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Abstract: Light’s ability to perform massive linear opera-

tions in parallel has recently inspired numerous demon-

strations of optics-assisted artificial neural networks (ANN).

However, a clear system-level advantage of optics over

purely digital ANN has not yet been established. While

linear operations can indeed be optically performed very

efficiently, the lack of nonlinearity and signal regenera-

tion require high-power, low-latency signal transduction

between optics and electronics. Additionally, a large power

is needed for lasers and photodetectors, which are often

neglected in the calculation of the total energy consumption.

Here, instead of mapping traditional digital operations to

optics, we co-designed a hybrid optical-digital ANN, that

operates on incoherent light, and is thus amenable to oper-

ations under ambient light. Keeping the latency and power

constant between a purely digital ANN and a hybrid optical-

digital ANN, we identified a low-power/latency regime,

where an optical encoder provides higher classification

accuracy than a purely digital ANN.We estimate our optical

encoder enables ∼10 kHz rate operation of a hybrid ANN

with a power of only 23 mW. However, in that regime, the

overall classification accuracy is lower than what is achiev-

able with higher power and latency. Our results indicate

that optics can be advantageous over digital ANN in appli-

cations, where the overall performance of the ANN can be

relaxed to prioritize lower power and latency.
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1 Introduction

Over the last decade, the fields of artificial intelligence (AI)

and deep learning have experienced accelerated progress,

revealing the potential and capabilities of artificial neural

networks (ANN) for a variety of applications, with recent

demonstrations even advancing to the public spotlight in

the form of chat software and artistic rendering programs.

Their recent success can be traced back to major break-

throughs, both in terms of computational algorithms and

digital hardware such as graphics processing units (GPU)

[1]. While impressive, the scaling of power and latency of

digital implementations of deep learning turned out to be

unfavorable with the size of the ANN. This poses a serious

limitation for further scaling of ANNs [2, 3] and applicability

to low-power, real-time problems.

Light may be the answer to this scaling challenge,

thanks to its inherent parallelism, speed, and analog nature,

thus providing an attractive alternative to electronic imple-

mentations to build energy efficient and fast ANNs. This has

been recognized early on and several experiments reported

optical ANNs already back in the 1990s [4, 5]. Unfortunately,

progress stalled due to technological and fundamental rea-

sons, which can be broadly classified into intrinsic and

extrinsic problems. Intrinsic problems with optics had been

the large size and poor tolerance to misalignment of opti-

cal components; limited space bandwidth product of spa-

tial light modulators; and lack of nonlinear activation. The

extrinsic problems originated from poor understanding of

AI algorithms and adaptive learning, as well as themeteoric

rise of electronic computing systems.

Given the current limitations of electronic hard-

ware and our increased understanding of AI, the extrin-

sic problems are somewhat alleviated. In parallel, the

advancement of nano-fabrication facilities, and the avail-

ability of sophisticated electromagnetic simulators have

led to the high-volume manufacturing of multi-functional

nano-optics, such as flat meta-optics [6, 7] and integrated

photonic devices [8]. Emerging material systems coupled

with these nano-optical structures enable monolithic pho-

tonic integrated circuits (PIC) analogous to electronic ICs [9].

These innovations in nanophotonics and AI, combined with
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severe limitations of digital implementation of ANNs have

generated strong interest in recent years in recreating optics

assisted ANNs [10–17].

However, thus far, none of the reported works have

demonstrated a clear advantage of optics over digital ANNs

for inference. Most implementations have only shown the

substitution of a small linear part with an optical coun-

terpart [18], while the rest was kept in the digital elec-

tronics. Although there is a clear advantage of optics for

implementing a small sub-system, often the linear part,

the power and latency in a complete ANN include the

transduction of the signal between optical and electronic

domains [19], i.e. the detector readout power, spatial light

modulator power and laser power, many of which are often

neglected. In fact, an analysis considering these energy costs

shows that implementing only one convolutional layer in

optics does not provide any advantage, unless the input

has a very large dimension [19]. However, for many appli-

cations, such large dimensions of the image provide only

a marginal increase in ANN classification accuracy. There

are several recent works that also implemented nonlin-

earity in the optical domain using thermal atoms [16] and

image intensifiers [20]. These approaches, however, also

consume a large amount of power. Additionally, a large body

of works demonstrated classification for extremely sim-

ple “toy” problems, for which no digital benchmark exists

[13, 14]. Comparing the power and latency of an applica-

tion specific optical ANN to a GPU (optimized for universal

operations) is unfair. There are many ways to drastically

reduce the power and latency of a digital ANN, including

replacing matrix multiplication with XNOR operations [21].

Many pruning algorithms also exist to reduce the number of

computations needed for inference. As such, there has been

no clear demonstrationwhere an optics-assistedANN shows

an advantage over a purely digital framework optimized

for solving a specific problem. The current approaches gen-

erally focus on power and speed benefit form inclusion of

optics to achieve similar classification accuracy. However, it

is impossible to exactly define the computational complex-

ity of an ANN; hence the exact calculation of power and

latency in the digital part is dependent on both training and

technology.

Here, we develop a framework to exactly compare

the inference performance of a pure digital ANN against

Figure 1: Schematic of the optical encoder and pure digital neural network. (a) Purely digital ANNs operate on captured images using a lensed sensor.

(b) Instead of using a lens, a designed optics can perform additional linear operations on the captured data. In both cases, the power and the latency

of the sensor are the same. Using the digital computational backend with the same resources (number of layers and neurons), we ensure the same

power and latency, both of which monotonically scale with the dimensionality of the input data (here termed as N) to the digital backend.
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a hybrid optical-digital ANN. In both ANNs, we ensure the

same power and latency, and thus by comparing the classi-

fication accuracy, we can clearly assess the relative advan-

tage. Figure 1 shows a schematic of the two cases: the pure

digital and the hybrid optical-digital. We encode the input

in incoherent light, as the optical frontend of the ANN can

work with ambient light without incurring any additional

energy consumption. In a pure digital case, a lens-based

sensor captures an image of an object under incoherent

light, and then the image is transferred to a digital ANN. For

the hybrid case, we use an engineered optic – namely the

optical encoder, instead of a lens, that captures the image

in a different basis and sends the data to a digital back-

end. Instead of implementing a digital sub-system, such as

convolutional operations in optics, we co-optimize the opti-

cal frontend (implemented via a sub-wavelength diffrac-

tive meta-optics), along with the digital backend using an

“end-to-end” design framework (detail in the Supplemen-

tary Materials S1, S3) [22, 23]. The topology and resources

(i.e., the same number of nodes, layers, and nonlineari-

ties) used in the digital ANN are kept the same in both

cases, though with different weights and biases. Thus, we

ensure that the latency and power consumption in both

cases remain identical.Wenote that the designedmeta-optic

essentially performs a convolutional operation, but with a

significantly larger kernel size compared to standard con-

volutional neural networks. This can be justified by the fact

that any image formation under incoherent illumination

can be modelled as a convolution between the object and

the incoherent point spread function (PSF), if the PSF is

spatially uniform.Whilemeta-optics does not strictly have a

spatially invariant PSF, and such spatial variation is recently

been exploited for convolution [24], this approximation has

worked well for many other imaging applications [22, 25].

Here, we tested the classification accuracy for MNIST

data sets for different values of N , which represent the

binned size of the image captured in the sensor either via

a lens or the optical encoder. As the latency and power

increase with the input dimensionality N of the data sent

to the digital ANN, we found that classification accuracy

increases in both cases, and there is no advantage from an

optical frontend for large N . However, for smaller N , where

the system power and latency are also lower, we found

an increase in validation accuracy (∼10 %) with a hybrid

optical-digital ANN. We experimentally validated our the-

oretical model. Our work clearly demonstrates a photonic

advantage for ANN inference, albeit such an advantage is

observed when overall system performance is lower than

the highest achievable performance.

2 Results

Our digital backend consists of three fully connected layers:

N × 256 (input), 256 × 256 (hidden) and 256 × 10 (output).

The first two layers are each followed by a rectified linear

unit (ReLU) nonlinearity and the output layer has a sig-

moid nonlinearity. For the pure digital case, every image

is converted to an N-pixel image by averaging the pixels.

We chose 8 different N ranging from 1 to 100, to assess

the performance of the system with increasing data input.

We train the digital network by back-propagating the loss

function defined by the cross-entropy between the output

and the ground truth. In simulation, we obtained a vali-

dation classification accuracy of up to ∼98 % (detail in the

Supplementary Materials S2). We note that, in prior works,

to achieve a similar accuracy with the MNIST dataset, sev-

eral layers were used [17], which we attribute to inefficient

training. For the hybrid case, we model the optical frontend

using a sub-wavelength diffractive meta-optics, although

any freeform optical surface could suffice for implemen-

tation. The fabricated optical frontends with different out-

put dimensionalities are shown in Figure 2(a). We train the

meta-optics along with a digital backendwith the same neu-

ral network topology (details in method), following an “end-

to-end” design framework used before for imaging [20]. For

training we assumed the light is incoherent but monochro-

matic. As expected, we observed an increase in classifica-

tion accuracy with increasing N . We also found that for

N > 8× 8, the digital and hybrid ANN demonstrate identical

classification accuracies. However, at a lower value ofN , the

classification accuracy of the hybrid ANN surpasses that of

the digital ANN. Example classification confusion matrices

are shown in Figure 3(a), comparing the experimental vali-

dation accuracies between a hybrid and a digital ANN with

the same input size, N = 3 × 3. Theoretically, we observe

an increase in classification accuracy by up to ∼20 % when

an optical frontend is incorporated. A validation accuracy

comparison chart can be seen on Figure 3(b). We note that

even with a single data-point sent to the digital backend, we

theoretically achieved higher classification accuracy with

our optical frontend. This is because that single input can

assume 256 different values for an 8 bit precision sensor,

which can help with classification. We discovered that if we

use a lower bit resolution instead of an 8 bit resolution in

the output, the classification accuracy drastically declines

for small N.

To validate the design, we fabricated the meta-optics

(detail in the Supplementary S4) and measured their per-

formance experimentally, wherewe projected images of the
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Figure 2: Fabrication and characterization of the meta-optical encoder: (a) Optical microscope images of the meta-optical encoders for different input

sizes. (b) Scanning electron microscope (SEM) image of the optical encoder, region denoted by the red box on device 1 × 1. (c) The experimental input,

sensor signal, and output of the meta-optical encoder.

Figure 3: Performance comparison of the digital and hybrid ANN. (a) Confusion matrices comparing the experimental performances of the hybrid

optical-digital against the pure digital ANNs for the case of N = 3 × 3. (b) Validation classification accuracies of the purely electronic and hybrid

optical-electronic ANNs as a function of N, N being the number of output points being transferred to the computational backend. The error bar

is shown to represent the range of one standard deviation.

MNIST data set using an OLED display in green (detail in

the Supplementary S5). The incoherent green light passes

through the meta-optic, and we capture the data on the sen-

sor with 8 bit precision. We then binned the captured image

to create the N data-points that are passed to the digital

backend. An experimental sample on Figure 2(c) shows the

signal processing of the 3 × 3 encoder. Due to fabrication

imperfections, and misalignments, we retrained the digital

backend (keeping the same topology) using the captured

data. Our experiment matches the theory very well for

N ≥ 3 × 3. We note that the meta-optics optimized for

N = 8 × 8 was damaged, and we could not collect data

on that. At smaller N , the deviation from the theory is

attributed to experimental noise. While a single point can

provide more information to the digital backend, it is

corrupted by the quantization noise, undermining the effect

of the optical encoder andwe obtained similar classification

accuracy, as we would have expected from a pure digi-

tal backend. We have also verified this in simulation: by

reducing the bit resolution and adding more quantization

noise, the classification accuracy degrades more for N = 1

and N = 4.

3 Discussion

By employing an incoherent light source and a meta-optical

frontend, we created a framework, enabling us to com-

pare the performance of a digital ANN to an optics-assisted

ANN in the same footing. While keeping the power and
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latency constant in both cases, we showed that optical

encoding does providemore information to the digital back-

end, resulting in ∼10 % more classification accuracy in the

experiment. We emphasize that to achieve >90 % classifi-

cation accuracy for the hybrid case, it is only necessary to

capture a 3 × 3 image, i.e., nine pixels on the sensor. In

contrast, for the same image size, the classification accuracy

of the pure electronic method remains at approximately

80 %. The power of the hybrid optical ANN can be esti-

mated from the sensor readout power and the power uti-

lized by the digital backend. The sensor readout power is

directly proportional to the number of pixels. For a typ-

ical commercial camera, we estimate the sensor readout

power for a 9-pixel image to be around 18 mW at a speed of

approximately 10 kHz. Given N inputs, the backend needs

to execute a total of approximately
(
5 × 105 + 2 × 103 × N

)

multiply-and-accumulate (MAC) operations with 8 bit pre-

cision. In modern digital system, one MAC operation uses

about ∼1 pJ [20], making the total energy for the digital

backend N = 3 × 3 to be ∼500 nJ. Given our proposed net-

workwill be limited by the sensor readout time, we can esti-

mate the backend power to be ∼5 mW. Thus, our reported
hybrid ANN consumes ∼23 mW power for ∼10 kHz operat-
ing speed. This low energy originates from the fact that our

optical operations are hard coded in an engineered optics.

Additionally, by capturing only a few pixels we drastically

reduce the sensor power. However, the price we pay is that

unlike spatial light modulators, we cannot reconfigure the

frontend. As such, this power should be considered as a

lower limit of the sensor and compute operations forMNIST

datasets. Another benefit of our hybrid network is its sim-

plicity. We only need one meta-optic, which can be directly

integrated into the sensor. Unlike 4f systems [26], or mul-

tiple meta-optics [15], use of a single meta-optic drastically

reduces the size, weight, and packaging complexity of our

encoder.

While our result is primarily applicable to the MNIST

dataset, we believe that it indicates the conditions for which

anoptical frontend is beneficial to increase the performance

of an ANN (more discussion in Supplementary S6). Without

any constraints on latency and power, one can arbitrarily

increase N , and always find a digital solution that is better

than the hybrid option. One way to rationalize this is that

any optical implementation can be modelled digitally and

therefore without any constraint a digital solution can be

found with accuracy in the same order of magnitude or

higher than its optical counterpart. The higher classification

accuracy of optics-assisted ANN in several reports is most

likely a manifestation of poor training of the fully digital

ANN. However, under the constraints of latency or power,

we need to work with an intermediate value of N , where

the optical frontend can provide a more efficient solution,

albeit at overall lower accuracy.
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