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Abstract: Light’s ability to perform massive linear opera-
tions in parallel has recently inspired numerous demon-
strations of optics-assisted artificial neural networks (ANN).
However, a clear system-level advantage of optics over
purely digital ANN has not yet been established. While
linear operations can indeed be optically performed very
efficiently, the lack of nonlinearity and signal regenera-
tion require high-power, low-latency signal transduction
between optics and electronics. Additionally, a large power
is needed for lasers and photodetectors, which are often
neglected in the calculation of the total energy consumption.
Here, instead of mapping traditional digital operations to
optics, we co-designed a hybrid optical-digital ANN, that
operates on incoherent light, and is thus amenable to oper-
ations under ambient light. Keeping the latency and power
constant between a purely digital ANN and a hybrid optical-
digital ANN, we identified a low-power/latency regime,
where an optical encoder provides higher classification
accuracy than a purely digital ANN. We estimate our optical
encoder enables ~10 kHz rate operation of a hybrid ANN
with a power of only 23 mW. However, in that regime, the
overall classification accuracy is lower than what is achiev-
able with higher power and latency. Our results indicate
that optics can be advantageous over digital ANN in appli-
cations, where the overall performance of the ANN can be
relaxed to prioritize lower power and latency.
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1 Introduction

Over the last decade, the fields of artificial intelligence (AI)
and deep learning have experienced accelerated progress,
revealing the potential and capabilities of artificial neural
networks (ANN) for a variety of applications, with recent
demonstrations even advancing to the public spotlight in
the form of chat software and artistic rendering programs.
Their recent success can be traced back to major break-
throughs, both in terms of computational algorithms and
digital hardware such as graphics processing units (GPU)
[1]. While impressive, the scaling of power and latency of
digital implementations of deep learning turned out to be
unfavorable with the size of the ANN. This poses a serious
limitation for further scaling of ANNs [2, 3] and applicability
to low-power, real-time problems.

Light may be the answer to this scaling challenge,
thanks to its inherent parallelism, speed, and analog nature,
thus providing an attractive alternative to electronic imple-
mentations to build energy efficient and fast ANNs. This has
been recognized early on and several experiments reported
optical ANNs already back in the 1990s [4, 5]. Unfortunately,
progress stalled due to technological and fundamental rea-
sons, which can be broadly classified into intrinsic and
extrinsic problems. Intrinsic problems with optics had been
the large size and poor tolerance to misalignment of opti-
cal components; limited space bandwidth product of spa-
tial light modulators; and lack of nonlinear activation. The
extrinsic problems originated from poor understanding of
Al algorithms and adaptive learning, as well as the meteoric
rise of electronic computing systems.

Given the current limitations of electronic hard-
ware and our increased understanding of Al the extrin-
sic problems are somewhat alleviated. In parallel, the
advancement of nano-fabrication facilities, and the avail-
ability of sophisticated electromagnetic simulators have
led to the high-volume manufacturing of multi-functional
nano-optics, such as flat meta-optics [6, 7] and integrated
photonic devices [8]. Emerging material systems coupled
with these nano-optical structures enable monolithic pho-
tonic integrated circuits (PIC) analogous to electronic ICs [9].
These innovations in nanophotonics and Al, combined with
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severe limitations of digital implementation of ANNs have
generated strong interest in recent years in recreating optics
assisted ANNs [10-17].

However, thus far, none of the reported works have
demonstrated a clear advantage of optics over digital ANNs
for inference. Most implementations have only shown the
substitution of a small linear part with an optical coun-
terpart [18], while the rest was kept in the digital elec-
tronics. Although there is a clear advantage of optics for
implementing a small sub-system, often the linear part,
the power and latency in a complete ANN include the
transduction of the signal between optical and electronic
domains [19], i.e. the detector readout power, spatial light
modulator power and laser power, many of which are often
neglected. In fact, an analysis considering these energy costs
shows that implementing only one convolutional layer in
optics does not provide any advantage, unless the input
has a very large dimension [19]. However, for many appli-
cations, such large dimensions of the image provide only
a marginal increase in ANN classification accuracy. There
are several recent works that also implemented nonlin-
earity in the optical domain using thermal atoms [16] and
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image intensifiers [20]. These approaches, however, also
consume a large amount of power. Additionally, a large body
of works demonstrated classification for extremely sim-
ple “toy” problems, for which no digital benchmark exists
[13, 14]. Comparing the power and latency of an applica-
tion specific optical ANN to a GPU (optimized for universal
operations) is unfair. There are many ways to drastically
reduce the power and latency of a digital ANN, including
replacing matrix multiplication with XNOR operations [21].
Many pruning algorithms also exist to reduce the number of
computations needed for inference. As such, there has been
no clear demonstration where an optics-assisted ANN shows
an advantage over a purely digital framework optimized
for solving a specific problem. The current approaches gen-
erally focus on power and speed benefit form inclusion of
optics to achieve similar classification accuracy. However, it
is impossible to exactly define the computational complex-
ity of an ANN; hence the exact calculation of power and
latency in the digital part is dependent on both training and
technology.

Here, we develop a framework to exactly compare
the inference performance of a pure digital ANN against

Figure 1: Schematic of the optical encoder and pure digital neural network. (a) Purely digital ANNs operate on captured images using a lensed sensor.
(b) Instead of using a lens, a designed optics can perform additional linear operations on the captured data. In both cases, the power and the latency
of the sensor are the same. Using the digital computational backend with the same resources (number of layers and neurons), we ensure the same
power and latency, both of which monotonically scale with the dimensionality of the input data (here termed as N) to the digital backend.
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a hybrid optical-digital ANN. In both ANNs, we ensure the
same power and latency, and thus by comparing the classi-
fication accuracy, we can clearly assess the relative advan-
tage. Figure 1 shows a schematic of the two cases: the pure
digital and the hybrid optical-digital. We encode the input
in incoherent light, as the optical frontend of the ANN can
work with ambient light without incurring any additional
energy consumption. In a pure digital case, a lens-based
sensor captures an image of an object under incoherent
light, and then the image is transferred to a digital ANN. For
the hybrid case, we use an engineered optic — namely the
optical encoder, instead of a lens, that captures the image
in a different basis and sends the data to a digital back-
end. Instead of implementing a digital sub-system, such as
convolutional operations in optics, we co-optimize the opti-
cal frontend (implemented via a sub-wavelength diffrac-
tive meta-optics), along with the digital backend using an
“end-to-end” design framework (detail in the Supplemen-
tary Materials S1, S3) [22, 23]. The topology and resources
(i.e., the same number of nodes, layers, and nonlineari-
ties) used in the digital ANN are kept the same in both
cases, though with different weights and biases. Thus, we
ensure that the latency and power consumption in both
casesremain identical. We note that the designed meta-optic
essentially performs a convolutional operation, but with a
significantly larger kernel size compared to standard con-
volutional neural networks. This can be justified by the fact
that any image formation under incoherent illumination
can be modelled as a convolution between the object and
the incoherent point spread function (PSF), if the PSF is
spatially uniform. While meta-optics does not strictly have a
spatially invariant PSF, and such spatial variation is recently
been exploited for convolution [24], this approximation has
worked well for many other imaging applications [22, 25].

Here, we tested the classification accuracy for MNIST
data sets for different values of N, which represent the
binned size of the image captured in the sensor either via
a lens or the optical encoder. As the latency and power
increase with the input dimensionality N of the data sent
to the digital ANN, we found that classification accuracy
increases in both cases, and there is no advantage from an
optical frontend for large N. However, for smaller N, where
the system power and latency are also lower, we found
an increase in validation accuracy (~10 %) with a hybrid
optical-digital ANN. We experimentally validated our the-
oretical model. Our work clearly demonstrates a photonic
advantage for ANN inference, albeit such an advantage is
observed when overall system performance is lower than
the highest achievable performance.
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2 Results

Our digital backend consists of three fully connected layers:
N X 256 (input), 256 X 256 (hidden) and 256 X 10 (output).
The first two layers are each followed by a rectified linear
unit (ReLU) nonlinearity and the output layer has a sig-
moid nonlinearity. For the pure digital case, every image
is converted to an N-pixel image by averaging the pixels.
We chose 8 different N ranging from 1 to 100, to assess
the performance of the system with increasing data input.
We train the digital network by back-propagating the loss
function defined by the cross-entropy between the output
and the ground truth. In simulation, we obtained a vali-
dation classification accuracy of up to ~98 % (detail in the
Supplementary Materials S2). We note that, in prior works,
to achieve a similar accuracy with the MNIST dataset, sev-
eral layers were used [17], which we attribute to inefficient
training. For the hybrid case, we model the optical frontend
using a sub-wavelength diffractive meta-optics, although
any freeform optical surface could suffice for implemen-
tation. The fabricated optical frontends with different out-
put dimensionalities are shown in Figure 2(a). We train the
meta-optics along with a digital backend with the same neu-
ral network topology (details in method), following an “end-
to-end” design framework used before for imaging [20]. For
training we assumed the light is incoherent but monochro-
matic. As expected, we observed an increase in classifica-
tion accuracy with increasing N. We also found that for
N > 8 %8, the digital and hybrid ANN demonstrate identical
classification accuracies. However, at a lower value of N, the
classification accuracy of the hybrid ANN surpasses that of
the digital ANN. Example classification confusion matrices
are shown in Figure 3(a), comparing the experimental vali-
dation accuracies between a hybrid and a digital ANN with
the same input size, N = 3 X 3. Theoretically, we observe
an increase in classification accuracy by up to ~20 % when
an optical frontend is incorporated. A validation accuracy
comparison chart can be seen on Figure 3(b). We note that
even with a single data-point sent to the digital backend, we
theoretically achieved higher classification accuracy with
our optical frontend. This is because that single input can
assume 256 different values for an 8 bit precision sensor,
which can help with classification. We discovered that if we
use a lower bit resolution instead of an 8 bit resolution in
the output, the classification accuracy drastically declines
for small N.

To validate the design, we fabricated the meta-optics
(detail in the Supplementary S4) and measured their per-
formance experimentally, where we projected images of the
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Figure 2: Fabrication and characterization of the meta-optical encoder: (a) Optical microscope images of the meta-optical encoders for different input
sizes. (b) Scanning electron microscope (SEM) image of the optical encoder, region denoted by the red box on device 1 X 1. (c) The experimental input,
sensor signal, and output of the meta-optical encoder.
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Figure 3: Performance comparison of the digital and hybrid ANN. (a) Confusion matrices comparing the experimental performances of the hybrid
optical-digital against the pure digital ANNs for the case of N = 3 X 3. (b) Validation classification accuracies of the purely electronic and hybrid
optical-electronic ANNs as a function of N, N being the number of output points being transferred to the computational backend. The error bar

is shown to represent the range of one standard deviation.

MNIST data set using an OLED display in green (detail in
the Supplementary S5). The incoherent green light passes
through the meta-optic, and we capture the data on the sen-
sor with 8 bit precision. We then binned the captured image
to create the N data-points that are passed to the digital
backend. An experimental sample on Figure 2(c) shows the
signal processing of the 3 X 3 encoder. Due to fabrication
imperfections, and misalignments, we retrained the digital
backend (keeping the same topology) using the captured
data. Our experiment matches the theory very well for
N > 3 X 3. We note that the meta-optics optimized for
N = 8 x 8 was damaged, and we could not collect data
on that. At smaller N, the deviation from the theory is
attributed to experimental noise. While a single point can
provide more information to the digital backend, it is

corrupted by the quantization noise, undermining the effect
of the optical encoder and we obtained similar classification
accuracy, as we would have expected from a pure digi-
tal backend. We have also verified this in simulation: by
reducing the bit resolution and adding more quantization
noise, the classification accuracy degrades more for N =1
and N =4.

3 Discussion

By employing an incoherent light source and a meta-optical
frontend, we created a framework, enabling us to com-
pare the performance of a digital ANN to an optics-assisted
ANN in the same footing. While keeping the power and
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latency constant in both cases, we showed that optical
encoding does provide more information to the digital back-
end, resulting in ~10 % more classification accuracy in the
experiment. We emphasize that to achieve >90 % classifi-
cation accuracy for the hybrid case, it is only necessary to
capture a 3 X 3 image, i.e., nine pixels on the sensor. In
contrast, for the same image size, the classification accuracy
of the pure electronic method remains at approximately
80 %. The power of the hybrid optical ANN can be esti-
mated from the sensor readout power and the power uti-
lized by the digital backend. The sensor readout power is
directly proportional to the number of pixels. For a typ-
ical commercial camera, we estimate the sensor readout
power for a 9-pixel image to be around 18 mW at a speed of
approximately 10 kHz. Given N inputs, the backend needs
to execute a total of approximately (5 x 10° +2 X 10° X N)
multiply-and-accumulate (MAC) operations with 8 bit pre-
cision. In modern digital system, one MAC operation uses
about ~1pJ [20], making the total energy for the digital
backend N = 3 X 3 to be ~500 nJ. Given our proposed net-
work will be limited by the sensor readout time, we can esti-
mate the backend power to be ~5 mW. Thus, our reported
hybrid ANN consumes ~23 mW power for ~10 kHz operat-
ing speed. This low energy originates from the fact that our
optical operations are hard coded in an engineered optics.
Additionally, by capturing only a few pixels we drastically
reduce the sensor power. However, the price we pay is that
unlike spatial light modulators, we cannot reconfigure the
frontend. As such, this power should be considered as a
lower limit of the sensor and compute operations for MNIST
datasets. Another benefit of our hybrid network is its sim-
plicity. We only need one meta-optic, which can be directly
integrated into the sensor. Unlike 4f systems [26], or mul-
tiple meta-optics [15], use of a single meta-optic drastically
reduces the size, weight, and packaging complexity of our
encoder.

While our result is primarily applicable to the MNIST
dataset, we believe that it indicates the conditions for which
an optical frontend is beneficial to increase the performance
of an ANN (more discussion in Supplementary S6). Without
any constraints on latency and power, one can arbitrarily
increase N, and always find a digital solution that is better
than the hybrid option. One way to rationalize this is that
any optical implementation can be modelled digitally and
therefore without any constraint a digital solution can be
found with accuracy in the same order of magnitude or
higher than its optical counterpart. The higher classification
accuracy of optics-assisted ANN in several reports is most
likely a manifestation of poor training of the fully digital
ANN. However, under the constraints of latency or power,
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we need to work with an intermediate value of N, where
the optical frontend can provide a more efficient solution,
albeit at overall lower accuracy.
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