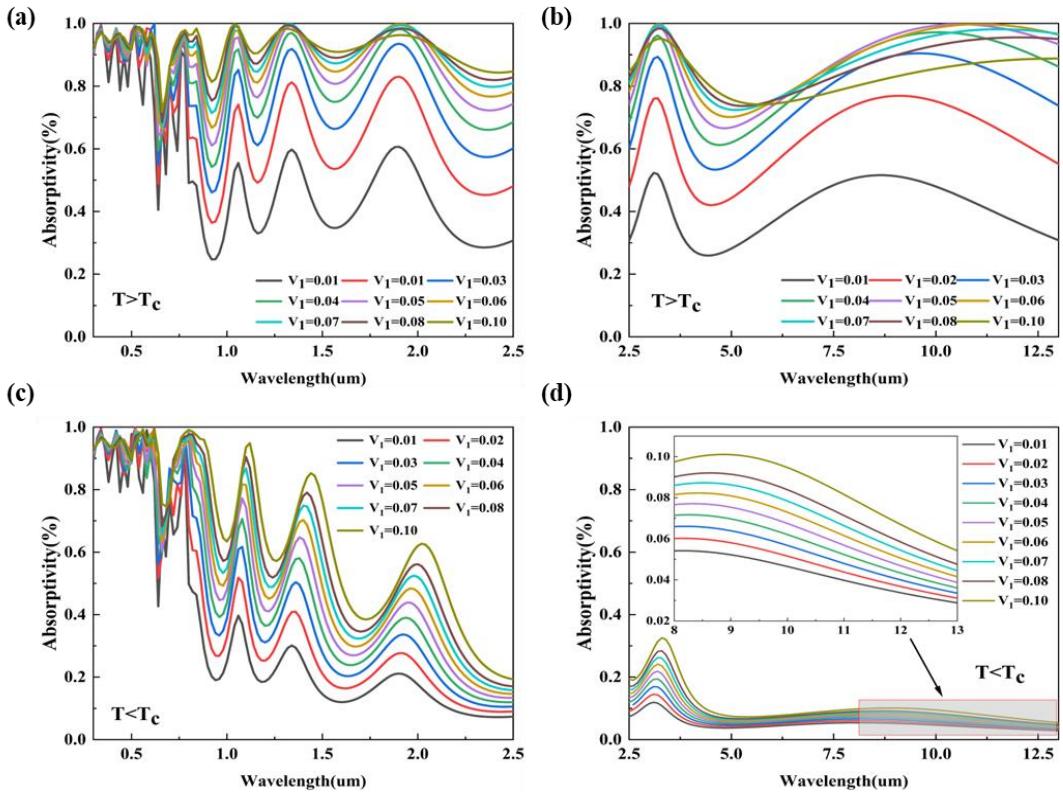
$$43 \quad \varepsilon(\omega) = \varepsilon_{\infty} + \frac{(\varepsilon_s - \varepsilon_{\infty}) \cdot \omega_t^2}{\omega_t^2 - \omega^2 + i\Gamma_0 \cdot \omega} + \sum_{j=1}^n \frac{f_j \cdot \omega_{oj}^2}{\omega_{oj}^2 - \omega^2 + i\gamma_j \cdot \omega} \\ + \frac{\omega_p^2}{-\omega^2 + i\Gamma_d \cdot \omega}$$


44 The specific parameters for calculating the optical constants are:

	ε_{∞}	ε_s	ω_t	Γ_0	ω_p	Γ_d
VO ₂ (M)	0.47	2.64	0.89 eV	1.21 eV	0	0
VO ₂ (I)	2.95	-13.90	0.86 eV	3.75 eV	4.47 eV	0.82 eV

45 (3) Optical constants of POE+ W-VO₂

46 Based on the equivalent medium theory, the effective dielectric constant of the 3D
 47 random medium is $\varepsilon_{eff} = \frac{\sum \varepsilon_i V_i}{\sum V_i}$, where V_i is the volume of the i th medium¹³. We
 48 calculate the refractive index n and the extinction coefficient k of the POE+W-VO₂
 49 layer. The effective refractive index n of the hybrid layer is $n_{VO_2(W)} \times V_1 + n_{POE} \times V_2$
 50


51 The effective extinction coefficient k of the hybrid layer is $k_{VO_2(W)} \times V_1 + k_{POE} \times V_2$,
 52 where V_1 and V_2 are the volume fractions of W-VO₂ and POE in the hybrid layer,
 53 respectively.

54
 55 Figure S1. refractive index n and extinction coefficient k of the materials. (a) Refractive
 56 index n and extinction coefficient k of Ag; (b) refractive index n of POE+ W-VO₂ hybrid
 57 layer at high and low temperatures; (c) extinction coefficient k of POE+ W-VO₂ hybrid layer
 58 at high and low temperatures.

59 Supplement 2. Effect of Volume Ratio on Adaptive Radiative Coolers

60 The thickness of the POE layer in the F-P resonance cavity was set to 600 nm, and
 61 the thickness of the hybrid layer was set to 1 um. The effects of different mixing ratios
 62 of W-VO₂ and POE in the mixed layer on the optical performance of the radiative cooler
 63 were investigated.

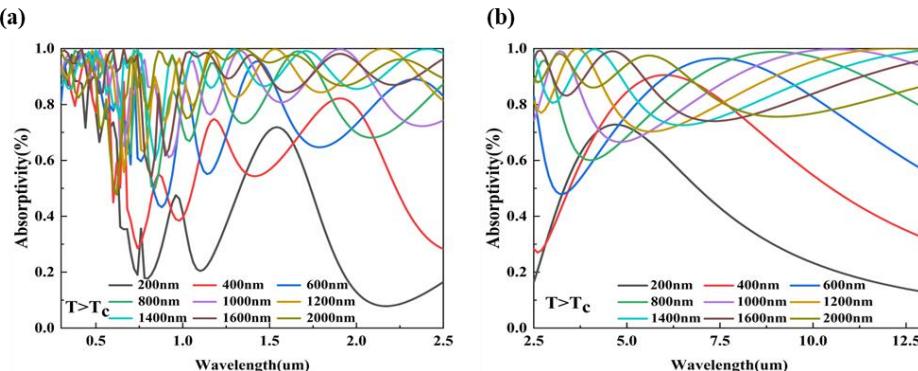
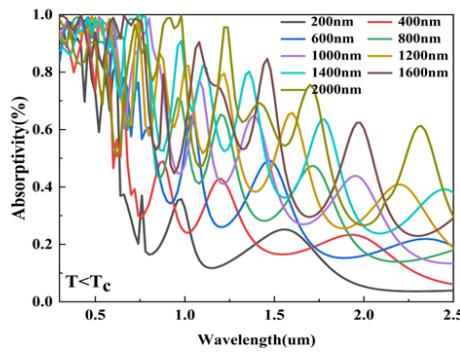
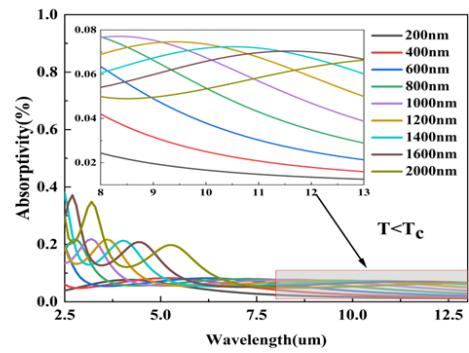

62

Figure S2 Effect of W-VO₂ volume occupancy on the optical performance of adaptive radiative coolers. (a) Absorbance of the radiative cooler in the visible-near-infrared (V-NIR) band when W-VO₂ is in the metallic state; (b) Absorbance of the radiative cooler in the mid-infrared (MIR) band when VO₂ is in the metallic state; (c) Absorbance of the radiative cooler in the visible-near-infrared (V-NIR) band when W-VO₂ is in the insulating state; (d) Absorbance of the radiative cooler in the mid-infrared (MIR) band when W-VO₂ is in the insulating state.

63


64 Supplement 3. Effect of Mixed Layer Thickness on Adaptive Radiant Coolers

65 The thickness of the POE layer in the F-P resonant cavity is set to be 600 nm, and
 66 the volume share of W-VO₂ in the hybrid layer is set to be 0.05 constant. The effect of
 67 the hybrid layer thickness on the optical performance of the adaptive radiative cooler
 68 was explored.

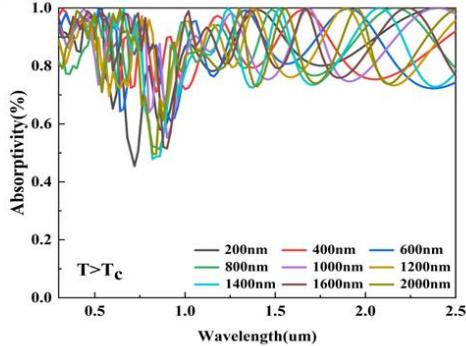


69

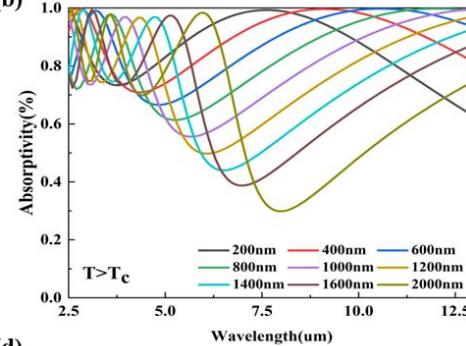
(c)

(d)

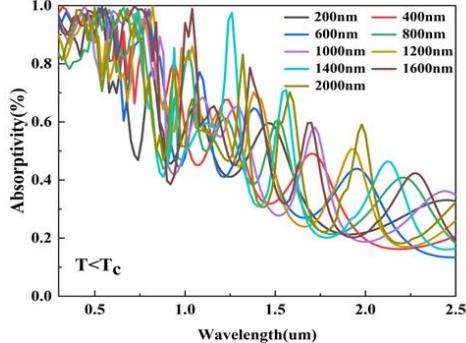
70

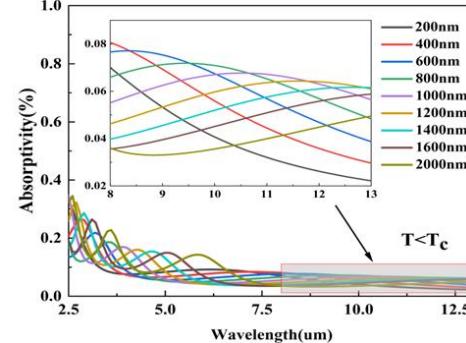

Figure S3 Effect of mixing layer thickness on the performance of adaptive radiative cooler (a) Absorption rate of the radiative cooler in the visible-near infrared (V-NIR) band when W-VO₂ is in the metallic state; (b) Absorption rate of the radiative cooler in the mid-infrared (MIR) band when W-VO₂ is in the metallic state; (c) Absorption rate of the radiative cooler in the visible-near infrared (V-NIR) band when W-VO₂ is in the insulating state; and (d) Absorption rate of the radiative cooler in the mid-infrared (MIR) band when W-VO₂ is in the insulating state.

71


72 **Supplement 4. Effect of spacer thickness on adaptive radiant coolers**

73 The volume percentage of W-VO₂ in the hybrid layer was set to 0.05, and the
 74 thickness of the hybrid layer was kept constant at 1 um. The effect of the thickness of
 75 the POE spacer layer on the optical performance of the radiant cooler was explored.


(a)


(b)

(c)

(d)

76

Figure S4 Effect of spacer layer POE thickness on the performance of adaptive radiative cooler (a) Absorption rate of the radiative cooler in the visible-near infrared (V-NIR) band when W-VO₂ is in the metallic state; (b) Absorption rate of the radiative cooler in the mid-infrared (MIR) band when W-VO₂ is in the metallic state; (c) Absorption rate of the radiative cooler in the visible-near infrared (V-NIR) band when W-VO₂ is in the insulating state; and (d) Absorption rate of the radiative cooler in the mid-infrared (MIR) band when W-VO₂ is in the insulating state.

77 **Supplement 5. Average emissivity**

78 According to Kirchhoff's law, the spectral emissivity ε is equal to the spectral
79 absorptivity under thermal equilibrium conditions. Therefore, for opaque materials, the
80 spectral emissivity $\varepsilon(\lambda)$ can be expressed as^{14, 15}:

$$81 \quad \varepsilon(\lambda) = \alpha(\lambda) = 1 - R(\lambda)$$

82 where $R(\lambda)$ is the spectral reflectance.

83 The formula is then used to integrate the spectral emissivity ε over the blackbody
84 radiation spectrum to obtain the average emissivity ε :

$$85 \quad \varepsilon = \frac{\int_{\lambda_1}^{\lambda_2} (1 - R(\lambda)) B(\lambda, T) d\lambda}{\int_{\lambda_1}^{\lambda_2} B(\lambda, T) d\lambda}$$

86 where $B(\lambda, T)$ is the blackbody radiation at a temperature of T .

87 **Supplement 6. Calculation of radiative cooling performance**

88 In order to further demonstrate the effectiveness of the adaptive radiative cooler,
89 the net radiative cooling power has been calculated at both high and low temperatures.
90 Generally, a radiative cooler's net radiative cooling power can be defined as follows¹⁶.

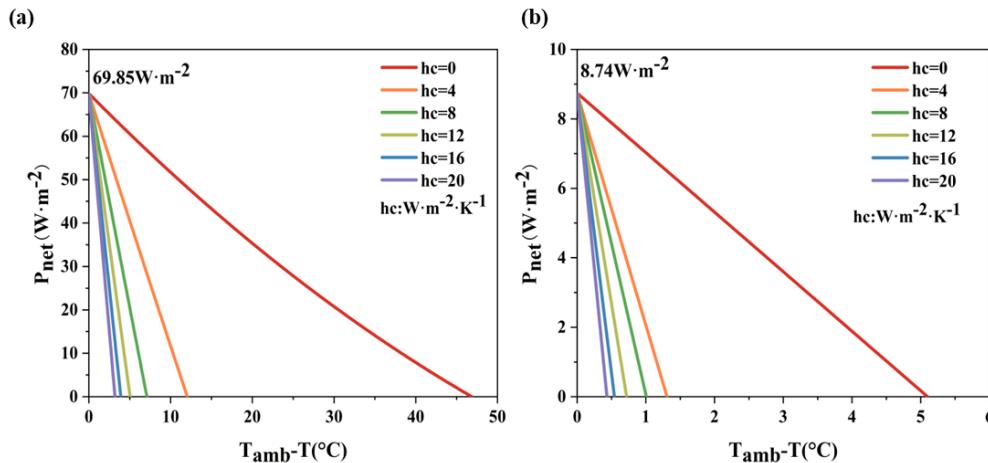
$$91 \quad Q_{net} = Q_{rad} - Q_{atm} - Q_{nonrad} - Q_{sun} \quad (1)$$

92 Where Q_{sun} is the solar radiation power absorbed by the radiant cooler, $Q_{sun} = P_{sun} \cdot \varepsilon_1$ during the daytime, ε_1 is the solar absorption rate, and it is assumed that $Q_{sun} = 1000 \text{W/m}^2$ during the daytime and $Q_{sun} = 0$ during the nighttime.

93 where the radiant power Q_{rad} emitted by the radiator is

$$94 \quad Q_{rad} = 2\pi \int_0^{\frac{\pi}{2}} \sin\theta \cos\theta d\theta \int_0^{\infty} U_B(T_r, \lambda) e_r(\lambda, \theta) d\lambda \quad (2)$$

95 The atmospheric radiant power Q_{atm} absorbed by the radiator is


$$96 \quad Q_{atm} = 2\pi \int_0^{\frac{\pi}{2}} \sin\theta \cos\theta d\theta \int_0^{\infty} U_B(T_a, \lambda) e_r(\lambda, \theta) e_a(\lambda, \theta) d\lambda \quad (3)$$

97 Here, $U_B(T, \lambda) = \frac{2hc^2}{\lambda^5} \frac{1}{e^{hc/\lambda k_B T} - 1}$ is the intensity of the spectral radiation of the
98 blackbody at temperature T , where h is Planck's constant, k_B is Boltzmann's constant,
99 c is the speed of light in vacuum, and λ is the wavelength. According to Kirchhoff's
100 law, the emissivity of a radiator can be determined by its absorptivity $e_r(\lambda, \theta)$, and
101 $e_a(\lambda, \theta)$ is the atmospheric emissivity with respect to the angle. The absorptivity is
102 determined by the angle-dependent atmospheric emissivity, $e_a(\lambda, \theta) = 1 - t(\lambda)^{1/\cos\theta}$,
103 where $t(\lambda)$ is the atmospheric transmittance in the zenith direction. T_r is the
104 temperature of the radiator and T_a is the ambient temperature¹⁷.

109 The non-radiative (conduction + convection) heat transfer from the radiator to the
 110 surroundings can be defined as

111
$$Q_{nonrad} = h_c(T_{amb} - T_r) \quad (4)$$

112 Where, h_c is the sum of non-radiant heat coefficients resulting from heat transfer
 113 and convective heat exchange between the radiator and the surroundings. It is expressed
 114 as: $h_c = h_{cond} + h_{conv}$. The cooling temperature is calculated with $Q_{net} = 0$.

115
 Figure S5. The cooling effect of the adaptive radiative cooling system under different conditions:
 (a) variation of the net radiative cooling power with convection coefficient for the adaptive
 device during the daytime (high temperature); (b) variation of the net radiative cooling power
 with convection coefficient for the adaptive device during the nighttime (low temperature).

116
 117
 118 **References**

1. G. Ghosh, "Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals," *Optics Communications* **163** (1), 95-102 (1999).
2. G. Kresse and J. Hafner, "Ab initio molecular dynamics for liquid metals," *Physical Review B* **47** (1), 558-561 (1993).
3. H. P. Zhao et al., "Passive radiative temperature regulator: Principles and absorption-emission manipulation," *Solar Energy Materials and Solar Cells* **229**, 9 (2021).
4. H. U. Yang et al., "Optical dielectric function of silver," *Physical Review B* **91** (23), 235137 (2015).
5. R. Shi et al., "Phase management in single-crystalline vanadium dioxide beams," *Nature Communications* **12** (1), 9 (2021).
6. X. G. Tan et al., "Unraveling Metal-insulator Transition Mechanism of VO₂ Triggered by Tungsten Doping," *Sci Rep* **2**, 6 (2012).
7. J. M. Booth and P. S. Casey, "Anisotropic Structure Deformation in the VO₂ Metal-Insulator Transition," *Physical Review Letters* **103** (8), 4 (2009).
8. S. L. Dou et al., "A facile method for the preparation of W-doped VO₂ films with lowered phase transition temperature, narrowed hysteresis loops and excellent cycle stability," *Mater. Chem. Phys.* **215**, 91-98 (2018).
9. B. G. Chae and H. T. Kim, "Effects of W doping on the metal-insulator transition in vanadium dioxide film," *Physica B: Condensed Matter* **405** (2), 663-667 (2010).

- 138 10. J. B. K. Kana et al., "Thermally driven sign switch of static dielectric constant of VO₂ thin
139 film," *Opt. Mater.* **54**, 165-169 (2016).
- 140 11. M. M. Qazilbash et al., "Infrared spectroscopy and nano-imaging of the insulator-to-metal
141 transition in vanadium dioxide," *Physical Review B* **79** (7), 10 (2009).
- 142 12. M. Ono et al., "Self-adaptive radiative cooling based on phase change materials," *Optics
143 Express* **26** (18), A777-A787 (2018).
- 144 13. S. R. Liang et al., "Tunable smart mid infrared thermal control emitter based on phase
145 change material VO₂ thin film," *Applied Thermal Engineering* **232**, 8 (2023).
- 146 14. A. Hendaoui et al., "VO₂-based smart coatings with improved emittance-switching
147 properties for an energy-efficient near room-temperature thermal control of spacecrafts,"
148 *Solar Energy Materials and Solar Cells* **117**, 494-498 (2013).
- 149 15. E. A. Goldstein, A. P. Raman and S. H. Fan, "Sub-ambient non-evaporative fluid cooling
150 with the sky," *Nature Energy* **2** (9), 7 (2017).
- 151 16. M. M. Hossain and M. Gu, "Radiative Cooling: Principles, Progress, and Potentials,"
152 *Advanced Science* **3** (7), 10 (2016).
- 153 17. Z. B. Yang and J. Zhang, "Bioinspired Radiative Cooling Structure with Randomly Stacked
154 Fibers for Efficient All-Day Passive Cooling," *Acs Applied Materials & Interfaces* **13** (36),
155 43387-43395 (2021).
- 156