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Abstract: InAs/AISb quantum cascade detectors (QCDs)
grown strain-balanced on GaSb substrates are presented.
This material system offers intrinsic performance-impro-
ving properties, like a low effective electron mass of the
well material of 0.026 m,, enhancing the optical tran-
sition strength, and a high conduction band offset of
2.28 eV, reducing the noise and allowing for high opti-
cal transition energies. InAs and AlSb strain balance
each other on GaSb with an InAs:AlSb ratio of 0.96:1.
To regain the freedom of a lattice-matched material sys-
tem regarding the optimization of a QCD design, sub-
monolayer InSbh layers are introduced. With strain engi-
neering, four different active regions between 3.65 and
5.5 pm were designed with InAs:AlSb thickness ratios of
up to 2.8:1, and subsequently grown and characterized.
This includes an optimized QCD design at 4.3 pm, with a
room-temperature peak responsivity of 26.12 mA/W and a
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detectivity of 1.41 X 108 Jones. Additionally, all QCD designs
exhibit higher-energy interband signals in the mid- to
near-infrared, stemming from the InAs/AlSb type-II align-
ment and the narrow InAs band gap.
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1 Introduction

Mid-infrared (MIR) photonics is positioned as an impor-
tant technology with applications in spectroscopy [1, 2],
medicine [3], security [4], imaging [5], and free space opti-
cal telecommunication [6, 7]. Quantum cascade detectors
(QCDs) are zero-bias MIR detectors composed of semicon-
ductor heterostructures with alternating well and barrier
material. The desired absorption wavelength is tailorable
over a wide range by changing the well and barrier thick-
nesses of the heterostructure, and thus adjusting the dis-
crete energy levels. The primary performance metrics of
detectors, like QCDs, are the responsivity and detectivity.
QCDs stand out, due to a narrowband (typically <0.08 eV
[8]) spectral response and high-speed detection [9] result-
ing from the sub-picosecond intersubband unipolar transi-
tions [10-12]. QCDs are photovoltaic in nature and there-
fore exhibit low-noise and room-temperature operation.
This contrasts with the competing intersubband technology
quantum well infrared photodetectors (QWIPs) [13], which
have a significant temperature-dependent dark current,
stemming from the applied bias, reducing the detectivity.
At cryogenic temperatures, QWIPs offer higher responsivity
compared to standard 45°-facet double-pass geometry QCDs
[14-16]. However, single-period QCDs [7, 17] have a com-
parable responsivity. Interband detectors, like type-II and
other superlattice detectors, offer a fundamentally different
working principle. These detectors operate in the visible to
MIR range with high responsivity [18, 19] and a broadband
response of around 2 eV. In comparison, QCDs are preferable
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for high-speed operation, narrowband, and longer wave-
length photodetection.

While both, the QCD detectivity and responsivity can
be optimized through the design, they can also be improved
by material-intrinsic parameters, like the effective electron
mass m; of the well material. Alow m increases the optical
transition strength, improving the responsivity. Addition-
ally, a low m; leads to increased detectivity, because of the
reduced scattering rates, and therefore lower noise. The
second important intrinsic material system property is the
electron barrier height, known as the conduction band off-
set (CBO). The CBO limits the shortest detectable wavelength
for optical intersubband transitions. In the most widely
used material system for QCDs, Ing;Gag 47A8/Ing 5,Al; 45AS
lattice matched to InP substrates [20], the CBO is 0.52 eV
[21], which can be extended by strain engineering up to
0.61 eV [22]. This CBO limits QCDs grown with this material
system to detectable wavelengths >3 pm. To extend QCDs
to shorter wavelengths, material systems with higher CBOs
are required, which are beneficial for higher resistance,
ultimately increasing the detectivity.

A promising material system having both, one of the
lowest m; of 0.026 m, [21] and one of the highest CBOs of
2.28 eV [21] is InAs/Al(As)Sh, which is either grown lattice
matched to InAs substrates [8, 23] or strain balanced to GaSh
substrates [24].

2 Materials and methods

2.1 Principles and growth analysis

Due to the intersubband character of QCDs, they are only sensitive to
illumination polarized parallel to the growth direction (out-of-plane
polarization) [25]. In contrast to the 300 K band gap of 0.36 eV [21] of
InAs substrates, the larger 0.73 eV [21] band gap of GaSb allows for
illumination through the substrate in the standard 45°-facet double-
pass method for wavelengths >1.7 pm, compared to 3.44 pm for InAs.
On GaSb substrates, InAs layers have a tensile mismatch of 0.62 %,
and AlSb layers have a compressive mismatch of —0.64 %. The criti-
cal layer thickness on GaSb, calculated with the formula of Matthews
and Blakeslee’s [26], is for both materials approximately 35nm. A
strain-compensated growth of InAs/AlSb on GaSb is therefore achieved
with an InAs:AlSb layer-thickness-ratio of 0.96:1, which would result
in approximately equally thick barriers and wells. Considering the
necessary InAs well thicknesses of a QCD design for 4.3 pm is between
2.95 and 7.2 nm, equal-thickness AlSb barriers would drastically reduce
the QCD’s figures of merit, due to an insufficient extraction efficiency.
To optimize a QCD design, it is necessary to change the well and
barrier thicknesses independently of each other, especially because of
the high CBO, the AlSb barriers need to be thinner than conventional
designs. One trick to achieving this lies in designing the interfaces.
Since InAs and AlSb do not have any constituents in common, one of
two interfaces can form at the interface between the well and barrier,
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either InSh or AlAs. To achieve strain-balancing with decreasd AlSb
barrier thickness, one needs a material with a compressive mismatch
to GaSh, which is given for InSh with a —5.92 % mismatch. Previous
studies on InAs/AISb superlattices found increased carrier mobility for
InSh interfaces compared to AlAs interfaces [27], thus making them
the preferred interfaces. Due to the high mismatch of InSbh to GaSb,
submonolayer thick InSb layers are sufficient to strain-balance an
optimized InAs/AlSb QCD design, with the advantage that such thin
InSh layers do not influence the band structure design. For the QCD
growth, the submonolayer thick InSh layers were first calculated and
then experimentally calibrated by strain-balanced test structures. The
process proved itself to be reproducible, as determined by HR-XRD. To
achieve sharp interfaces and limit the As-for-Sb exchange [28], shutter
sequences and shutter opening times were developed similarly to Refs.
[27, 29, 30].

In the following, the results of the four InAs/AISb QCD designs on
GaSh ranging from 3.65 to 5.5 pm are presented. The QCDs are designed
using an eight-band k-p-method, including scattering mechanisms such
as longitudinal optical (LO) and acoustic phonon scattering, as well
as interface roughness scattering, and alloy scattering. Figure 1 shows
the active region band structure design for each QCD, where (a) is the
3.65 pm design, (b) the first design for 4.3 pm, referred to as the 4.3a pm
design, (c) the second design for 4.3 pm, referred to as the 4.3b pm
design, and (d) the 5.5 pm design. The conduction band edge is depicted
in dark gray, and the valence band edge is in blue. The designs are based
on a vertical optical transition. The optical well is the first well of each
structure. The blue contour of the probability density, mainly in the
first well, corresponds to the electron occupation. Once the transition
occurs due to photon absorption, the electrons are extracted from the
first excited state in the first well, which is nearly resonant to the first
state of the extraction region. The energy separation of the next states
and the thin barriers allow for sub-picosecond scattering times along
the extractor ladder. To ensure reduced thermal backfilling, the lowest
extractor state has a higher energy separation from the ground state
of the next optical transition. This increases the electron lifetime in the
ground level of the optical well and benefits the absorption efficiency.
Design 4.3b pm corresponds to a refined version of design 4.3a pm with
thinner barriers and a higher energy separation of the last extractor
state to the next optical ground state, which allows for reduction of the
active region by one well and barrier in the extractor, increasing the
extraction efficiency. The blue lines extending into the InAs conduction
band stem from the valence band of the submonolayer thick InSbh
strain-balancing layers. The layers are too thin to allow states in the
InSh to form. The areas drawn in light gray correspond to the band
gap. Due to the type-II band alignment of InAs/AlSb and the small band
gap of InAs, interband transitions in the MIR to near-infrared (NIR) are
expected.

The four QCDs were grown by molecular beam epitaxy with a
Riber Compact 21 and are doped with Te, since Si exhibits strong ampho-
teric behavior in Sh-compounds. Therefore, Te avoids unwanted p-type
doping in AlSb barriers that could result from Si dopant diffusion into
the barriers. The active regions consist of 20 periods grown between
200 nm-thick short-period InAs/AlSb superlattice contacts, where the
InAs wells are Te doped to 3 x 10®® cm~2. Additional transition layers
from the GaSb substrate to the superlattice contact and from the super-
lattice contact to the active region were necessary for the final device
design.

Figure 2 shows the growth analysis of all QCDs, where (a—c) cor-
respond to the 3.65 pm design, (d-f) to the 4.3a pm design, (g-i) to the
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Figure 1: Band diagrams for the four designs from 3.65 to 5.5 pm. Shown are the probability densities of the energy levels, where the first well
corresponds to the optical transition well. The blue contour, mainly in the ground state of the optical well, corresponds to the electron occupancy.

The active region was repeated 20 times for all devices. The conduction band edge is dark gray, the valence band is blue, the dashed blue line is the
light-hole valence band, and the solid blue line is the heavy-hole valence band of the InAs/AISb material system, the band gap is light gray. The blue
peaks reaching into the InAs conduction band are the submonolayer InSb layers valence bands. (a) 3.65 pm peak responsivity with the layer sequence
in nm: 1.80, 6.30, 1.80, 2.55, 1.80, 2.65, 1.60, 2.70, 1.50, 2.90, 1.60, 3.20, 1.60, 3.35, 1.50, 3.50, 1.80, and 4.0. (b) 4.3 pm peak responsivity (design 4.3a)
with the layer sequence in nm: 1.80, 7.20, 1.80, 2.95, 1.80, 3.20, 1.60, 3.30, 1.50, 3.40, 1.60, 3.50, 1.60, 3.60, 1.50, 3.80, 1.80, and 4.30. (c) 4.3 pm peak
responsivity (design 4.3b) with the layer sequence in nm: 1.50, 7.20, 1.80, 2.95, 1.80, 3.20, 1.60, 3.30, 1.50, 3.40, 1.50, 3.45, 1.50, 3.75, 1.70, and 4.15.
(d) 5.5 pm peak responsivity with the layer sequence in nm: 1.60, 8.85, 1.80, 3.70, 1.80, 3.80, 1.80, 4.0, 1.80, 4.20, 1.80, 4.40, 1.80, 4.80, 1.80, 5.20, 1.80,
and 5.80. The boldly printed layers are the AlSh barriers, and the underlined well is Te doped 8 X 107 cm~3.

4.3b pm design, and (j—-1) to the 5.5 pm design. The growth was analyzed
using three methods: High-resolution X-ray diffraction (HR-XRD) w-20
scans with a Philips MRD Pro, left column, HR-XRD (224) reciprocal
space maps, middle column, and atomic force microscopy (AFM) with
a Veeco Dimension V, right column.

As observed in the HR-XRD w-26 scans, the highest intensity peak
is the substrate followed by the zeroth-order active region peak, where
good strain balancing is observed for all QCDs. The third peak to the
left corresponds to the zeroth-order short-period contact superlattice
peak. The modulation between 29.6 and 30.0° stems from a 20 nm-
thick highly-doped InAs layer top contact. The sharp peaks observed in
all scans indicate low interface roughness. The (224) reciprocal space
maps of the QCDs show a perfectly vertical intensity contour, which
indicates a fully strained material growth. From the intensity maxima,
no increased mosaic spread (which shows high crystal quality), inter-
face roughness, or growth rate fluctuations are apparent, which would

result in horizontal or vertical broadening of higher-order peaks [31].
AFM scans of a 3 x 3 um surface of the QCDs confirm the low inter-
face roughness with low root-mean-square surface roughness values
of 0.188 nm for the 3.65 pm design, 0.171 nm for the 4.3a pm design,
0.197 nm for the 4.3b pm design, and 0.165 nm for the 5.5 pm design.

2.2 Fabrication and optical characterization

The QCDs were fabricated into the 45°-facet double-pass geometry, a
standard structure for intersubband device characterization, which
allows a comparison to QCD devices in literature [10]. Figure 3 depicts
a sketch of the measurement setup, including the fabricated QCD and
its light-coupling mechanism. For this configuration, a facet under an
angle of 45° is polished substrate-side onto the wafer edge of the QCD.
The device is then illuminated through the substrate, with the facet ori-
ented normal to the light source. Due to the intersubband selection rule,
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Figure 2: Growth analysis of the InAs/AISb QCDs on GaSb of (a), (b), & (c) design 3.65 pm, (d), (e), & (f) design 4.3a pm, (g), (h), (i) design 4.3b um,
and (j), (k), & () design 5.5 pm: left: HR-XRD (004) @-20 scans, middle: HR-XRD 0.5° X 0.5° (224) reciprocal space maps, and right: 3 X 3 pm AFM scans
with a root-mean-square surface roughness of (c) 0.188 nm, (f) 0.171 nm, (i) 0.197 nm, and (l) 0.165 nm.
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Figure 3: Schematic measurement setup for responsivity measurements of QCDs. The measurements were performed using an FTIR with a MIR
Globar source. The QCDs were fabricated into the 45°-facet double-pass configuration. The current output of the QCDs is fed as an analog voltage
signal back to the FTIR by the transimpedance amplifier. For mixed (both)/in-plane polarization measurements, a MIR polarizer is placed before

the lens.
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the QCD structure is only sensitive to light polarized out-of-plane, with
respect to the quantum well. However, due to the 45° measurement
geometry of the QCD, out-of-plane polarized light is coupled in at an
angle of 45° and therefore still contains both polarizations (mixed).

The QCDs are fabricated into 150 X 150 pm mesas, which were
defined by a Cl/Ar dry etching process using an inductively coupled
plasma (ICP) process, resulting in smooth, slightly positively sloped
sidewalls. The top contact (10/380 nm Ti/Au) is on top of the mesa, and
the bottom contact (10/380 nm Ti/Au) is on the backside of the n-type
1-4 % 10" cm~2 doped GaSb substrate.

Next, the QCDs were optically characterized with a Bruker Vertex
70v Fourier-transform infrared spectrometer (FTIR) with a Globar as
a broadband unpolarized light source and a Thorlabs PDA200C tran-
simpedance amplifier to obtain the responsivity and detectivity. For
this, the following steps were performed at ambient conditions [32]:

The spectrum of the Globar, its beam spot profile, and the power of
the entire beam spot were recorded in the measurement configuration
with an Ophir Laserstar detector. As the Globar beam spot is signifi-
cantly larger than the QCD mesa, only the incident light intensity P,
on the mesa area was considered, using the highest intensity area of
the beam spot. For each QCD, the spectrum of 3—4 mesas was recorded
under the same conditions, and current—voltage (I-V) characteristics
in aligned and dark conditions were measured with a Keithley 2612B.
To obtain the responsivity, the photocurrent I, was extracted from the
aligned I-V measurements at 0 V, where the dark current at 0 V was
subtracted.

The responsivity spectrum R,, is obtained by

_IH

R,= PP M
where I(f) is the spectrally resolved photocurrent, with I, = [I(Hdf,
and P(f) is the spectrally resolved Globar incident light intensity with
P, = [ P(f)df. The specific Johnson noise limited detectivity D was
obtained using [10]:
RA
4k, T’

D=R, @

where RyA is the differential resistance optical area product of the
device at zero bias, k; is the Boltzmann constant, and T is the
temperature.

3 Results and discussion

The left column in Figure 4 shows the uncorrected respon-
sivity spectra of the QCDs. Since a Globar is an unpo-
larized source and due to the measurement in the 45°-
facet double-pass configuration, the QCD responsivity is
usually corrected by taking just out-of-plane polarization
into account with a multiplication factor of two of the
uncorrected/unpolarized responsivity. A responsivity peak
at the designed QCD detection wavelength is observed
for all QCDs. The device-to-device reproducibility strongly
depends on the facet quality over the length of the sam-
ple piece, where the mesas were processed in a row.
With the multiplication factor as a correction, the peak
room-temperature responsivities at the QCD transitions are:
10.85 mA/W and 1.17 X 108 Jones for the 3.65 pm design,
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125 mA/W and 3.81 x 107 Jones for the 4.3apm design,

26.12mA/W and 1.41 X 108 Jones for the 4.3b pm design,

and 8.3 mA/W and 1.73 X 107 Jones for the 5.5 um design.

A broadband interband signal at shorter wavelengths is

observed in Figure 4 in all spectra, with a cut-off caused by

the GaSh substrate, its origin is explained below.

The right column in Figure 4 shows the mixed (both)
and in-plane polarization-dependent measurements. It is
expected that the responsivity at the designed QCD wave-
length is only due to out-of-plane polarization. However,
the in-plane polarization signal at the designed QCD tran-
sition is not vanishing, which would be expected from the
intersubband selection rule. Since the in-plane polarization
signal is at the QCD signal for all four different QCD designs
with different transition energies, the interband transition
causing the in-plane polarization signal is expected to be
QCD design dependent, but there are no interband transi-
tions in the band structure corresponding to the designed
optical transition energy. Currently, the origin of these in-
plane polarization signals is unclear, but it may be due to
polarization mixing due to the lens after the polarizer or
irregularities in the polished 45°-facet.

A polarization dependency is also observed for the
broadband interband signal at shorter wavelengths. This
polarization dependency of interband transitions can stem
from multiple parameters:

— The valence band is formed of bands exhibiting non-
negligible nonparabolicity, due to their p-band char-
acter [33], which is particularly strong in narrowband
materials such as InAs. This contrasts with the con-
duction band. The resulting transition energy therefore
depends on the optical matrix element between the
subbands. The transition can occur at non-zero k values
and can be different from the energy at the Gamma
point.

— Heavy- and light-holes have different absorption polar-
ization dependencies [34], although there is not such a
prominent difference as in intersubband transitions.

— Valence band mixing at a non-zero wave vector k
occurs, where states now have a mixed heavy- and light-
hole character [35].

In the following, the origin of the broadband interband
signal at energies higher than the QCD signal is discussed for
the 4.3b pm design, with the help of Figure 5. As mentioned,
MIR to NIR interband transitions from the AISb valence
band to the states of the InAs conduction band are pos-
sible. In Figure 5(a) the optical intersubband transition is
highlighted in red in the first well. The other colored lines
indicate the corresponding interband transitions, with the



1778 = M. Giparakis et al.: Design and performance of GaSbh-based QCDs DE GRUYTER

Wavelength (um) Wavelength (um)
5.0 4.0 3.0 25 2.0 1.7 5.0 4.0 3.0 25 2.0 1.7
TIT T LB L L LI LRI T 1.00

— Af — in-pl ] —_

g both : 5
:chg - ] 0.75 g
O] > N c
£5 - 0.50 £

N >
g g C 3
=} S -_— |i 025 46

o 1k iy " T

= 1 vﬂ.h.uﬁfﬁh“"‘h| 'w,ﬁ'ﬂ,"' .

T mERmmEm Amma I EEmmmE  Bmmmmm ¥
[ — in-plane ]
both

30

20

10}

uncorrected
Responsivity (mA/W)
Photocurrent (a.u.)

1f —— in-plane

40 r both

30 F
20 F

10 F

uncorrected
Responsivity (mA/W)
Photocurrent (a.u.)

[ — in-plane

%{ :: both ;
3E 20f ¥ jo75 8
sz | i : 2
— -2 __ \‘ o
o] L 1 S
22 10} - S
S O - 1 ]

I3 [ o o

(%] : <

Q L 1 T

I L Ikt

0 L 1 I 1 1 L P | L I 1 " 1 " . 1 i I 1 1 L PR | L I L I L
2000 3000 4000 5000 2000 3000 4000 5000
Wavenumber (cm~1) Wavenumber (cm™1)

Figure 4: Responsivity measurements for the four QCDs. Left: uncorrected responsivity of each QCD design. The multiple lines per plot correspond to
multiple mesas measured. Right: normalized out-of-plane polarization and in-plane polarization measurements for a single mesa. Design 3.65 pm is
shown in (a) & (b), 4.3a pm is shown in (c) & (d), 4.3b pm is shown in (e) & (f), and 5.5 pum is shown in (g) & (h).

Wavelength (um)
5.0 4.0 3.0 25 2.0 1.7

)
;H\ =

:
i

T
P I
w
o

va

uncorrected
Responsivity (mA/W)

,
T

A R
=
o

b

1 1 n PRI ST SRS Tt J 0
0 10 20 30 40 50 2000 3000 4000 5000 6000
Distance (nm) Wavenumber (cm~1)

Figure 5: Comparison of the electron transitions in the band structure design with the responsivity measurement. (a) Band structure with probability
densities of design 4.3b pm. The optical transition is highlighted in red. Other colors depict possible interband transitions from states in the AlSb
valence band. (b) Uncorrected responsivity measurement of design 4.3b pm. The highlighted areas correspond to the transition energies highlighted
in the same color in (a).



DE GRUYTER

M. Giparakis et al.: Design and performance of GaSb-based QCDs === 1779

Table 1: Table of selected QCDs from literature, processed in the 45°-facet double-pass method, and the room temperature characteristics: quantum
well effective electron mass m}, wavelength A, peak responsivity R, and detectivity D.

Authors Material system Well m} A(pm) R, (MA/W) D (Jones)
Vardi [37] GaN/AIGaN/AIN on sapphire 0.2 17 10 -
Giorgetta [36] Ing 53Gayg 47As/AlAS 56Sbg 44 ON INP 0.043 2.46 2.57 1.2 % 108
Giorgetta [10] Ing 61Gag 30AS/INg 434/Alg 55AS on InP 0.043 4.05 6 5% 107
Harrer [20] Ing 53Gag 47As/Ing 5,Aly 45AS on InP 0.043 43 10 5% 107
Dougakiuchi [38] Ing 53Gag 47As/Ing 5,Al 4gAs on InP 0.043 5.4 22 1.1x 108
Reininger [39] Ing 53Gag 47As/Ing 5,Alg 45As on InP 0.043 8 16.9 2.9 x107
Reininger [23] InAs/AlAs; 16Sbg g4 0N InAs 0.026 4.84 1.9 2.7 %107

lowest energy from the AlSb valence band to the ground
state of the optical transition well. The highest transition
energy occurs from the AlSh valence band to the highest
ground state in the extractor, which also matches a possible
interband transition in the superlattice contact. Figure 5(b)
shows the possible transitions in comparison to the obtained
spectrum.

As mentioned, processing QCDs in the 45°-facet double-
pass geometry allows for easy comparison to QCDs in lit-
erature, see Table 1. Besides the common InGaAs/InAlAs
material system on InP, QCDs have also been grown in
other material systems, especially to expand the designable
wavelength range to the NIR region [10]. For this reason,
Ing 53Gag 47AS/AIAS) 56Sbg 44 [36], and InAs/AlAs;4Sbygs [8,
23] were demonstrated. Devices belonging to the short-
est wavelength QCDs were realized in GaN-based mate-
rial systems [37]. However, those material systems with
high CBO are less developed and QCDs usually reach lower
responsivity.

4 Conclusions

The growth analysis and optical characterization of four
InAs/AlSb QCD designs ranging from 3.65 to 5.5 pm strain
balanced with submonolayer InSb layers on GaSb are
reported. The growth analysis, including HR-XRD w-260
scans, HR-XRD reciprocal space maps, and AFM surface pro-
files, indicates excellent strain balancing, no mosaic spread
or growth rate fluctuations, and low interface roughness
for all four QCDs. Optical characterization with an FTIR
and an unpolarized broadband Globar source show peak
room-temperature responsivities at the designed QCD tran-
sitions. The optimized QCD design at 4.3 pm exhibits a room-
temperature responsivity of 26.12 mA/W and a detectivity of
1.41 x 108 Jones. Due to the band alignment of InAs/AlSb and
the low band gap of InAs, strong interband transitions in
the MIR to NIR range are possible and observed in the QCDs
transition spectra, between 1.8 and 3 pm.
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List of Nonstandard Abbreviations

AFM atomic force microscopy

CcBO conduction band offset

FTIR Fourier-transform infrared spectroscopy
HR-XRD  high-resolution X-ray diffraction

I-v current-voltage

MIR mid-infrared

NIR near-infrared

QCD quantum cascade detector

QWIP quantum well infrared photodetector
TE transverse electric

™ transverse magnetic
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