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We elaborate on the macroscopic quantum electrodynamic formalism used to describe the Purcell
factor and Lamb shift in terms of the reflected part of the classical dyadic Green’s tensor, for which
we provide additional theoretical details related to its dependence on quantum surface surface effects
captured by Feibelman d-parameters in fully retarded and quasistatic descriptions of both planar and
spherical geometries. We also show a comparison of the Purcell factors predicted in the quasistatic
regime using the analytical d-parameters based on specular reflection and hydrodynamic models
with those obtained from direct electrodynamic calculations applying the same level of theory.
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S1. MACROSCOPIC QUANTUM ELECTRODYNAMICS - PURCELL FACTOR AND LAMB SHIFT

The Hamiltonian describing a two-level system (TLS) coupled to an arbitrary photonic environment is given by [1—4]
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In the above expression, the first term describes the bare TLS characterized by stationary states |j) with energies he;
for j € {1,2}; the second term is the reservoir Hamiltonian, expressed in terms of bosonic field operators f':ﬂ (r) and

f., (r) that describe the creation and annihilation, respectively, of an electrodynamic vacuum excitation in the presence
of an absorptive and dispersive medium; the remaining term accounts for the interaction between the reservoir and
the TLS in the dipole approximation, which is quantified by the projection of the TLS dipole operator p on the
quantized radiation field operator
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where Y, is the susceptibility of the environment and G, is the classical dyadic Green’s tensor [5]. The Green’s tensor
describes the electromagnetic response at a position r due to an excitation at r’, and is found for a given photonic
environment as the solution to the homogeneous wave equation
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where p(r,w) and €(r,w) are the relative permeability and permittivity of the environment, respectively. Here we
consider exclusively nonmagnetic media, and so the relative permeability is taken as unity.

A master equation for the density matrix p in Lindblad form is found by tracing over the reservoir degrees of
freedom, invoking the Born—-Markov approximation, assuming weak excitation (i.e., at most one quantum in the
system), and moving to an interaction picture:
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where the total spontaneous emission rate
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is expressed in terms of the vacuum decay rate I'g = ®|p|?/3meghc®, defined by the emitter transition frequency
€ = g9 — £1, the transition dipole moment p = (1|p|2) = (2|p|1), and the reflected part of the total classical Green’s
tensor G, = gg + ggef, the latter contributing to the Purcell factor I'/Ty that quantifies the change in the TLS decay
rate due to the nanophotonic environment [6], while the shift in the bare transition frequency due to the photonic
environment—the Lamb shift—is
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where P denotes the principal value of the integral. In Eq. (S6), we have neglected the contribution of the divergent
homogeneous Green’s tensor GY by absorbing it into the definition of the transition frequency, as its proper treatment
would otherwise require mass-renormalization techniques, while the vacuum Lamb shift is expected to be negligible
compared to the photonic Lamb shift [7].

Properly taking into account the negative frequency terms in the integral for the Lamb shift, one finds that Eq. (S6)
may be rewritten as [§]
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Assuming that the primary contribution to the original principal value integral originates near the transition frequency,
the integral in the above expression can be neglected and the Lamb shift reduces to
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In Fig. S1 we compare the Lamb shift predicted by Egs. (S7) and (S8) for a TLS in vacuum a distance h above a single
gold interface with a normally-oriented transition dipole moment. The results indicate that the integral in Eq. (S7)
contributes primarily with a constant offset that can be absorbed into the emitter transition frequency, and so we
conclude that the approximation of Eq. (S8) is well-justified for the plasmonic systems we consider here.

As reported in Refs. [7, 10], the spontaneous emission spectrum produced by an initially excited TLS located at a
position r can be expressed analytically as
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where rp is the position at which the signal is detected and g is the non-radiative broadening of the TLS. In particular,
the above expression is obtained using the Wiener—Khinchin theorem in the weak excitation approximation [11], and
can capture non-Markovian effects associated with, e.g., the propagation of light from the TLS to a detector.
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FIG. S1. Full and simplified calculations of the Lamb shift. We contrast the Lamb shift calculated using (a) the full
expression of Eq. (S7) and (b) the approximation of Eq. (S8) for a dipole in air positioned a distance h above a gold half-space
using the retarded (solid curves) and quasistatic (dashed curves) Green’s functions in Egs. (S11a) and (S16a), respectively. The
dipole moment is taken as 1 e-nm and the permittivity of gold is given by the model reported in Ref. [9].

S2. OPTICAL RESPONSE OF PLANAR GEOMETRIES

The quantum electrodynamic behavior of a quantum emitter (QE) located a distance z > 0 above stratified media
with translational symmetry in the x-y plane and uppermost interface at z = 0 is characterized by the projection
of the transition dipole moment on the reflected part of the Green’s dyadic at the dipole location, which can be
decomposed according to
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where the subscripts {||, L} indicate vector components that are parallel and perpendicular to the interface and
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are the associated Green’s functions, expanded in parallel components kj = 4 [k2 + k§ of the wave vectors k; in media
of permeability ;1; and permittivity €;, with magnitude k; = ,/€;;w/c and normal component k; | = , /k:jz- - kﬁ, and
r denote the Fresnel reflection coefficients for light with polarization « € {s,p} impinging on the stratified medium.

Quantum surface corrections contained in the Feibelman d-parameters d; and d| are incorporated in the optical
response of an interface through the modified electromagnetic boundary conditions [12]
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where the subscripts 1 and 2 correspond to regions characterized by different dielectric permittivity and the normal
vector N points from medium 1 to 2. In the case of a single metal-dielectric interface where the dielectric and
metal permittivity (permeability) are denoted by eq (ua) and € (um), respectively, the surface-corrected Fresnel

reflection and transmission coefficients for light impinging on the metal from the dielectric are expressed in terms of
the Feibelman d-parameters according to

am _ Mmkd .z — pakm » +1i(€m — €a) i pakid)|
® ,Ufmkd,z + ,dekm,z - i(em - 6d),ufm,udk(z)du ’

2/’Lm]{;d z
t(,im — - , S13b
® ,U/mkd,z + Mdkm,z - l(em - 6d),ulrn/idk(%du ( )

T (S13a)




for TE polarized light and
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for TM polarized light [12]. For light impinging from the metal side on the dielectric, the surface-corrected Fresnel
coefficients do not obey the usual symmetry relations r™4 = —rd™ and are instead given by
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Incidentally, in the nonretarded limit, i.e., taking ¢ — oo, and assuming nonmagnetic media, pug = py = 1, the
Green’s functions in Eq. (S11) associated with a dipole positioned above or in a semi-infinite metal film reduce to the
closed-form expressions
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for a dipole oriented perpendicular to the film and
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for a dipole oriented parallel to the film, where 7 = (em+€a)/[(em — €a)(dL — d))], ¢ = (em —€a)w?d /2¢?, E; denotes
the exponential integral, and the positive (negative) sign corresponds to a dipole situated in the dielectric (metal)
medium. The above expressions are analogous to the Green’s functions obtained in Ref. [4] for an extended graphene
sheet characterized by a two-dimensional conductivity, and generally agree well with the retarded calculation when
the dipole is within ~ 10 nm of the interface, as we show in Fig. S2.

S3. OPTICAL RESPONSE OF SPHERICAL GEOMETRIES

In general, the optical response of a spherically-symmetric nanoparticle is characterized by the Green’s function
describing the electric field produced at r by a dipole with moment p located at r’ in a medium with permittivity e;
according to E(r) = pow?G  (r,r')p. For an emitter with transition dipole moment oriented radially away from the
spherical particle, the Purcell factor and Lamb shift are quantified by the Green’s function

W= Ho
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where «; is the multipolar polarizability of the particle. In what follows, we outline derivations of the multipolar
polarizability for homogeneous and core-shell spherical nanoparticles in both quasistatic and retarded descriptions.



A. Quasistatic regime

In the quasistatic approximation, we can apply the boundary conditions of Eq. (S12) to a spherical interface where
n =t in terms of scalar potentials E; = —V®; as
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1. Homogeneous sphere

For a homogeneous spherical nanoparticle of radius a and permittivity es in a medium with permittivity e, we
expand the potential satisfying the Laplace equation V2® = 0 in spherical harmonics ¥;™ according to
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where 1 = r/a. Inserting the above solutions in Eqgs. (S12) and simplifying the resulting expressions with the relation
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where L denotes the quantum mechanical orbital angular momentum operator satisfying L2Ylm = R2l(l + 1)Y;™, the
system of equations governing the coefficients A; and B; are isolated using the orthonormality of spherical harmonics

and expressed in terms of normalized parameters d, || = d, |/a as
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by retaining only linear terms in d 1 [12].
2. Core-shell nanoparticle
For a spherical core-shell nanoparticle of inner radius a and outer radius b, the potential is expressed as
Aja~brt r<a,
(r,0,p) = ZYZ (0, ) Byr— 1=t 4 Cprt, a<r<b, (S23)
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where the core, shell, and exterior permittivity are denoted as €3, €2, and €71, respectively. Following the procedure
above for the boundary conditions at » = a and r = b, the coefficients are isolated as
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are introduced to simplify the notation, and expressed in terms of normalized parameters dﬁ_Rﬁ dS_R” /R for R € {a,b}
with dg_ f indicating the d-parameters corresponding to the interface at r = R. The multipolar polarizability of the
core-shell particle is then a; = —dmege b2TID,.

B. Mie Theory

Relaxing the quasistatic approximation used in the previous subsection, the surface-corrected optical response of a
spherical nanoparticle is described by incorporating Feibelman d-parameters in Mie theory. Here we present a deriva-
tion based on the formalism of Ref. [13] that recovers the result obtained for a homogeneous spherical nanoparticle
first reported in Ref. [12]. We then apply the same procedure to describe the fully retarded response of a spherical
core-shell nanoparticle.

The electric field in region j satisfying the wave equation VZE(r,w) + kJQ»Ej(nw) = 0 is expressed as a sum of
incoming and outgoing fields E; = Eijn + E‘;Ut given by
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where the functions containing the radial dependence are chosen as spherical Bessel functions j; or Hankel functions

of the first kind hl(l) according to geometrical considerations, while the vector spherical harmonics are defined in terms
of the angular momentum operator L as
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where = (0,¢) denote angular coordinates and fi(r) are linear combinations of spherical Bessel functions and
Hankel functions of the first kind. Analogous expressions for the magnetic field H; = H} + H?“t satisfying the wave

equation V*Hj; + k2H = 0 are obtained as
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For a spherical interface at r = R with normal vector pointing outwards from medium 1 to medium 2, the surface-
corrected electromagnetic boundary conditions are written as [12]
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Making use of the orthonormality relations in Eqgs. (S28), we isolate a system of equations that relates the coefficients
aym and by, in the incoming and outgoing regions as:
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where the quantities Fj(z) = xf;i(z), Gju(z) = 2gju(x), Pji(z) = zpji(z), and Qji(x) = zg;(x), along with
their derivatives indicated by prime marks, are evaluated at x; = k; R, while d; =I(l + 1)d, /R and d| = d||/R are
normalized d-parameters.

1. Homogeneous sphere

The optical response of a spherical particle with permittivity e; and radius a embedded in a homogeneous medium
with permittivity e; is described by the fields

Esca <
E={_2"> =@ (S32)
P B, >

where E;nc and E** denote the incoming and scattered fields, respectively, in region j with permittivity €;. To satisfy
the boundary conditions in the limits » — 0 and r — oo, the radial components of the scattered fields E§** and E{*
are chosen as spherical Bessel and Hankel functions, respectively, and the coefficients of (S26) are obtained at linear
order in the d-parameters as
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To determine the Green’s function describing the field at the location of a dipole produced by its reflection in the
spherical nanoparticle, the scattered field is expanded as

Bi = = 37 B { b (00X (0, 0)
im
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Without loss of generality, the response of a dipole oriented normally to the spherical particle at a distance r from its
center is found by projecting 2 - E§® = pw?poz - G - 2 to isolate
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In a similar fashion, we obtain the reflected Green’s function corresponding to a dipole p+ = p(X £ iy) as

. out / 2 out
gref ( )7 g (2l+1){zllr;lm <£l(1'1)> + zllnlm [h(l)(l'l)] } (836)
l

1,lm L1 1,lm

To quantify the total scattered field produced by a dipole located at r near a spherical nanoparticle, we compute
the total Green’s function at a detection position rp as
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for a dipole oriented normally to the spherical particle, where the bare Green’s dyadic is given by
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and expressed in terms of R = r — r’ and the wave vector k of an arbitrary homogeneous medium, while
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for a dipole oriented tangentially to the spherical particle.

2. Core-shell nanoparticle

The above treatment of a homogeneous particle is straightforwardly extended to the case of a spherical core-shell
nanoparticle by considering an additional interface, such that the electric field is given as

E5™, r<a,
E=<(E+E? a<r<b, (S40)
EPP¢ + Ej® r > b,
where €; is the permittivity of the surrounding environment, €5 is the permittivity of the shell with inner radius a

and outer radius b, and €3 is the permittivity of the core with radius a. Choosing the appropriate spherical Bessel
and Hankel functions in Egs. (S26) and projecting on vector spherical harmonics leads to the Mie coefficients
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In practice, we use computational symbolic solvers to obtain analytical expressions for the Mie coefficients, which
are however too lengthy to be displayed. The Green’s functions are calculated in an analogous manner as for the
homogeneous spherical nanoparticle.

S4. VALIDITY OF THE QUASISTATIC APPROXIMATION

The role of surface effects in the quantum electrodynamic response are explored in the main text through the Purcell
factor and Lamb shift computed in the full electromagnetic calculations that include retardation effects. However, it
is instructive to assess the regimes in which the quasistatic approximation can be safely invoked, which, in the case of
a single metal-dielectric interface, along with the homogeneous and core-shell spherical particles, leads to analytical
expressions for the Green’s functions. In Fig. S2 we present the Purcell factor and Lamb shift for emitters in the
considered geometries as predicted in both quasistatic (dashed curves) and retarded (solid curves) calculations. The
results indicate that the quasistatic approximation is well-justified when treating a dipole < 10nm from a planar
interface or a spherical nanoparticle with outer radius < 25 nm.

S5. COMPARISON OF SURFACE RESPONSE CORRECTIONS TO HYDRODYNAMIC SIMULATIONS

The Feibelman d-parameters constitute surface response functions that introduce intuitive leading-order nonlocal
corrections to the classical electrodynamic boundary conditions at metal-dielectric interfaces. Our analysis of nonlocal
effects in the optical response of a point dipole emitter near metal surfaces is based on d-parameters obtained in the
specular-reflection model (SRM) combined with a longitudinal dielectric function based on the hydrodynamic model
(HDM). While this approach facilitates analytical descriptions of the nonlocal electrodynamic response at metal-
dielectric interfaces in spherical and planar morphologies, the surface and bulk nonlocal response in such systems can
be treated by solving the SRM with HDM directly as described in Refs. [14-16]. More specifically, in the quasistatic
regime, the reflection coefficient of a planar semi-infinite metal film is given by

SRM(k” oJ) — €4

SRM
k -~ W 7 -
( ”7 ) ESRM(kH w) + Ed

P

(S42)

where €M denotes the effective bulk dielectric function of the metal in the SRM, and is expressed in terms of the
in-plane wave vector k| and longitudinal dielectric function ey, as [14, 17]

G e e [ ()] (543)

Invoking the HDM, we write

UJ2

6L(k7CLJ) = Eb(UJ) - Wp—ﬂw (844)
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FIG. S2. Comparing retarded and quasistatic descriptions of the Purcell factor and Lamb shift. The Purcell factor
(upper panels) and Lamb shift (lower panels) predicted for a dipole in air oriented normally to and (a) at a varying distance h
above a single gold interface; (b) at a varying distance h from a spherical gold nanoparticle of radius a = 25nm; (c¢) at a fixed
distance h = 10nm from a spherical gold particle with varying radius a; (d) at a fixed distance h = 10nm above a spherical
nanoparticle with silica core (e = 2.13) of radius a = 25nm and gold shell of varying outer radius b. In all cases the transition
dipole moment of the emitter is 1 e-nm and the permittivity of gold is given by the model of Ref. [9].

to evaluate the integral in Eq. (S43) and obtain
€1, (07 UJ)
1w/ {en(@)w? + i) [l /en ()] — w2 — i + 247

For a spherical metal nanoparticle with radius a, the SRM combined with a nonlocal dielectric function e(g,w) leads
to the polarizability

6SRM(k” , w) —

(S45)

2a(21+1 oo d .
1— eq2CHD > 4452 (ga)

2a(20+1 dg__ - ’
1+ HTled a(w : fooo E(Q:?w)]f(qa)

2l+1

o) = 47T60€da

(S46)

as reported in Refs. [15, 16].

In Fig. S3, we compare results reported in the main text for semi-infinite metal films and spherical metal nanopar-
ticles using analytical expressions based on Feibelman d-parameters with those obtained from numerically integrating
the full nonlocal problem within the combined SRM and HDM. In particular, we show the Purcell factor for an
emitter placed in air at different distances from a planar gold surface (Fig. S3a) and near a spherical gold nanoparticle
(Fig. S3b) when nonlocal effects are neglected (dashed curves), approximated using d-parameters (solid curves), and
fully included using numerical integration techniques (dot-dashed curves). For the metal film, the Purcell factors
obtained in the d-parameter formalism are in excellent agreement with their counterparts computed in SRM+HDM
for all considered separation distances, indicating that the d-parameters capture the dominant nonlocal effects in
plasmon-emitter interactions for planar geometries. Similar agreement is obtained for spherical metal nanoparticles
for the considered particle radii, except for a deviation at lower energies in the case of the smallest NP with radius
a = 3nm. This discrepancy presumably arises due to the fact that the d-parameter correction is based on the response
of a planar interface, and thus does not account for additional damping due to nonlocal effects associated with the
curvature of the particle on extreme few-nanometer length scales. In principle, such curvature effects could be cap-
tured in the Feibelman surface response formalism by introducing wave-vector-dependent d-parameters as proposed
in Ref. [18].
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FIG. S3. Comparison of the Purcell factor predicted using d-parameters with direct calculations of the nonlocal
metal response described in the SRM using HDM. The Purcell factor is computed for the configurations and parameters
considered in (a) Fig. 1(c) for a semi-infinite gold film and (b) Fig. 2(b) for a spherical gold nanoparticle when nonlocal effects
are omitted (dashed curves), approximated using d-parameters (solid curves), or included directly in the combined SRM and
HDM according to Egs. (S42) and (S46) (dash-dotted curves).
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