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Abstract: Nonlocal and quantum mechanical phenomena
in noble metal nanostructures become increasingly cru-
cial when the relevant length scales in hybrid nanos-
tructures reach the few-nanometer regime. In practice,
such mesoscopic effects at metal—dielectric interfaces can
be described using exemplary surface-response functions
(SRFs) embodied by the Feibelman d-parameters. Here we
show that SRFs dramatically influence quantum electrody-
namic phenomena - such as the Purcell enhancement and
Lamb shift — for quantum light emitters close to a diverse
range of noble metal nanostructures interfacing different
homogeneous media. Dielectric environments with higher
permittivities are shown to increase the magnitude of SRFs
calculated within the specular-reflection model. In parallel,
the role of SRFs is enhanced in noble metal nanostructures
characterized by large surface-to-volume ratios, such as thin
planar metallic films or shells of core—shell nanoparticles,
for which the spill-in of electron wave functions enhances
plasmon hybridization. By investigating emitter quantum
dynamics close to such plasmonic architectures, we show
that decreasing the width of the metal region, or increas-
ing the permittivity of the interfacing dielectric, leads to a
significant change in the Purcell enhancement, Lamb shift,
and visible far-field spontaneous emission spectrum, as an
immediate consequence of SRFs. We anticipate that fitting
the theoretically modelled spectra to experiments could
allow for experimental determination of the d-parameters.
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1 Introduction

Nanoscale light-matter interactions, and the strong cou-
pling of light with quantum emitters (QEs) such as atoms
and molecules, are abundant sources of fundamental physi-
calinsights, while offering applications in fields such as opti-
cal sensing, photocatalysis, and quantum optics [1]-[3]. In
these and other areas, metallic nanostructures that support
plasmons - the collective oscillations of conduction elec-
trons — are sought as light-focusing elements that enhance
the interaction of QEs with external optical fields [4]-[7].
Meanwhile, in a quantum-electrodynamical context, plas-
monic nanostructures are actively explored as subwave-
length optical cavities that control the generation of single
photons [8]-[11], a key resource for future quantum optical
information and communication technologies [12]. Steady
progress in the aforementioned frontier research topics has
relied crucially on the framework of classical electrody-
namics within the local-response approximation (LRA) [13].
However, as the fabrication of plasmonic nanostructures
such as metallic nanoparticles (NPs) becomes increasingly
advanced, such that the feature size and distance between
structures approach the few-nanometer regime, the LRA
can no longer accurately estimate the response of the sys-
tem, as it neglects nonlocal and quantum mechanical cor-
rections in the bulk and at the surface of the metal [13]-[17].

Nonlocal and quantum mechanical phenomena at
metal surfaces have been modelled through a series of
methods such as descriptions of the bulk response through
semi-classical hydrodynamic models [18]-[26] or ab-initio
methods such as time-dependent density-functional the-
ory (TDDFT) [27]-[30]. The standard hydrodynamic Drude
model (HDM) that relies on the Thomas—Fermi theory with
hard-wall boundary conditions describes the motion of the
compressible electron gas as a convective fluid and needs
amendments to account for surface phenomena such as
electron spill-out or spill-in [20], [21], [31], while TDDFT,
constituting a more sophisticated method for modelling
quantum mechanical phenomena in plasmonic nanostruc-
tures, demands huge computational costs and is practically
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restricted to few-atom structures. The mesoscopic regime,
bridging the micro- and macroscopic realms, necessitates a
description that goes beyond the classical LRA and yetis less
computationally demanding than ab-initio approaches [32].

Including surface-response functions (SRFs) [33]-[36]
in the otherwise classical or semiclassical constitutive rela-
tions when solving Maxwell’s equations allows us to take
into account quantum mechanical phenomena when elec-
trons are confined to small structures in the mesoscopic
regime, while still maintaining the simple classical or semi-
classical bulk response functions [37]-[41]. Feibelman d-
parameters are such SRFs that permit the modelling of
surface-enabled Landau damping, nonlocality, and electron
spill-out or spill-in effects to leading order [42]-[44]. The
Feibelman d-parameters, d;, and d”, are associated with an
interface hetween two materials, depending on the intrinsic
properties of these two materials but not on the geometry; d-
parameters characterizing a specific metal—dielectric inter-
face can be applied in electrodynamic simulations of arbi-
trary morphologies. The d-parameters are often computed
using atomistic or ab-initio methods for metal-vacuum
interfaces, an approach that is prohibitively time-intensive
to tabulate for arbitrary metal-dielectric interfaces. Here,
we focus on noble metal interfaces, where d-band screening
and spill-in effects cannot be captured by jellium models
[29]; we thus resort to finding analytical expressions for the
d-parameters using the specular-reflection model (SRM) in
combination with HDM for the longitudinal component of
the dielectric tensor [45], [46].

When positioned near a plasmonic nanostructure, a
quantum emitter (QE), such as a quantum dot or an atom,
will exhibit altered emission properties associated with the
modified local photonic density of states (LDOS) [47]-[50].
In the specific case of a sodium (Na) NP or interface, the
quantum mechanical and nonlocal corrections captured by
SRFs result in clear changes to the light emission spec-
trum of the QE [38], as well as quantum electrodynami-
cal phenomena in the form of the Lamb shift and Purcell
enhancement of the QE [40], [42]. Here, we investigate the
influence of the d-parameters in plasmonic nanostructures
comprised of noble metals such as gold (Au) or silver (Ag).
Beyond their immediate influence on extinction spectra [51],
[52], we show that nonlocal contributions to the emission
properties of a nearby QE increase when the permittivity
of the interfacing dielectric increases, or the surface area
becomes larger compared to the volume of the nanostruc-
ture by - for example - increasing the number of interfaces
when going from a single extended interface to a thin film,
or analogously by substituting a solid spherical NP with a
core—shell NP. In particular, the spill-in of electron density at
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the surface of noble metals can enhance plasmon hybridiza-
tion across thin planar films and the shells of core—shell
NPs. Our results showcase configurations and situations
where the inclusion of quantum mechanical corrections in
the mesoscopic regime is of particular importance. These
large non-classical corrections might allow for experimen-
tal determination of the d-parameters by, e.g., fitting the
theory presented here to experimental results [53].

2 Results and discussion

2.1 Surface response functions for arbitrary
metal-dielectric interfaces

For a particular dielectric-metal interface spanning the
R = (x, y) plane, the associated Feibelman d-parameters can
be obtained regarding the quantum mechanical induced
charge and current density in the metal, p(r) = p(z)e'@R
and j(r) = j(2)e'QR, respectively, with Q being the in-plane
wavevector, from which the parameters are found as [33],
[42], [43]:

[ dzzp™i(z, w)

d@=-g———, (1a)
[ dzp™i(z, w)
[ dz20,j"(z, )
N P M — (1b)

_joo dzd, )" (z, )

In the above expressions, z is taken as the axis normal
to the interface, while the system is assumed isotropic in
the xy plane. An intuitive physical understanding of the per-
pendicular parameter, d , is here apparent, corresponding
to the centroid of the induced charge density as displayed
in the schematic of a metal interfacing a dielectric material
in Figure 1(a), where the equilibrium density of electrons in
the metal, n, is calculated using a quantum infinite-barrier
model and is normalized to the equilibrium density for the
infinite electron gas, n, [45]. The sign of the real part then
differentiates between electron spill-out (Re{d, } > 0) or
the contrary situation of spill-in (Re{d, } < 0) associated
with a high work function. Correspondingly, d, is the cen-
troid of the normal derivative of the in-plane current.

Using these general definitions, one can compute
the Feibelman d-parameters through ab-initio methods,
but this requires a new computation for any inter-
face between two different materials. Alternatively, the
parameters can be computed using SRM, also known
as the semi-classical infinite-barrier (SCIB) model, which
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Figure 1: The effect of Feibelman d-parameters from SRM. (a) Schematic of a QE (e.g., an atom) located a distance h from a metal with permittivity e,
interfacing a dielectric material with permittivity 4. The electron-density profile n(z) (black solid curve) is calculated using a quantum infinite-barrier
model [45], while the induced-charge density (dashed curves, for the two different ¢, indicated in the legend) and the associated perpendicular

d, -parameters qualitatively show the spill-in depending on €. (b) Real (solid curves) and imaginary (dashed curves) parts of the Feibelman

d, -parameter computed from Eq. (4) for dielectric media with permittivity e (indicated by the color-coded legend) interfacing the metal Au with
permittivity €, characterized by the model of Ref. [54]. Panels (c-f) show the Purcell factor I"/T"; and Lamb shift 6 of the emitter as a function of its
transition energy fie when omitting (dashed curves) and including (solid curves) the Feibelman d-parameters in the metal film response; the effects of
separation h (for an emitter in vacuum) and dielectric environment ¢, (for a fixed separation h = 2 nm) are explored in panels (c, d) and (e, f),

respectively, for an emitter with transition dipole momentd = 1e nm.

assumes specular reflection of the conduction electrons
at the interface [51], [52]. This results in the parameters
[45]:

SRM _ _ 2 €m€q /& 1 _1 )

= men—€g) kio|elk, @)  ey] (2a)
0

(2b)

where d; = 0 owing to the fact that the interface is intrin-
sically charge-neutral in the model, €, is the classical or
semi-classical bulk-metal permittivity, €4 the corresponding
permittivity of the dielectric, and ¢, is the longitudinal per-
mittivity of the spatially dispersive metal Finally, o is the
angular frequency of the incident light.

To transparently explore nonlocal effects at arbitrary
noble metal-dielectric interfaces, rather than following an
ab-initio route, we resort to the analytic expressions pro-
vided by bulk free electron models. More specifically, we
employ the Drude model for e, in combination with the
longitudinal permittivity obtained within HDM,

2

_ ) wp 3
en(w) = ey(w) — m, (3a)
wZ
EL(kU w) = eb(a)) - P (3b)

w* +iwy — p?k’

where f « vp contains the dependence on the Fermi veloc-
ity vg, being the characteristic velocity of conduction elec-
trons in the metal. In the high (optical) frequency limit g% =
31)% /5 [26], [55]. Finally, e}, (@) is the background permittivity
that includes all more complicated contributions such as
interband transitions, and is obtained by fitting to experi-
mental data [54], [56].

With these bulk response functions at hand, an analyti-
cal expression for the d-parameters can be found in the SRM
by using Eq. (2a) [57]:

€n€E p € 3/2
M =j—md <b - 1) . 4
€ — €4 (Up €y €m

The magnitude and behavior of the SRFs are investi-
gated by computing d5* analytically for gold interfacing



2744 = M. H.Eriksen et al.: Nonlocal effects in plasmon-emitter interactions

different dielectric materials in Figure 1(b). For all frequen-
cies under consideration here, Re{d} < 0, indicating
electron spill-in for the conduction electrons in gold, whose
work function is relatively high. Such spill-in has previously
been associated with core electron screening in noble met-
als [58], and is at odds with what is typically seen in jellium
metals with lower work functions (e.g., Na), which exhibit
spill-out and therefore a positive perpendicular Feibelman
parameter [42]. Figure 1(b) also reveals that the magnitude
of diRM becomes larger for dielectric media with higher per-
mittivity, resulting in a pronounced increase of the spill-in
at lower frequencies. For instance d"™ approaches d$* ~
—0.35 A at lower frequencies when the dielectric permit-
tivity is eq = 1, but goes towards d*™ ~ —2.8 A for ¢, = 8.
The d5*™ obtained using Eq. (4) are in excellent quantitative
agreement with atomistic simulations of metal films [46],
while also capturing the same degree of spill-in inferred
from recent experiments [36].

2.2 Semi-infinite metal films

The influence of the SRFs can manifest as a change in the
emission properties of a QE positioned near a metal film at
r = (x, y, h), i.e., a distance h from a metallic film extended
in the xy plane, as illustrated schematically in Figure 1(a).
Invoking the macroscopic quantum electrodynamics for-
malism detailed in the SI [59]-[63] for a QE characterized
as a two-level system with transition energy 7e and dipole
moment p, the total QE spontaneous emission rate is

[=I,+ Z%Ezlm{p* - G(r,1) - p}, ©)
where I'y = €3|p|*/37e,hc® is the vacuum decay rate, while
the shift in the bare emitter transition frequency due to the
photonic environment — the Lamb shift — is

(o]

Se = &P/ da)ilm{p* -G, p}, (6
wh E—w @
0

with P denoting the principal value of the integral. The
above expressions depend on the reflected part of the
Green’s tensor ggff at the QE location, which quantifies the
QE self-interaction mediated by the metal-dielectric inter-
face [64]. For a dipole oriented perpendicular to the metal
surface, i.e., p = pz, the nonvanishing Green’s tensor com-
ponent entering Eqgs. (5) and (6) reads as

,Z

ol = L/dk B ko) ™
w,L 4”](3 A ™) kd p\re H

where the Fresnel reflection coefficient for p-polarized light,
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depends on the optical wavevector k; in a medium of per-
mittivity e; for j € {d, m}, with normal component k; , =

\/ €jw*/c* — k,*+1i0* and conserved parallel component
k,, as well as on the SRFs that modify the electromagnetic
boundary conditions at the metal—dielectric interface.

Using the above expressions, we compute the enhance-
ment in spontaneous emission — quantified by the Purcell
factor I' /T, — along with the Lamb shift 6¢ for a QE in a
medium with permittivity e, thatis placed a distance h from
a gold interface. In Figure 1(c) and (d), the Purcell factor
and Lamb shift are respectively presented in calculations
adopting a fixed vacuum permittivity e, = 1atseparations h
indicated in the legend of Figure 1(c) when omitting (dashed
curves) and including (solid curves) SRFs. In the cases
considered here, the SRFs are found to introduce damp-
ing and spectral shifts in prominent plasmonic features
of the Purcell factor and Lamb shift that become increas-
ingly important as the QE is brought extremely close to
the metal—dielectric interface. However, the considered QE
separation distances h > 2 nm ensure that the local Feibel-
man formalism remains valid, while even smaller distances
would motivate the use of either ab-initio computations
or the introduction of wave-vector-dependent d-parameters
[40], [44]. As shown in the SI, this conclusion is supported by
the excellent agreement exhibited by the Purcell factors pre-
dicted using SRFs and their counterparts computed directly
from the SRM by adopting a longitudinal dielectric function
within the HDM, i.e., invoking the same level of theory used
to obtain analytical d$* in Eq. (4), while the Feibelman SRF
formalism advantageously admits closed-form expressions
for the Green’s tensor in the quasistatic regime. The effect
of the surface response in quantum electrodynamical phe-
nomena is further amplified when the permittivity of the
dielectric medium is increased to enhance spill-in of the
interfacing metal electron gas, as revealed in Figure 1(d) and
(e) by the change in Purcell factor and Lamb shift, respec-
tively, for a QE with fixed separation h = 2 nm and varying
environment-permittivity e,. The above results underscore
the importance of nonclassical surface effects in quantum
electrodynamics at a metal-dielectric interface, particu-
larly for dielectric media with high permittivity.

2.3 Surface response of thin films

Thin metal films present larger surface-to-volume ratios
that should enhance SRF contributions in nanoscale
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Figure 2: Enhanced surface effects in the quantum electrodynamic response of thin metal films. (a) Schematic of a QE at distance h from a thin metal
film of width L. In panels (b-g) the calculated Purcell factors and Lamb shifts experienced by a QE with transition dipole moment d = 1 e nm placed
a distance h = 2 nm above a film are shown for cases with (solid curves) and without (dashed curves) incorporating SRFs in the optical response.
Panels (b, c) show results for a QE in vacuum (e, = 1) close to an Au film of varying thickness, on a Si substrate with permittivity e; interpolated from
experimental data [65]. For a film with L = 3 nm, panels (d, e) show the effect of substrate permittivity ¢; when the QE is in vacuum, while panels

(f, g) show the quantum electrodynamic response when the Au film is embedded in a medium with varying permittivity e, = €.

light-matter interactions, while also exhibiting higher
sensitivity to screening from interfacing dielectric media.
In Figure 2 we explore the interaction of a QE in a dielectric
medium ¢; placed a distance h above a thin gold film
with permittivity e, and thickness L on a substrate with
permittivity e, as illustrated schematically in Figure 2(a).
The film reflection coefficients are

(21) (12) ;2(23) pi2k, ,L
ta ta ra e

Ry=r?P4 o ©
« e T 0 gink, L
.., ..,
for « € {s, p} polarization, where r¥/” and /" are reflec-

tion and transmission coefficients, respectively, associated
with light impinging from a medium with permittivity €;
on an interface with permittivity e,, which contain the
dependence on SRFs as detailed in the SI.

We explore the influence of SRFs on the Purcell fac-
tor and Lamb shift in Figure 2(b) and (c), respectively, for
a QE in vacuum (e; = 1) above gold films (e, = €,,) with
varying thickness L deposited on silicon (e; = €g;, obtained
from interpolated experimental data in Ref. [65]) by replac-
ing the single-interface reflection coefficient in Eq. (7) with
that of Eq. (9) obtained with (solid curves) and without
(dashed curves) SRFs. Note that the smallest film thickness
considered is L = 3nm, well above the magnitude of d-
parameters in Figure 1(b) associated with electron spill-in.

In thin metal films, the largest deviation from a classical
description of the photonic environment is predicted for
the thinnest film, where a second plasmonic peak is present
at low energies coming from the plasmonic mode at the
lower Si-Au interface. Interestingly, low-energy features in
the Purcell factor and Lamb shift are enhanced by SRFs
in the thinnest film, presumably due to the large negative
real values of d, that describe spill-in of the metal film
charge density that effectively reduces the thickness of the
free electron gas and boosts plasmonic field confinement.
In contrast, high-energy features in the emission spectra
experience greater surface damping quantified by the imag-
inary part of d,. Similar behavior is seen by considering
substrates with different dielectric permittivities, as shown
in Figure 2(d) and (e), where an additional peak emerges
when substrates with high permittivities are considered.
In Figure 2(f) and (g) we consider the impact of SRFs on
the QE self-interaction when e; = €, and the metal film
is embedded in a high-permittivity dielectric, where plas-
mon hybridization between the two surfaces may yield a
low-energy bonding mode and a higher energy antibonding
mode [66], [67]. For €; = €5 = 8in Figure 2(f) one can see the
splitting associated with the hybridization between the two
surfaces when including d-parameters but not when classi-
cally computing the Purcell factor. This can be interpreted as
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the SRFs effectively decreasing the width of the thin film and
hence increasing plasmon hybridization through electron
spill-in (a negative d,), a phenomenon that is enhanced
when high-permittivity media interface the gold film.

2.4 Spherical metallic nanoparticles

Metallic NPs supporting localized plasmon resonances
are quintessential light-focusing elements in nanophoton-
ics that are conveniently described using Mie theory. As
depicted in Figure 3(a), we consider the light emission

€2‘P;(X1)j1(xg) - eljl(xl)‘I—‘;(xz) + (€, — el)[t_iljl(xl)jl(xz) + c_i”‘P;(xl)‘P;(xz)]
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properties of an emitter characterized by a radially-oriented
dipole moment in a medium with permittivity e, at a dis-
tance r from the center of a spherical metallic NP with
radius a and permittivity €,. The quantum electrodynamic
response is quantified by the reflected part of the Green’s
function

. @) 2
ety = — K hy ")
¢el(r) = 4ﬂzl:1(z+1)(zz+1)a,l |0 40

where

1

T ei0)E ) — Y00 06) + (e, — e|dLh (x)ji0) + ;¥ 06)] ()|

are Mie coefficients that are linearized in the Feibelman
d-parameters, as reported in Ref. [42], normalized accord-
ing to d, =I(l+1d, /a and d, = d,/a, while j, and h®
are spherical Bessel and Hankel-of-the-first-kind functions,
respectively, of the normalized parameter x; = k;a that
also enters the derivatives of the Riccati-Bessel functions
W00 = 0, [xj00)] and &/00 = o, [xK 00|

With the above expressions at hand, the Purcell
enhancement and Lamb shift of a QE near a spherical Au
NP are found for a series of radii in Figure 3(b) and (c). The
d-parameters in Eq. (11) go as Il + 1d /a and d, /a, mean-
ing that their relative contribution increases for smaller NP
radius and higher multipolar modes. As the higher mul-
tipolar modes influence the Green’s function for smaller
distances between the QE and the NP, as seen in Eq. (10), one
would expect the influence of SRFs to increase for smaller
radii, in agreement with the results in Figure 3(b) and (¢). In
addition, when varying the background permittivity rather
than the radius of the NP, as in Figure 3(d) and (f), one
sees that the larger permittivity ensures a larger deviation
from the classical results when including the SRF, an effect
which is particularly noticeable in the Lamb shift. Inciden-
tally, as we show in the SI, the above results obtained using
Mie theory are qualitatively reproduced by incorporating
SRFs in the multipolar polarizability obtained in the qua-
sistatic approximation, which is well-justified when the size
of the NP and the QE-NP separation are small. Remark-
ably, the Feibelman SRFs describing planar metal-dielectric
interfaces can be used in Mie theory to accurately repro-
duce the Purcell factors obtained by numerically integrat-
ing over optical wave vectors in nonlocal electrodynamic

Purcell factor I' /T

>

O

£

3

b

=

=

w

o) /

5] a=8nm N\ ,;/ — =4
S X — 61:8

60 1 2 3 60 1 2 3

Transition energy 7e [eV]  Transition energy %e [eV]

Figure 3: Surface effects in quantum light emission near a spherical
plasmonic nanoparticle. (a) Schematic of a QE located in a medium with
permittivity e, at a distance h from the surface of a spherical NP with
permittivity €, and radius a. Panels (b, c) show the Purcell factor and
Lamb shift of a QE in vacuum (e; = 1) close to Au NPs with radii indicated
in (c), while panels (d, e) show results obtained for a small NP with fixed
radius a = 3 nm and varying background dielectric constant. Results are
obtained for a QE transition dipole moment d = 1 e nm oriented
normally to and placed h = 2 nm from the outer surface of the NP, with
solid and dashed curves indicating results obtained with and without
including SRFs, respectively.
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models of spherical NPs following the combined SRM and
HDM approach of Refs. [51], [52], although the analytical
d-parameter model underestimates nonlocal damping in
cases of extreme NP curvature (see SI).

2.5 Surface response effects in spherical
core-shell nanoparticles

Compared to spherical NPs, the additional metal—dielectric
interface in spherical dielectric core—metal shell NPs
(CSNPs) leads to a more involved dependence on surface
effects in the optical response, as indicated by the lengthy
analytical expressions reported in the SI for both the associ-
ated Mie coefficients and the quasistatic multipolar polar-
izability. For a dipole oriented in the radial direction and
placed a distance h from the center of a CSNP with core
radius a and shell radius b, as illustrated in Figure 4(a),
the Purcell factor and Lamb shift corresponding to the
solutions from Mie theory are plotted in Figure 4(b)-(g).
The sharper spectral features in the classical estimation
of the Purcell factor and Lamb shift are slightly damped
and blueshifted by SRFs, which can also produce qualita-
tive changes around these multipolar modes. Here, the d-
parameters appear in the polarizability as I(l + 1)d, /R for
R € {a, b}, with the higher-order modes tending to exhibit
larger SRF-contributions resulting in larger blueshifting and
damping. Similarly to the spherical NP, the influence of SRFs
is most prominent in higher-order multipolar modes, with

M. H. Eriksen et al.: Nonlocal effects in plasmon-emitter interactions = 2747

the d-parameters corresponding to the different interfaces
contributing more when the radius of the corresponding
interface is small. This can be seen in Figure 4(b) and (c),
where the introduction of d-parameters to the CSNP with
the thinnest shell generally damps and influences the Pur-
cell factor and Lamb shift more as compared to CSNPs
with thicker shells. We remark that qualitatively similar
results are obtained by introducing SRFs in a quasistatic
description of the CSNP response, which conveniently leads
to analytical expressions for the multipolar polarizability
(see SI).

In Figure 4(d)—(g) we explore the impact of SRFs in the
quantum electrodynamic response of the CSNP when either
the core permittivity or the surrounding permittivity are
varied. In the former case, oscillations in the QE Purcell
factor and Lamb shift associated with the core—shell inter-
face are significantly blueshifted and damped in the higher-
frequency regime when introducing the SRF for high-
permittivity cores. In the latter situation, choosing silicon
dioxide (SiO,)—also known as silica—as the core while the
surrounding permittivity is varied, the high-frequency peak
associated with the shell-surrounding interface exhibits
similar but more pronounced damping and spectral shifting
when including SRFs.

The spontaneous emission spectrum of a QE positioned
in a photonic environment can be written in terms of the
Green’s function characterizing the environment as
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Figure 4: Dependence of the Lamb shift and Purcell factor on surface effects in a plasmonic CSNP. (a) Schematic of a QE at distance h from the surface
of a CSNP with core radius a and shell radius b. (b, c) Show, respectively, the Purcell enhancement and Lamb shift of a QE close to a CSNP with a Si core
(€5 from Ref. [65]) and Au shell (b = 25 nm) at varying core-radii as indicated in (c). (d, e) Consider a core with fixed radius of @ = 23 nm and varying
permittivity. Lastly, in panels (f, g) the core is fixed with €; = 2.13 to mimic SiO, and the environment permittivity ¢, is varied. Results are obtained for
a QE with transition dipole moment d = 1 e nm placed normally to and a distance h = 2 nm from the outer NP surface, taking the environment
permittivity e, = 1 exceptin (f, g).
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Figure 5: Detection of surface response effects in spontaneous emission produced near a plasmonic nanostructure. (a) Schematic illustration of a QE
in a medium with permittivity €, at distance h from the outer surface of a CSNP, with shell radius (permittivity) b (¢,) and core radius (permittivity)

a (e5), emitting light that is detected in the far field at a distance r,. Panels (b-g) show the spontaneous emission spectra S(w) detected at ry, =1 pm
for a QE with transition frequency &, dipole moment d = 1 e nm, and intrinsic broadening 7y, = 15 meV (typical for a quantum-dot exciton at room
temperature) positioned at h = 2 nm from a CSNP with Si core (e; from Ref. [65]) of radii a indicated in each column and Au shell with radius

b =10 nm; the upper row of panels (b, d, f) shows contours of S(w) that sweep the detected light energy Zw on horizontal axes and the QE transition
energy on the vertical axes, while the lower row of panels (c, e, g) shows the emission spectrum for specific QE transition energies e - indicated by
the color-coded dashed horizontal lines in the panels immediately above - when including (solid curves) or omitting (dashed curves) SRFs (each set of

curves is appropriately re-scaled for clarity).
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where r, denotes the detector position in the far field.
The above expression is found in the weak excitation
approximation by using the Wiener—Khinchin theorem and
accounting for non-Markovian effects [64], [68], [69]. These
spectra allow for the investigation of possible strong cou-
pling regimes accessible in plasmon-emitter interactions,
and of the impact of SRFs on experimental observables in
these regimes.

The spectrum of the QE computed from Eq. (12) is dis-
played in Figure 5 for a CSNP with an Au shell of fixed outer
radius b = 10 nm and a Si core in Figure 5(b)-(g) with vary-
ing core radii as described in the figure caption. Because
siliconis a dielectric material with alarge permittivity in the
frequency window of interest, any effects originating from
SRFs should be more pronounced than those appearing in
a CSNP with a lower permittivity core material such as
Si0,. The d-parameters introduce a large visible blueshift
in all cases considered in Figure 5, which is attributed
to spill-in of the free electron distribution in the gold
shell.

The spectra displayed in Figure 5 exhibit two peaks at
some QE transition frequencies, which can be seen for e =
1.5eV in Figure 5(g). These peaks are significantly influ-
enced by the SRFs; the amplitude of the spectrum is here
enhanced by the SRFs and the two classical peaks coalesce
into one peak. It is clear from Figure 5 that the inclusion of
d-parameters influences the spectrum dramatically with a
generally more pronounced effect for the thinnest shell in
Figure 5(g). This supports the claim that SRFs are particu-
larly important for thin films or shells, where the surface-
to-volume ratio is larger, allowing the SRFs to play a vital
role in the optical response.

3 Conclusions

Quantum mechanical and nonlocal phenomena at metal-
dielectric interfaces become important in the description of
light—-matter interactions on < 10 nm length scales. These
phenomena impact the quantum electrodynamic response
of an emitter in close proximity to noble metal nanostruc-
tures, as revealed here by the large differences in the Lamb
shift and Purcell factor that emerge when comparing the
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classical response of metallic nanostructures to the nonlocal
response described in the Feibelman d-parameter formal-
ism. In particular, the d-parameters obtained from the SRM
predict a sizeable increase in d; when high-permittivity
media interface the noble metal, which is especially impor-
tant when regarding complicated nanophotonic systems
with multiple interfaces and increased surface-to-volume
ratios. This finding is showcased for metal films and CSNPs
that exhibit pronounced differences in the Lamb shift and
Purcell factor of a nearby QE when thinner films or shells
are considered, such that electron spill-in enhances plas-
mon hybridization. The influence of d-parameters on the
spontaneous emission spectrum of a QE close to a noble
metal nanostructure has similarly been investigated, where
a large difference in the spectrum can be seen in the case
of Si—-Au CSNPs. The QE spectrum may be observed in
experiments, and constitutes a route for experimentally
determining the d-parameters by comparing the experi-
mental results with theoretical modelling, similar to the
strategy proposed in Ref. [53] for determining d-parameters
using electron-beam spectroscopy. The analytical results
presented here facilitate straightforward evaluation of the
spectrum, Purcell factor, and Lamb shift of QEs close to
commonly explored metallic nanostructure morphologies
in both quasistatic and retarded regimes.
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