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A. EFFECT OF DEFORMATION OF THE SQUARE ARRAY ON THE

EIGENSTATES DECAY RATES

In this section, we analyze sensitivity of the radiative decay rate of the two most subradi-

ant states in the square atomic array (see Fig. 3 in the main text) to the deformation of the

lattice. To illustrate this, we have calculated decay rates of the two most subradiant states

in the square 12×12 array arranged in a rectangular lattice with periods ãx, ãy as a function

of the ratio of the periods ay/ax. The results of the calculations for the period ãx = 0.31 are

shown in Figs. S1(a,b) with dotted curves. We should note that in the case of rectangular

lattice, which belongs to the point symmetry group C2v, all the eigenstates are divided into

four symmetry types depending on their transformation with respect to the two vertical

symmetry planes. On the other hand, in the case of square lattice (with equal number of

atoms along x and y directions), which belongs to the C4v point symmetry group, there are

five type of states. Unlike the square lattice, in the rectangular lattice all of the states with

the dominant contribution of the ψ(N,N), ψ(N,N−2) or ψ(N−2,N) harmonic (see Eq. (2) in the

main text) fall into the same irreducible representation. In Figs. S1(a,b) eigenstates with

the dominant contribution of the ψ(N,N) and ψ(N−2,N) harmonics, respectively, are shown.

For large enough periods and not very large anisotropy of the lattice, the state with

dominant contribution of ψ(N,N) harmonic does not interact with any other state upon the

change of the ay/ax ratio around ay/ax = 1, since this state is not associated with the specific

symmetry of the square lattice. Consequently, the radiative decay rate in Fig. S1(a) shown

with the point curve changes only slightly even for relatively large detunings of the ay/ax

from one up to several percents. On the other hand, the state with dominant contribution of

ψ(N−2,N) harmonic hybridizes with the ψ(N,N−2) harmonic when the periods are close to be

equal, i.e. the lattice is almost square. Such symmetry-induced external coupling leads to

the strong suppression of losses of such state in the square lattice. Reciprocally, one can say,

that the antisymmetric states in the square lattice are rather sensitive to the deformation,

resulting in the substantially increased losses even for a very small detunings ∆(ay/ax) ≲ 1%

from the square geometry, see Fig. S1(b), point curve.

For even larger detuning (ay/ax ≈ 0.9 (≈ 0.94) for B2 (A2) state for the given period ãx =

0.31) there appears additional external coupling between with the ψ(N,N−2) harmonic caused

by the quasi-flat band dispersion of the lattice. This also leads to substantial suppression
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Figure S1. Normalized radiative decay rate of most subradiant B2 (a,c) and A2 (b,d) states in

rectangular 12× 12 array. In (a) and (b) period ãx along x-axes is fixed whereas period ãy along

y-axis is changing. In colormaps (c) and (d) both periods ãx and ãy are varied. In (a) and (c)

solid lines correspond to ãx = 0.29, dotted lines — to ãx = 0.31, whereas in (b) and (d) solid lines

correspond to ãx = 0.301, dotted lines — to ãx = 0.31.

of losses with the same level as in the square lattice with optimal period, shown with solid

curves in Figs. S1(a,b). Fig. S1(c,d) summarizes the effects of stretching/squeezing of the

square lattice on the decay rates of the subradiant states.

B. CALCULATION OF THE INFINITE LATTICE DISPERSION

Here, we provide the details of the calculations of the dispersion of the various two-

dimensional dipole lattices in a free space. According to the Bloch theorem, it is possible

to present a eigenstate of an arbitrary Bravais lattice as |ψk⟩ =
∑

j e
ik·Rjσj|0⟩, where Rj

is a position vector of atom j = 1 . . .∞. Such Bloch state is fully defined by the quasi-
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momentum k, which can always be chosen to be within the first Brillouin zone. Plugging a

Bloch state into the Hamiltonian, Eq. (1) from the main text, for N → ∞ and multiplying

both sides of it by ⟨ψ†
k|, we obtain the following general relations for the eigenfrequency and

the decay rate [1]:

∆ω(k)

Γ0

= −3π

k0
Re[C(k)],

Γ(k)

Γ0

= 1− 6π

k0
Im[C(k)],

(S1)

where Rij = Rj − Ri, C(k) =
∑

i ̸=j e
∗
d · G(Rij) · ed eik·Rij , ed is the unit vector parallel

to the dipole moment transition, and G(Rij) is the electromagnetic Green’s tensor of a free

space [2]:

G(R, ω0) =
ik0
6π
δ(3)(R)Î+

+
eik0R

4πR

[(
1 +

i

k0R
− 1

k20R
2
)Î+ (1− 3i

k0R
− 3

k20R
2

)
R⊗R

R2

]
, (S2)

where k0 = ω0/c is a vacuum wavevector and Î is the unit dyadic.

Note that infinite series in Eqs. (S1) have convergence issues due to the farfield term

eik0R/R in Eq. (S2). To overcome this problem, we exploit the Poisson summation approach,

which was fully described for a rectangular lattice consisted of in-plane dipoles in Ref. [3].

For a case of the z-polarised dipoles, one can step-by-step follow the derivation procedure

in the Ref. [3], with a straight-forward substitution of the Green’s tensor component Gzz

instead of Gxx and obtain a dipole sum:

C(k) =
1

4πax

∑
ε=±1

[
Li1(e

iax(k0+εkx)) +
i

k0ax
Li2(e

iax(k0+εkx))− 1

k20a
2
x

Li3(e
iax(k0+εkx))

]
+

+
1

πaxk20

∑
Re[pm] ̸=0

+∞∑
n=1

[
k20K0(pmayn)−

pm
ayn

K1(pmayn)

]
cos(kynay)+

+
1

2πaxk20

∑
Re[pm]=0

{
(k20 +

p2m
2
)

[
ln(

|pm|ay
4π

) + i
π

2
+ γ

]
− p2m

4
−
k2y
2

− π2

3a2y
+

+
ζ(3)a2y
32π2

[
4k20(2k

2
y − p2m) + p2m(4k

2
y − p2m)

]
+
π

ay

[
ik(m,0)

z +
k20

ik
(m,0)
z

]
+

+
+∞∑
n=1

π

ay

[
q2

ik
(m,n)
z

+
k20

ik
(m,−n)
z

+ ik(m,n)
z + ik(m,−n)

z

]
− 4π2n

a2y
− k20

n
− p2m

2n
−

−
a2y

32π2n3

[
4k20(2k

2
y − p2m) + p2m(4k

2
y − p2m)

]}
, (S3)
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where:

pm =

√
(k

(m)
x )2 − k20, k(m)

x = kx +
2πm

ax
,

ik(m,n)
z =

√
(k

(m)
x )2 + (k

(n)
y )2 − k20, k(n)y = ky +

2πn

ay
.

In Eq. (S3), Lin is a polylogarithm of order n, and Km is a Macdonald function of order m.

Also, here we use specific mathematical constants, such as Euler’s constant γ ≈ 0.577 and

value of Riemann zeta function ζ(3) ≈ 1.202.

To obtain analogous dipole sum for the dipole with circular polarized transition moment

in a rectangular lattice, one should substitute ed with the e± =
1√
2
(ex± iey), which results

in the change of Gzz to the
1

2
(Gxx + Gyy). Therefore, one can directly use find expressions

(A19, A22) obtained in Ref. [3] for Gxx (x-oriented dipoles), then apply it for Gyy (y-oriented

dipoles) with a permutation of x and y. Finally, taking a half sum for two dipole sums, one

may get the final answer.

The obtained infinite series can be accurately truncated and calculated numerically due

to fast convergence of order 1/n4 [3]. After plugging the obtained dipole sums into Eq. (S1),

taking certain parameters of a square lattice, one may get dispersion dependencies ∆ω(k)

in the main text, see Fig. 1(a) and Fig. 4.

C. SUBRADIANT STATES IN ATOMIC ARRAYS WITH DIFFERENT

GEOMETRY

We have numericaly studied subradiant states in regular arrays of different geometry ar-

ranged in square or hexagonal lattices. Here, we present the results of numerical simulations

for the considered cases: (i) square array arranged in square lattice cut out along the unit

vectors, (ii) square array arranged in diagonal square lattice, (iii)/(iv) triangle/hexagonal

array cut out of the hexagonal lattice. Such arrays belong to C4v, C4v, C3v and C6v, respec-

tively. The schematics of the structures are given in the Fig. S2. Note that the geometry

(ii) can be viewed as the square cut out along the diagonals of the simple square lattice.

The considered square and hexagonal infinite lattices both exhibit quasiflat-band dis-

persion for the period ã ≈ 0.3 for the case of z oriented dipole transition moments of the

emitters (not shown here). Consequently, we distinguish two different regimes similarly to

the main text. First one, when the normalized lattice period ã is larger than ≈ 0.3; in
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Figure S2. Table containing the schematics of the considered arrays and their main characteristics.

further simulations we fix the period as ã = 0.4 in this regime. The second one, corresponds

to ã ≲ 0.3, when additional external coupling due to quasiflat-band dispersion appears. In

this regime, in the calculations we optimize the period for each value of Ntot to achieve the

minimal decay rate.

We numerically calculated the radiative decay rate as a function of Ntot for all eigenstates

of all considered arrays, and for two above-mentioned regimes. For each geometry we have

identified the symmetry of the most subradiant eigenstates (in the limit of large number of

atoms in array Ntot) and plotted the wavefunction of this state in an array of few atoms

for the illustrative purposes, see Fig. S2, third row. The radiative decay rate of the most

subradiant states as a function of Ntot is shown in Fig. S3(a). The calculations revealed

that for the large Ntot the states with the A2/B1 symmetry in the square array are the most

subradiant ones among the considered geometries for any period. For large periods they

exhibit unique N−5
tot decrease of the radiative losses with the size of the array, while other

geometries show much slower N−1.5
tot dependence.
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For smaller periods the size dependencies remain the same in the square arrays, while

they change in the other geometries, Fig. S3(b). Moreover, some of the states start to

exhibit slightly non-monotonic dependence, see e.g. A2 mode of the diagonal square array

in Fig. S3(b). Surprisingly, the triangle array with the sharpest corners supports eigenstates

with dependence close to N
(−5)
tot . For not so large number of atoms N ≲ 100, however, the

size scaling rate becomes even less specific and the decay rate of the hexagon eigenstates

can slightly exceed those of the square array ones.

D. QUALITATIVE EXPLANATION OF THE LOSSES SCALING WITH THE

SIZE OF THE SQUARE ARRAY

The difference between the scaling of the radiative losses with the size of the square

array — N−3
tot and N−5

tot (Ntot = N2 is the number of atoms in the array) for A1/B2 and

A2/B1 states, respectively — can be intuitively explained as follows. As we have shown in

Fig. 3(d,e) in the main text, for the non-optimal periods ã ≳ 0.3 two considered eigenstates

can be approximated as ψ(N,N) (A1/B2 state) and ψ
(N−2,N)− (A2/B1 state) basis states. Since

these basis states correspond to the guided waves in the corresponding infinite array, it is

natural to expect that the for large size of the array the radiative losses will be determined

by the intensity of the wave at the sharp edges of the array [4], i.e. by square amplitudes of

the dipole moments near the corners. For the ψ(N,N) state the corner dipole moment from

Eq. 2 in the main text reads:

ψ
(N,N)
1,1 =

2

π
q0 sin

2(q0) ∝ q30, (S4)

where the approximation is done for small q0 = π/(N + 1) or large N . Since in this case

q0 ∝ N−1, the scaling of the square amplitude of the corner dipole is |ψ(N,N)
corner |2 ∝ N−6 = N−3

tot

in agreement with the numerical simulations.

The corner dipole moment of the ψ(N−2,N)− state is necessarily zero, since it is antisym-

metric with respect to the diagonals of the square. Therefore, we consider the dipole that

is next to the corner one:

ψ
(N−2,N)−

1,2 = −
√
2

π
q0[sin(q0) sin(6q0)− sin(3q0) sin(2q0)] ∝ q50. (S5)

Due to specific symmetry of such state the first term in the expansion ∝ q30 cancels out
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Figure S3. (a,b) Radiative losses of subradiant states as a function of the total number of atoms

in the array Ntot for different geometries illustrated in Fig. S2 for (a) fixed distance between the

neighbor atoms ã = 0.4, (b) optimal period for each Ntot, shown in panel (c). Dashed lines indicate

corresponding polynomial functions. The legend in (c) is valid for all panels.

and the scaling with N becomes |ψ(N−2,N)−
corner |2 ∝ N−10 = N−5

tot , again in agreement with the

numerical simulations.
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E. DETAILS OF SCATTERING CALCULATIONS

We perform the scattering calculations in a semiclassical manner, where the incident wave

with a given spatial distribution E0(r) polarizes atoms, which response is described with a

semiclassical atomic polarizability α(ω) = − 3π
2k20

Γ0/2
ω−ω0+iΓ0/2

. As a result of re-scattering of the

photons by the atoms, a dipole moment of the j-th atom can be found as:

d(j) = α(ω)E0(rj) +
∑
k ̸=j

4πk20G(Rjk)d
(k). (S6)

By solving the system of linear equations Eq. (S6) for all the atoms, we find the distribution

of the dipole moments induced by the incident field, which further allows to obtain the total

extinction (scattering) cross-section by using the optical theorem [5]:

σtot =
4πk0

|E0(r)|2
∑
j

Im d(j)E∗
0(rj). (S7)

To demonstrate the correspondence between spectrum of σtot and the eigen modes Ψ, we

decompose the dipole moment of j-th atom in the basis of eigen modes: d(j) =
∑Ntot

n=1 cnΨ
(j)
n .

After substitution of this decomposition into Eq.(S6), we obtain σtot =
∑Ntot

n=1 σn, where

partial scattering cross-section σn, is defined as:

σn =
4πk0

|E0(r)|2
∑
j

Im cnΨ
(j)
n E∗

0(rj). (S8)

Since we are considering highly non-homogeneous external fields, the denominator in

Eq. (S7) strongly depends on the choice of a spatial point at which the excitation field

is taken. Therefore, unlike the plane-wave excitation, the scattering cross-section in the case

of the Bessel beams is defined up to a constant. To obtain some figure of merit, we normal-

ize scattering cross-section of the system to cross-section σ0 of a single atom positioned at

maximum of longitudinal component of incident field E0z.

During the calculations of scattering spectra shown at Fig. 6, we considered E0(r) as

a profile of vector Bessel beam in according with Eqs (5), (7-8) from Ref. [6]. We took

parameters of right circular polarized beam (s = σ = 1) with orbital momenta l = m = 7

and l = m = 9, value of numerical aperture NA = 1, ratio of the pupil radius and the

Gaussian beam waist β = 0.5.
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