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A. EFFECT OF DEFORMATION OF THE SQUARE ARRAY ON THE
EIGENSTATES DECAY RATES

In this section, we analyze sensitivity of the radiative decay rate of the two most subradi-
ant states in the square atomic array (see Fig. 3 in the main text) to the deformation of the
lattice. To illustrate this, we have calculated decay rates of the two most subradiant states
in the square 12 x 12 array arranged in a rectangular lattice with periods a,, a, as a function
of the ratio of the periods a,/a,. The results of the calculations for the period a, = 0.31 are
shown in Figs. S1(a,b) with dotted curves. We should note that in the case of rectangular
lattice, which belongs to the point symmetry group Cy,, all the eigenstates are divided into
four symmetry types depending on their transformation with respect to the two vertical
symmetry planes. On the other hand, in the case of square lattice (with equal number of
atoms along x and y directions), which belongs to the Cy, point symmetry group, there are
five type of states. Unlike the square lattice, in the rectangular lattice all of the states with
the dominant contribution of the 1)(V-N)  p(NV:N=2) o o)(N=2N) harmonic (see Eq. (2) in the
main text) fall into the same irreducible representation. In Figs. S1(a,b) eigenstates with

the dominant contribution of the (™) and ¢(V=2N) harmonics, respectively, are shown.

For large enough periods and not very large anisotropy of the lattice, the state with
dominant contribution of ¢)(™) harmonic does not interact with any other state upon the
change of the a, /a, ratio around a,/a, = 1, since this state is not associated with the specific
symmetry of the square lattice. Consequently, the radiative decay rate in Fig. S1(a) shown
with the point curve changes only slightly even for relatively large detunings of the a,/a,
from one up to several percents. On the other hand, the state with dominant contribution of
N =2N) harmonic hybridizes with the 1¥>"N=2) harmonic when the periods are close to be
equal, i.e. the lattice is almost square. Such symmetry-induced external coupling leads to
the strong suppression of losses of such state in the square lattice. Reciprocally, one can say,
that the antisymmetric states in the square lattice are rather sensitive to the deformation,
resulting in the substantially increased losses even for a very small detunings A(a,/a,) < 1%

from the square geometry, see Fig. S1(b), point curve.

For even larger detuning (a,/a, ~ 0.9 (= 0.94) for By (A2) state for the given period a, =
0.31) there appears additional external coupling between with the ¢y¥>*¥=2) harmonic caused

by the quasi-flat band dispersion of the lattice. This also leads to substantial suppression
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Figure S1. Normalized radiative decay rate of most subradiant By (a,c) and Ay (b,d) states in
rectangular 12 x 12 array. In (a) and (b) period a, along z-axes is fixed whereas period @, along
y-axis is changing. In colormaps (c) and (d) both periods a, and a, are varied. In (a) and (c)
solid lines correspond to a, = 0.29, dotted lines — to a, = 0.31, whereas in (b) and (d) solid lines

correspond to a; = 0.301, dotted lines — to a, = 0.31.

of losses with the same level as in the square lattice with optimal period, shown with solid
curves in Figs. S1(a,b). Fig. S1(c,d) summarizes the effects of stretching/squeezing of the

square lattice on the decay rates of the subradiant states.

B. CALCULATION OF THE INFINITE LATTICE DISPERSION

Here, we provide the details of the calculations of the dispersion of the various two-
dimensional dipole lattices in a free space. According to the Bloch theorem, it is possible
to present a eigenstate of an arbitrary Bravais lattice as |[¢x) = >, e®Rig;|0), where R;

is a position vector of atom 7 = 1...00. Such Bloch state is fully defined by the quasi-



momentum k, which can always be chosen to be within the first Brillouin zone. Plugging a
Bloch state into the Hamiltonian, Eq. (1) from the main text, for N — oo and multiplying
both sides of it by <¢1T<|> we obtain the following general relations for the eigenfrequency and

the decay rate [1]:

Aw(k)  3m .
o e -
T, = 1— k—OIm[C’(k)],

where Ri; = R; — Ry, C(k) = >, ;e - G(Ryj) - eq e’®Riieq is the unit vector parallel
to the dipole moment transition, and G(R;;) is the electromagnetic Green’s tensor of a free
space [2]:
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where kg = wp/c is a vacuum wavevector and I is the unit dyadic.

Note that infinite series in Eqgs. (S1) have convergence issues due to the farfield term
el /R in Eq. (S2). To overcome this problem, we exploit the Poisson summation approach,
which was fully described for a rectangular lattice consisted of in-plane dipoles in Ref. [3].
For a case of the z-polarised dipoles, one can step-by-step follow the derivation procedure
in the Ref. [3], with a straight-forward substitution of the Green’s tensor component G,
instead of G, and obtain a dipole sum:
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where:
2
Pm = (kﬂ(ﬁm))g - kg’ k:g(cm) = ks + ﬂ—ma
Gy
S m " n 2mn
R

In Eq. (S3), Li, is a polylogarithm of order n, and K,, is a Macdonald function of order m.
Also, here we use specific mathematical constants, such as Euler’s constant v &~ 0.577 and
value of Riemann zeta function ((3) ~ 1.202.

To obtain analogous dipole sum for the dipole with circular polarized transition moment

1
in a rectangular lattice, one should substitute eq with the e, = —(ex £ ey ), which results

V2

in the change of GG, to the %(Gm + Gyy). Therefore, one can directly use find expressions
(A19, A22) obtained in Ref. [3] for G, (z-oriented dipoles), then apply it for G, (y-oriented
dipoles) with a permutation of z and y. Finally, taking a half sum for two dipole sums, one
may get the final answer.

The obtained infinite series can be accurately truncated and calculated numerically due
to fast convergence of order 1/n* [3]. After plugging the obtained dipole sums into Eq. (S1),
taking certain parameters of a square lattice, one may get dispersion dependencies Aw(k)

in the main text, see Fig. 1(a) and Fig. 4.

C. SUBRADIANT STATES IN ATOMIC ARRAYS WITH DIFFERENT
GEOMETRY

We have numericaly studied subradiant states in regular arrays of different geometry ar-
ranged in square or hexagonal lattices. Here, we present the results of numerical simulations
for the considered cases: (i) square array arranged in square lattice cut out along the unit
vectors, (ii) square array arranged in diagonal square lattice, (iii)/(iv) triangle/hexagonal
array cut out of the hexagonal lattice. Such arrays belong to Cy,,, Cy,, C3, and Cs,, respec-
tively. The schematics of the structures are given in the Fig. S2. Note that the geometry
(ii) can be viewed as the square cut out along the diagonals of the simple square lattice.

The considered square and hexagonal infinite lattices both exhibit quasiflat-band dis-
persion for the period a ~ 0.3 for the case of z oriented dipole transition moments of the
emitters (not shown here). Consequently, we distinguish two different regimes similarly to

the main text. First one, when the normalized lattice period a is larger than ~ 0.3; in



Square array/
square lattice

Square array/
centered-square

Triangle array/
hexagonal lattice

Hexagonal array/
hexagonal lattice

lattice
Geometry of the structure PN . R
e & & o 0 0 LN ] ® & & 0 0
e e s e s e ® o0 ® & @ 0 0 0
e @ 0 O ® ® & & 0 0 0
LA R EEEEE)
o e 0 0 00 *® o o 0 0 0 e e 0o 00
e & & & 00 ® & & ¢ & 0 9 ® & o @
Symmetry of the structure Cyy Cu Csy Cov
oo e e 0 0 o e e 0 O o o oceeo
e o0 00 0 e 0Oe e o0 0 o o oo eec 0o
Wavef . Re(y) EEEX) e e 0O e e 0.0.0.0 o)oooo © 0 eeo0o0
avefunction, Re - L4 Oeeoeeo0
v © e 0 0 00 ¢ e 00 @0 e o o > e ® @ © @0 ee0 0
B | e ®o o0 0 0 0 @ O e e O o e o e e oo e o0 eo
min 0 max oe e e o0 o0 0 e e e 0 O ° 0 o0o0oeo0o0o0 © e o0
Symmetry of the mode A,/B, A,/B,; B./A; E/A; A,/B,
Fixed distance Scaling of I
between the with size Niot® Nior® Nior® Nior ™ Nior ™
atoms a=0.4A,
Optimal Scaling of I 3 5 25 - -15 5
distance agy with size Niot Niot Niot Niot Nio™+-Niot

Figure S2. Table containing the schematics of the considered arrays and their main characteristics.

further simulations we fix the period as a = 0.4 in this regime. The second one, corresponds

to a < 0.3, when additional external coupling due to quasiflat-band dispersion appears. In

this regime, in the calculations we optimize the period for each value of Ny, to achieve the

minimal decay rate.

We numerically calculated the radiative decay rate as a function of N, for all eigenstates

of all considered arrays, and for two above-mentioned regimes. For each geometry we have

identified the symmetry of the most subradiant eigenstates (in the limit of large number of

atoms in array Ny, ) and plotted the wavefunction of this state in an array of few atoms

for the illustrative purposes, see Fig. S2, third row. The radiative decay rate of the most

subradiant states as a function of Ny, is shown in Fig. S3(a).

The calculations revealed

that for the large N, the states with the Ay /By symmetry in the square array are the most

subradiant ones among the considered geometries for any period. For large periods they

exhibit unique N,,” decrease of the radiative losses with the size of the array, while other

geometries show much slower N,

1.

® dependence.




For smaller periods the size dependencies remain the same in the square arrays, while
they change in the other geometries, Fig. S3(b). Moreover, some of the states start to
exhibit slightly non-monotonic dependence, see e.g. A, mode of the diagonal square array
in Fig. S3(b). Surprisingly, the triangle array with the sharpest corners supports eigenstates
with dependence close to Nt(of). For not so large number of atoms N < 100, however, the
size scaling rate becomes even less specific and the decay rate of the hexagon eigenstates

can slightly exceed those of the square array ones.

D. QUALITATIVE EXPLANATION OF THE LOSSES SCALING WITH THE
SIZE OF THE SQUARE ARRAY

The difference between the scaling of the radiative losses with the size of the square
array — N2 and N7 (Ny; = N? is the number of atoms in the array) for A;/B, and
A,/ By states, respectively — can be intuitively explained as follows. As we have shown in
Fig. 3(d,e) in the main text, for the non-optimal periods @ 2 0.3 two considered eigenstates
can be approximated as 1/(N"V) (A, / By state) and (V2" (A, /B state) basis states. Since
these basis states correspond to the guided waves in the corresponding infinite array, it is
natural to expect that the for large size of the array the radiative losses will be determined
by the intensity of the wave at the sharp edges of the array [4], i.e. by square amplitudes of
the dipole moments near the corners. For the (™) state the corner dipole moment from

Eq. 2 in the main text reads:

(NN) _ 2

1,1 = %QO Sin2(QO) (08 QS7 (S4)

where the approximation is done for small gg = 7/(N + 1) or large N. Since in this case
go o< N1, the scaling of the square amplitude of the corner dipole is |¢£évnf\efr) P N6 =N ?
in agreement with the numerical simulations.

The corner dipole moment of the ©y(V=2N)" state is necessarily zero, since it is antisym-
metric with respect to the diagonals of the square. Therefore, we consider the dipole that

is next to the corner one:

o N~ V2 o . . .
wg ZN)T —7(10 [sin(go) sin(6go) — sin(3qo) sin(2qo)] o< g5. (SH)

Due to specific symmetry of such state the first term in the expansion o ¢3 cancels out
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Figure S3. (a,b) Radiative losses of subradiant states as a function of the total number of atoms
in the array Ny for different geometries illustrated in Fig. S2 for (a) fixed distance between the

neighbor atoms a = 0.4, (b) optimal period for each Ny, shown in panel (c). Dashed lines indicate

Ntot

corresponding polynomial functions. The legend in (c) is valid for all panels.

and the scaling with N becomes |w£é\£;§’N )" |2

numerical simulations.

o N7 = N7, again in agreement with the



E. DETAILS OF SCATTERING CALCULATIONS

We perform the scattering calculations in a semiclassical manner, where the incident wave

with a given spatial distribution Eq(r) polarizes atoms, which response is described with a

3T o /2

T Ao vyt As a result of re-scattering of the

semiclassical atomic polarizability a(w) =

photons by the atoms, a dipole moment of the j-th atom can be found as:

dY) = a(w)Eo(r;) + > AnkiG(Ry)d ™. (S6)

k#j
By solving the system of linear equations Eq. (S6) for all the atoms, we find the distribution
of the dipole moments induced by the incident field, which further allows to obtain the total

extinction (scattering) cross-section by using the optical theorem [5]:

471']{30

Opor = ——— Y ITm dVE}(r;). (S7)
. |E0(r)|2; o

To demonstrate the correspondence between spectrum of o;,; and the eigen modes ¥, we

Niot Cn\Il(j)

decompose the dipole moment of j-th atom in the basis of eigen modes: dV/) = 3" ! "

After substitution of this decomposition into Eq.(S6), we obtain o, = zgi’f On, Where

partial scattering cross-section o, is defined as:

On

- % Ej: Im ¢, POE: (r;). (S8)
Since we are considering highly non-homogeneous external fields, the denominator in
Eq. (S7) strongly depends on the choice of a spatial point at which the excitation field
is taken. Therefore, unlike the plane-wave excitation, the scattering cross-section in the case
of the Bessel beams is defined up to a constant. To obtain some figure of merit, we normal-
ize scattering cross-section of the system to cross-section oy of a single atom positioned at
maximum of longitudinal component of incident field FEy,.

During the calculations of scattering spectra shown at Fig. 6, we considered Ey(r) as
a profile of vector Bessel beam in according with Eqgs (5), (7-8) from Ref. [6]. We took
parameters of right circular polarized beam (s = o = 1) with orbital momenta | = m =7
and [ = m = 9, value of numerical aperture NA = 1, ratio of the pupil radius and the

Gaussian beam waist § = 0.5.
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