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We elaborate on the macroscopic quantum electrodynamic formalism used to describe the Purcell
factor and Lamb shift in terms of the reflected part of the classical dyadic Green’s tensor, for which
we provide additional theoretical details related to its dependence on quantum surface surface effects
captured by Feibelman d-parameters in fully retarded and quasistatic descriptions of both planar and
spherical geometries. We also show a comparison of the Purcell factors predicted in the quasistatic
regime using the analytical d-parameters based on specular reflection and hydrodynamic models
with those obtained from direct electrodynamic calculations applying the same level of theory.
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S1. MACROSCOPIC QUANTUM ELECTRODYNAMICS – PURCELL FACTOR AND LAMB SHIFT

The Hamiltonian describing a two-level system (TLS) coupled to an arbitrary photonic environment is given by [1–4]

H = ℏ
2∑

j=1
εj |j⟩ ⟨j| + ℏ

ˆ ∞

0
dω ω

ˆ
d3r f̂ †

ω(r) · f̂ω(r) − ℏ
ˆ ∞

0
dω p̂ ·

[
ÊR(r, ω) + Ê†

R(r, ω)
]
. (S1)

In the above expression, the first term describes the bare TLS characterized by stationary states |j⟩ with energies ℏεj

for j ∈ {1, 2}; the second term is the reservoir Hamiltonian, expressed in terms of bosonic field operators f̂ †
ω(r) and

f̂ω(r) that describe the creation and annihilation, respectively, of an electrodynamic vacuum excitation in the presence
of an absorptive and dispersive medium; the remaining term accounts for the interaction between the reservoir and
the TLS in the dipole approximation, which is quantified by the projection of the TLS dipole operator p̂ on the
quantized radiation field operator

ÊR(r, ω) = i
√

ℏ
πϵ0

ω2

c2

ˆ
d3r′

√
Im{χω(r′)}Gω(r, r′) · f̂ω(r′), (S2)
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where χω is the susceptibility of the environment and Gω is the classical dyadic Green’s tensor [5]. The Green’s tensor
describes the electromagnetic response at a position r due to an excitation at r′, and is found for a given photonic
environment as the solution to the homogeneous wave equation

∇ × 1
µ(r, ω)∇ × Gω(r, r′) − ω2

c2 ϵ(r, ω)Gω(r, r′) = 1δ(r − r′), (S3)

where µ(r, ω) and ϵ(r, ω) are the relative permeability and permittivity of the environment, respectively. Here we
consider exclusively nonmagnetic media, and so the relative permeability is taken as unity.

A master equation for the density matrix ρ in Lindblad form is found by tracing over the reservoir degrees of
freedom, invoking the Born–Markov approximation, assuming weak excitation (i.e., at most one quantum in the
system), and moving to an interaction picture:

∂ρ̂

∂t
= Γ

2 (2 |1⟩ ⟨2| ρ̂ |2⟩ ⟨1| − |2⟩ ⟨2| ρ̂− ρ̂ |2⟩ ⟨2|) − iδε[|2⟩ ⟨2| , ρ̂], (S4)

where the total spontaneous emission rate

Γ = Γ0 + 2µ0

ℏ
ε2Im

{
p∗ · Gref

ε (r, r) · p
}

(S5)

is expressed in terms of the vacuum decay rate Γ0 = ε3|p|2/3πϵ0ℏc3, defined by the emitter transition frequency
ε ≡ ε2 − ε1, the transition dipole moment p ≡ ⟨1|p̂|2⟩ = ⟨2|p̂|1⟩, and the reflected part of the total classical Green’s
tensor Gε = G0

ε + Gref
ε , the latter contributing to the Purcell factor Γ/Γ0 that quantifies the change in the TLS decay

rate due to the nanophotonic environment [6], while the shift in the bare transition frequency due to the photonic
environment—the Lamb shift—is

δε = µ0

πℏ
P
ˆ ∞

0
dω

ω2

ε− ω
Im

{
p∗ · Gref

ω (r, r) · p
}
, (S6)

where P denotes the principal value of the integral. In Eq. (S6), we have neglected the contribution of the divergent
homogeneous Green’s tensor G0

ε by absorbing it into the definition of the transition frequency, as its proper treatment
would otherwise require mass-renormalization techniques, while the vacuum Lamb shift is expected to be negligible
compared to the photonic Lamb shift [7].

Properly taking into account the negative frequency terms in the integral for the Lamb shift, one finds that Eq. (S6)
may be rewritten as [8]

δε = −µ0

ℏ
ε2Re

{
p∗ · Gref

ε (r, r) · p
}

− µ0

πℏ

ˆ ∞

0
dκ

εκ2

κ2 + ε2 Re
{

p∗ · Gref
iκ (r, r) · p

}
. (S7)

Assuming that the primary contribution to the original principal value integral originates near the transition frequency,
the integral in the above expression can be neglected and the Lamb shift reduces to

δε ≈ −µ0

ℏ
ε2Re

{
p∗ · Gref

ε (r, r) · p
}
. (S8)

In Fig. S1 we compare the Lamb shift predicted by Eqs. (S7) and (S8) for a TLS in vacuum a distance h above a single
gold interface with a normally-oriented transition dipole moment. The results indicate that the integral in Eq. (S7)
contributes primarily with a constant offset that can be absorbed into the emitter transition frequency, and so we
conclude that the approximation of Eq. (S8) is well-justified for the plasmonic systems we consider here.

As reported in Refs. [7, 10], the spontaneous emission spectrum produced by an initially excited TLS located at a
position r can be expressed analytically as

S(rD, ω) =
∣∣∣∣ µ0ω

2p∗ · Gω(rD, r)(ω + ε)
ε2 − ω2 − iωγ0 − 2µ0εω2p∗ · Gω(r, r) · p/ℏ

∣∣∣∣2

, (S9)

where rD is the position at which the signal is detected and γ0 is the non-radiative broadening of the TLS. In particular,
the above expression is obtained using the Wiener–Khinchin theorem in the weak excitation approximation [11], and
can capture non-Markovian effects associated with, e.g., the propagation of light from the TLS to a detector.
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FIG. S1. Full and simplified calculations of the Lamb shift. We contrast the Lamb shift calculated using (a) the full
expression of Eq. (S7) and (b) the approximation of Eq. (S8) for a dipole in air positioned a distance h above a gold half-space
using the retarded (solid curves) and quasistatic (dashed curves) Green’s functions in Eqs. (S11a) and (S16a), respectively. The
dipole moment is taken as 1 e·nm and the permittivity of gold is given by the model reported in Ref. [9].

S2. OPTICAL RESPONSE OF PLANAR GEOMETRIES

The quantum electrodynamic behavior of a quantum emitter (QE) located a distance z > 0 above stratified media
with translational symmetry in the x-y plane and uppermost interface at z = 0 is characterized by the projection
of the transition dipole moment on the reflected part of the Green’s dyadic at the dipole location, which can be
decomposed according to

p∗ · Gref
ω · p = Gref

ω,∥
∣∣p∥

∣∣2 + Gref
ω,⊥|p⊥|2, (S10)

where the subscripts {∥,⊥} indicate vector components that are parallel and perpendicular to the interface and

Gref
ω,⊥ = i

4πk2
1

ˆ ∞

0
dk∥

k∥

k1,⊥
k2

∥rp(k∥)ei2k1,⊥z (S11a)

Gref
ω,∥ = i

8πk2
1

ˆ ∞

0
dk∥

k∥

k1,⊥

[
k2

1rs(k∥) − k2
1,⊥rp(k∥)

]
ei2k1,⊥z (S11b)

are the associated Green’s functions, expanded in parallel components k∥ =
√
k2

x + k2
y of the wave vectors kj in media

of permeability µj and permittivity ϵj , with magnitude kj = √
ϵjµjω/c and normal component kj,⊥ =

√
k2

j − k2
∥, and

rα denote the Fresnel reflection coefficients for light with polarization α ∈ {s,p} impinging on the stratified medium.
Quantum surface corrections contained in the Feibelman d-parameters d⊥ and d∥ are incorporated in the optical

response of an interface through the modified electromagnetic boundary conditions [12]

n̂ × (E2 − E1) = −d⊥n̂ × [∇n̂ · (E2 − E1)], (S12a)
n̂ · (D2 − D1) = d∥∇∥[n̂ × (D2 − D1) × n̂], (S12b)

where the subscripts 1 and 2 correspond to regions characterized by different dielectric permittivity and the normal
vector n̂ points from medium 1 to 2. In the case of a single metal-dielectric interface where the dielectric and
metal permittivity (permeability) are denoted by ϵd (µd) and ϵm (µm), respectively, the surface-corrected Fresnel
reflection and transmission coefficients for light impinging on the metal from the dielectric are expressed in terms of
the Feibelman d-parameters according to

rdm
s =

µmkd,z − µdkm,z + i(ϵm − ϵd)µmµdk
2
0d∥

µmkd,z + µdkm,z − i(ϵm − ϵd)µmµdk2
0d∥

, (S13a)

tdm
s = 2µmkd,z

µmkd,z + µdkm,z − i(ϵm − ϵd)µmµdk2
0d∥

, (S13b)
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for TE polarized light and

rdm
p =

ϵmkd,z − ϵdkm,z + i(ϵm − ϵd)(k2
∥d⊥ − kd,zkm,zd∥)

ϵmkd,z + ϵdkm,z − i(ϵm − ϵd)(k2
∥d⊥ + kd,zkm,zd∥) , (S14a)

tdm
p = 2ϵmkd,z

ϵmkd,z + ϵdkm,z − i(ϵm − ϵd)(k2
∥d⊥ + kd,zkm,zd∥) , (S14b)

for TM polarized light [12]. For light impinging from the metal side on the dielectric, the surface-corrected Fresnel
coefficients do not obey the usual symmetry relations rmd

α = −rdm
α , and are instead given by

rmd
s =

µdkm,z − µmkd,z + i(ϵm − ϵd)µmµdk
2
0d∥

µmkd,z + µdkm,z − i(ϵm − ϵd)µmµdk2
0d∥

, (S15a)

tmd
s = 2µdkm,z

µmkd,z + µdkm,z − i(ϵm − ϵd)µmµdk2
0d∥

, (S15b)

rmd
p =

ϵdkm,z − ϵmkd,z + i(ϵm − ϵd)(k2
∥d⊥ − kd,zkm,zd∥)

ϵmkd,z + ϵdkm,z − i(ϵm − ϵd)(k2
∥d⊥ + kd,zkm,zd∥) , (S15c)

tmd
p = 2ϵdkm,z

ϵmkd,z + ϵdkm,z − i(ϵm − ϵd)(k2
∥d⊥ + kd,zkm,zd∥) . (S15d)

Incidentally, in the nonretarded limit, i.e., taking c → ∞, and assuming nonmagnetic media, µd = µm = 1, the
Green’s functions in Eq. (S11) associated with a dipole positioned above or in a semi-infinite metal film reduce to the
closed-form expressions

Gref,±
ω,⊥ = − c2

4πϵ1ω2
d⊥ + d∥

d⊥ − d∥

{(
η ± 1

d⊥ + d∥

)[
1

4z2 + η

2z + η2e−2ηzE1(−2ηz)
]

+ 1
4z3

}
(S16a)

for a dipole oriented perpendicular to the film and

Gref,±
ω,∥ = ζ

8π e−2ζzE1(−2ζz) + 1
2Gref,±

ω,⊥ (S16b)

for a dipole oriented parallel to the film, where η = (ϵm +ϵd)/
[
(ϵm − ϵd)(d⊥ − d∥)

]
, ζ = (ϵm −ϵd)ω2d∥/2c2, E1 denotes

the exponential integral, and the positive (negative) sign corresponds to a dipole situated in the dielectric (metal)
medium. The above expressions are analogous to the Green’s functions obtained in Ref. [4] for an extended graphene
sheet characterized by a two-dimensional conductivity, and generally agree well with the retarded calculation when
the dipole is within ∼ 10 nm of the interface, as we show in Fig. S2.

S3. OPTICAL RESPONSE OF SPHERICAL GEOMETRIES

In general, the optical response of a spherically-symmetric nanoparticle is characterized by the Green’s function
describing the electric field produced at r by a dipole with moment p located at r′ in a medium with permittivity ϵ1
according to E(r) = µ0ω

2Gref
ε (r, r′)p. For an emitter with transition dipole moment oriented radially away from the

spherical particle, the Purcell factor and Lamb shift are quantified by the Green’s function

Gref
ω,⊥ = 1

ω2µ0

∑
l

(
l + 1

4πϵ0ϵ1rl+2

)2
αl, (S17)

where αl is the multipolar polarizability of the particle. In what follows, we outline derivations of the multipolar
polarizability for homogeneous and core-shell spherical nanoparticles in both quasistatic and retarded descriptions.
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A. Quasistatic regime

In the quasistatic approximation, we can apply the boundary conditions of Eq. (S12) to a spherical interface where
n̂ = r̂ in terms of scalar potentials Ej = −∇Φj as

−r̂ × ∇(Φ2 − Φ1) = d⊥r̂ × ∇∥
∂

∂r
(Φ2 − Φ1), (S18a)

∂

∂r
(ϵ2Φ2 − ϵ1Φ1) = d∥∇∥ · [r̂ × ∇(ϵ2Φ2 − ϵ1Φ1) × r̂]. (S18b)

1. Homogeneous sphere

For a homogeneous spherical nanoparticle of radius a and permittivity ϵ2 in a medium with permittivity ϵ1, we
expand the potential satisfying the Laplace equation ∇2Φ = 0 in spherical harmonics Y m

l according to

Φ(r, θ, φ) =
∑
lm

Y m
l (θ, φ) ×

{
Alµ

l, r ≤ a,

µl +Blµ
−l−1, r > a,

(S19)

where µ ≡ r/a. Inserting the above solutions in Eqs. (S12) and simplifying the resulting expressions with the relation

r̂ × ∇ = r̂ × ∇∥ = −θ̂ 1
r sin θ

∂

∂φ
+ φ̂

1
r

∂

∂θ
= − i

ℏaµ
L, (S20)

where L denotes the quantum mechanical orbital angular momentum operator satisfying L2Y m
l = ℏ2l(l + 1)Y m

l , the
system of equations governing the coefficients Al and Bl are isolated using the orthonormality of spherical harmonics
and expressed in terms of normalized parameters d̃⊥,∥ ≡ d⊥,∥/a as

1 + ld̃⊥ −
(
1 + ld̃⊥

)
Al +

[
1 − (l + 1)d̃⊥

]
Bl = 0, (S21a)

lϵ1
[
1 + (l + 1)d̃∥

]
− lϵ2

[
1 + (l + 1)d̃∥

]
Al − ϵ1(l + 1)

(
1 − ld̃∥

)
Bl = 0. (S21b)

The multipolar polarizability αl = −4πϵ0ϵ1a2l+1Bl is then obtained as

αl = 4πϵ0ϵ1a2l+1 l(ϵ2 − ϵ1)
[
1 + ld̃⊥ + (l + 1)d̃∥

]
lϵ2 + (l + 1)ϵ1 − l(l + 1)(ϵ2 − ϵ1)(d̃⊥ − d̃∥)

(S22)

by retaining only linear terms in d̃⊥,∥ [12].

2. Core-shell nanoparticle

For a spherical core-shell nanoparticle of inner radius a and outer radius b, the potential is expressed as

Φ(r, θ, φ) =
∑

l

Y m
l (θ, φ) ×


Ala

−lrl, r ≤ a,

Blr
−1−1 + Clr

l, a < r ≤ b,

b−lrl +Dlb
l+1r−l−1, r > b,

(S23)

where the core, shell, and exterior permittivity are denoted as ϵ3, ϵ2, and ϵ1, respectively. Following the procedure
above for the boundary conditions at r = a and r = b, the coefficients are isolated as

Al = ϵ1ϵ2

(
α(a)δ(a) + β(a)γ(a)

)(
α(b)δ(b) + β(b)γ(b)

)
Fl(a/b)l, (S24a)

Bl = α(a)γ(a)ϵ1(ϵ3 − ϵ2)
(
α(b)δ(b) + β(b)γ(b))

)
Fla

l+1(a/b)l, (S24b)

Cl = −ϵ1
(
ϵ2α

(a)δ(a) + ϵ3β
(a)γ(a)

)(
α(b)δ(b) + β(b)γ(b)

)
Flb

−l, (S24c)

Dl = −
[(
ϵ3β

(a)γ(a) + ϵ2α
(a)δ(a)

)
(ϵ2 − ϵ1)α(b)γ(b) + (ϵ3 − ϵ2)α(a)γ(a)

(
ϵ2α

(b)δ(b) + ϵ1β
(b)γ(b)

)
(a/b)2l+1

]
Fl, (S24d)
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where the quantities α(R) = 1 + ld̃
(R)
⊥ , β(R) = 1 − (l+ 1)d̃(R)

⊥ , γ(R) = l
[
1 + (l + 1)d̃(R)

∥

]
, δ(R) = (l+ 1)

(
1 − ld̃

(R)
∥

)
, and

Fl =
[(
ϵ3β

(a)γ(a) + ϵ2α
(a)δ(a)

)(
ϵ2β

(b)γ(b) + ϵ1α
(b)δ(b)

)
+ (ϵ3 − ϵ2)(ϵ2 − ϵ1)α(a)β(b)γ(a)δ(b)(a/b)2l+1

]−1
(S25)

are introduced to simplify the notation, and expressed in terms of normalized parameters d̃(R)
⊥,∥ = d

(R)
⊥,∥/R for R ∈ {a, b}

with d
(R)
⊥,∥ indicating the d-parameters corresponding to the interface at r = R. The multipolar polarizability of the

core-shell particle is then αl = −4πϵ0ϵ1b2l+1Dl.

B. Mie Theory

Relaxing the quasistatic approximation used in the previous subsection, the surface-corrected optical response of a
spherical nanoparticle is described by incorporating Feibelman d-parameters in Mie theory. Here we present a deriva-
tion based on the formalism of Ref. [13] that recovers the result obtained for a homogeneous spherical nanoparticle
first reported in Ref. [12]. We then apply the same procedure to describe the fully retarded response of a spherical
core-shell nanoparticle.

The electric field in region j satisfying the wave equation ∇2E(r, ω) + k2
j Ej(r, ω) = 0 is expressed as a sum of

incoming and outgoing fields Ej = Ein
j + Eout

j given by

Ein
j (r, ω) =

∑
lm

El

[
bin

j,lmgj,l(kjr)Xlm(θ, φ) + i
kj
ain

j,lm∇ × fj,l(kjr)Xlm(θ, φ)
]
, (S26a)

Eout
j (r, ω) = −

∑
lm

El

[
bout

j,lmqj,l(kjr)Xlm(θ, φ) + i
kj
aout

j,lm∇ × pj,l(kjr)Xlm(θ, φ)
]
, (S26b)

where the functions containing the radial dependence are chosen as spherical Bessel functions jl or Hankel functions
of the first kind h(1)

l according to geometrical considerations, while the vector spherical harmonics are defined in terms
of the angular momentum operator L as

Xlm(θ, φ) = 1√
l(l + 1)

LY m
l (θ, φ) (S27)

and satisfy the orthonormality relations [13]˛
dΩX∗

l′m′(θ, φ) · [fl(r)Xlm(θ, φ)] = fl(r)δl′lδm′m, (S28a)
˛
dΩX∗

l′m′(θ, φ) · [∇ × fl(r)Xlm(θ, φ)] = 0, (S28b)
˛
dΩr × X∗

l′m′(θ, φ) · [fl(r)Xlm(θ, φ)] = 0, (S28c)
˛
dΩr × X∗

l′m′(θ, φ) · [∇ × fl(r)Xlm(θ, φ)] =
[
d

dr
rfl(r)

]
δl′lδm′m. (S28d)

where Ω ≡ (θ, φ) denote angular coordinates and fl(r) are linear combinations of spherical Bessel functions and
Hankel functions of the first kind. Analogous expressions for the magnetic field Hj = Hin

j + Hout
j satisfying the wave

equation ∇2Hj + k2
j H = 0 are obtained as

Hin
j (r, ω) = 1

Zj

∑
lm

El

[
ain

j,lmfj,l(kjr)Xlm(θ, φ) − i
kj
bin

j,lm∇ × gj,l(kjr)Xlm(θ, φ)
]
, (S29a)

Hout
j (r, ω) = − 1

Zj

∑
lm

El

[
aout

j,lmpj,l(kjr)Xlm(θ, φ) − i
kj
bout

j,lm∇ × qj,l(kjr)Xlm(θ, φ)
]
. (S29b)

For a spherical interface at r = R with normal vector pointing outwards from medium 1 to medium 2, the surface-
corrected electromagnetic boundary conditions are written as [12](

Ein
2,Ω + Eout

2,Ω − Ein
1,Ω − Eout

1,Ω
)∣∣

r=R
= −d⊥ ∇Ω

(
Ein

2,r + Eout
2,r − Ein

1,r − Eout
1,r

)∣∣
r=R

, (S30a)(
Hin

2,Ω + Hout
2,Ω − Hin

1,Ω − Hout
1,Ω

)∣∣
r=R

= iωd∥
(
Din

2,Ω + Dout
2,Ω − Din

1,Ω − Dout
1,Ω

)
× n̂

∣∣
r=R

. (S30b)
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Making use of the orthonormality relations in Eqs. (S28), we isolate a system of equations that relates the coefficients
alm and blm in the incoming and outgoing regions as:

bin
2,lmg2,l(x2) − bout

2,lmq2,l(x2) = bin
1,lmg1,l(x1) − bout

1,lmq1,l(x1), (S31a)

1
k2

{
ain

2,lm

[
F ′

2,l(x2) + d̄⊥f2,l(x2)
]

− aout
2,lm

[
P ′

2,l(x2) + d̄⊥p2,l(x2)
]}

= 1
k1

{
ain

1,lm

[
F ′

1,l(x1) + d̄⊥f1,l(x1)
]

− aout
1,lm

[
P ′

1,l(x1) + d̄⊥p1,l(x1)
]}
, (S31b)

1
Z2

{
ain

2,lm

[
f2,l(x2) + d̄∥F

′
2,l(x2)

]
− aout

2,lm

[
p2,l(x2) + d̄∥P

′
2,l(x2)

]}
= 1
Z1

{
ain

1,lm

[
f1,l(x1) + d̄∥F

′
1,l(x1)

]
− aout

1,lm

[
p1,l(x1) + d̄∥P

′
1,l(x1)

]}
, (S31c)

1
k2Z2

{
bin

2,lm

[
d̄∥x

2
2g2,l(x2) −G′

2,l(x2)
]

+ bout
2,lm

[
Q′

2,l(x2) − d̄∥x
2
2q2,l(x2)

]}
= 1
k1Z1

{
bin

1,lm

[
d̄∥x

2
1g1,l(x1) −G′

1,l(x1)
]

+ bout
1,lm

[
Q′

1,l(x1) − d̄∥x
2
1q1,l(x1)

]}
, (S31d)

where the quantities Fj,l(x) ≡ xfj,l(x), Gj,l(x) ≡ xgj,l(x), Pj,l(x) ≡ xpj,l(x), and Qj,l(x) ≡ xqj,l(x), along with
their derivatives indicated by prime marks, are evaluated at xj ≡ kjR, while d̄⊥ ≡ l(l + 1)d⊥/R and d̄∥ ≡ d∥/R are
normalized d-parameters.

1. Homogeneous sphere

The optical response of a spherical particle with permittivity ϵ2 and radius a embedded in a homogeneous medium
with permittivity ϵ1 is described by the fields

E =
{

Esca
2 , r ≤ a,

Einc
1 + Esca

1 , r > a,
(S32)

where Einc
j and Esca

j denote the incoming and scattered fields, respectively, in region j with permittivity ϵj . To satisfy
the boundary conditions in the limits r → 0 and r → ∞, the radial components of the scattered fields Esca

2 and Esca
1

are chosen as spherical Bessel and Hankel functions, respectively, and the coefficients of (S26) are obtained at linear
order in the d-parameters as

aout
2,lm

ain
1,lm

=
√
ϵ1ϵ2

[
f1,l(x1)ξ′

l(x1) − h
(1)
l (x1)F ′

1,l(x1)
]

ϵ1h(1)(x1)Ψ′
l(x2) − ϵ2jl(x2)ξ′

l(x1) + (ϵ1 − ϵ2)
[
d̄⊥h

(1)
l (x1)jl(x2) + d̄∥ψ

′
l(x2)ξ′

l(x1)
] , (S33a)

bout
2,lm

bin
1,lm

=
G′

1,l(x1)h(1)(x1) − g1,l(x1)ξ′
l(x1)

jl(x2)ξ′
l(x1) − h(1)(x1)ψ′

l(x2) − d̄∥h(1)(x1)jl(x2)(x2
1 − x2

2)
, (S33b)

aout
1,lm

ain
1,lm

=
ϵ2F

′
1,l(x1)jl(x2) − ϵ1f1,l(x1)ψ′

l(x2) + (ϵ2 − ϵ1)(d̄⊥f1,l(x1)jl(x2) + d̄∥F
′
1,l(x1)ψ′

l(x2))
ϵ2jl(x2)ξ′

l(x1) − ϵ1h(1)(x1)ψ′
l(x2) + (ϵ2 − ϵ1)(d̄⊥h(1)(x1)jl(x2) + d̄∥ψ

′
l(x2)ξ′

l(x1))
, (S33c)

bout
1,lm

bin
1,lm

=
g1,l(x1)ψ′

l(x2) −G′
1,l(x1)jl(x2) − d̄∥g1,l(x1)jl(x2)

(
x2

2 − x2
1
)

h(1)(x1)ψ′
l(x2) − jl(x2)ξ′

l(x1) − d̄∥jl(x2)h(1)(x1)(x2
2 − x2

1)
. (S33d)

To determine the Green’s function describing the field at the location of a dipole produced by its reflection in the
spherical nanoparticle, the scattered field is expanded as

Esca
1 = −

∑
lm

El

{
bout

1,lmh
(1)
l (x1)Xlm(θ, φ)+

+
aout

1,lm

k1r2

[
iξ′

l(x1)r × Xlm(θ, φ) −
√
l(l + 1)h(1)

l (x1)rY m
l (θ, φ)

]}
. (S34)
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Without loss of generality, the response of a dipole oriented normally to the spherical particle at a distance r from its
center is found by projecting ẑ · Esca

1 = pω2µ0ẑ · Gref
ω · ẑ to isolate

Gref
ω,⊥(r) = − ik1

4π
∑

l

l(l + 1)(2l + 1)
aout

1,lm

ain
1,lm

[
h

(1)
l (k1r)
k1r

]2

. (S35)

In a similar fashion, we obtain the reflected Green’s function corresponding to a dipole p± = p(x̂ ± iŷ) as

Gref
ω,±(r) = − ik1

8π
∑

l

(2l + 1)
{
aout

1,lm

ain
1,lm

(
ξ′

l(x1)
x1

)2
+
bout

1,lm

bin
1,lm

[
h

(1)
l (x1)

]2
}
. (S36)

To quantify the total scattered field produced by a dipole located at r near a spherical nanoparticle, we compute
the total Green’s function at a detection position rD as

Gω,⊥(rD, r) = G(0)
ω,⊥ − ik1

4π
∑

l

l(l + 1)(2l + 1)
aout

1,lm

ain
1,lm

h
(1)
l (k1r)
k1r

h
(1)
l (k1rD)
k1rD

, (S37)

for a dipole oriented normally to the spherical particle, where the bare Green’s dyadic is given by

G(0)
ω (r, r′) = eikR

4πR

[(
1 + ikR− 1

k2R2

)
1 + 3 − 3ikR− k2R2

k2R4 R ⊗ R
]

(S38)

and expressed in terms of R = r − r′ and the wave vector k of an arbitrary homogeneous medium, while

Gω,±(rD, r) = G(0)
ω,±(rD, r) − ik1

8π
∑

l

(2l + 1)
[
aout

1,lm

ain
1,lm

ξ′
l(k1r)
k1r

ξ′
l(k1rD)
k1rD

+
bout

1,lm

bin
1,lm

h
(1)
l (k1r)h(1)

l (k1rD)
]

(S39)

for a dipole oriented tangentially to the spherical particle.

2. Core-shell nanoparticle

The above treatment of a homogeneous particle is straightforwardly extended to the case of a spherical core-shell
nanoparticle by considering an additional interface, such that the electric field is given as

E =


Esca

3 , r ≤ a,

Einc
2 + Esca

2 , a < r ≤ b,

Einc
1 + Esca

1 , r > b,

(S40)

where ϵ1 is the permittivity of the surrounding environment, ϵ2 is the permittivity of the shell with inner radius a
and outer radius b, and ϵ3 is the permittivity of the core with radius a. Choosing the appropriate spherical Bessel
and Hankel functions in Eqs. (S26) and projecting on vector spherical harmonics leads to the Mie coefficients

bout
2,lmh

(1)
l (k2a) − bin

2,lmjl(k2a) = bout
3,lmjl(k3a), (S41a)

aout
2,lm

[
ξ′

l(k2a) + d̄ 3,2
⊥ h

(1)
l (k2a)

]
− ain

2,lm

[
ψ′

l(k2a) + d̄ 3,2
⊥ jl(k2a)

]
=

√
ϵ2
ϵ3
aout

3,lm

[
ψ′

l(k3a) + jl(k3a)d̄ 3,2
⊥

]
, (S41b)

aout
2,lm

[
h

(1)
l (k2a) + d̄ 3,2

∥ ξ′
l(k2a)

]
− ain

2,lm

[
jl(k2a) + d̄ 3,2

∥ ψ′
l(k2a)

]
=

√
ϵ3
ϵ2
aout

3,lm

[
jl(k3a) + d̄ 3,2

∥ ψ′
l(k3a)

]
, (S41c)

bout
2,lm

[
ξ′

l(k2a) − d̄ 3,2
∥ (k2a)2h

(1)
l (k2a)

]
− bin

2,lm

[
ψ′

l(k2a) − d̄ 3,2
∥ (k2a)2jl(k2a)

]
= bout

3,lm

[
ψ′

l(k3a) − d̄ 3,2
∥ (k3a)2jl(k3a)

]
, (S41d)
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bout
1,lmh

(1)
l (k1b) − bin

1,lmg1,l = bout
2,lmh

(1)
l (k2b) − bin

2,lmjl(k2b), (S41e)

aout
1,lm

[
ξ′

l(k1b) + d̄ 2,1
⊥ h

(1)
l (k1b)

]
− ain

1,lm

[
F ′

1,l(k1b) + d̄ 2,1
⊥ f1,l(k1b)

]
=

√
ϵ1√
ϵ2

{
aout

2,lm

[
ξ′

l(k2b) + h
(1)
l (k2b)d̄ 2,1

⊥

]
− ain

2,lm

[
ψ′

l(k2b) + d̄ 2,1
⊥ jl(k2b)

]}
, (S41f)

aout
1,lm

[
h

(1)
l (k1b) + d̄ 2,1

∥ ξ′
l(k1b)

]
− ain

1,lm

[
f1,l(k1b) + d̄ 2,1

∥ F ′
1,l(k1b)

]
=

√
ϵ2√
ϵ1

{
aout

2,lm

[
h

(1)
l (k2b) + d̄ 2,1

∥ ξ′
l(k2b)

]
− ain

2,lm

[
jl(k2b) + d̄ 2,1

∥ ψ′
l(k2b)

]}
, (S41g)

bout
1,lm

[
ξ′

l(k1b) − d̄ 2,1
∥ (k1b)2h

(1)
l (k1b)

]
− bin

1,lm

[
G′

1,l(k1b) − d̄ 2,1
∥ (k1b)2g1,l(k1b)

]
= bout

2,lm

[
ξ′

l(k2b) − d̄ 2,1
∥ (k2b)2h

(1)
l (k2b)

]
− bin

2,lm

[
ψ′

l(k2b) − d̄ 2,1
∥ (k2b)2jl(k2b)

]
. (S41h)

In practice, we use computational symbolic solvers to obtain analytical expressions for the Mie coefficients, which
are however too lengthy to be displayed. The Green’s functions are calculated in an analogous manner as for the
homogeneous spherical nanoparticle.

S4. VALIDITY OF THE QUASISTATIC APPROXIMATION

The role of surface effects in the quantum electrodynamic response are explored in the main text through the Purcell
factor and Lamb shift computed in the full electromagnetic calculations that include retardation effects. However, it
is instructive to assess the regimes in which the quasistatic approximation can be safely invoked, which, in the case of
a single metal-dielectric interface, along with the homogeneous and core-shell spherical particles, leads to analytical
expressions for the Green’s functions. In Fig. S2 we present the Purcell factor and Lamb shift for emitters in the
considered geometries as predicted in both quasistatic (dashed curves) and retarded (solid curves) calculations. The
results indicate that the quasistatic approximation is well-justified when treating a dipole ≲ 10 nm from a planar
interface or a spherical nanoparticle with outer radius ≲ 25 nm.

S5. COMPARISON OF SURFACE RESPONSE CORRECTIONS TO HYDRODYNAMIC SIMULATIONS

The Feibelman d-parameters constitute surface response functions that introduce intuitive leading-order nonlocal
corrections to the classical electrodynamic boundary conditions at metal-dielectric interfaces. Our analysis of nonlocal
effects in the optical response of a point dipole emitter near metal surfaces is based on d-parameters obtained in the
specular-reflection model (SRM) combined with a longitudinal dielectric function based on the hydrodynamic model
(HDM). While this approach facilitates analytical descriptions of the nonlocal electrodynamic response at metal-
dielectric interfaces in spherical and planar morphologies, the surface and bulk nonlocal response in such systems can
be treated by solving the SRM with HDM directly as described in Refs. [14–16]. More specifically, in the quasistatic
regime, the reflection coefficient of a planar semi-infinite metal film is given by

rSRM
p (k∥, ω) =

ϵSRM(k∥, ω) − ϵd

ϵSRM(k∥, ω) + ϵd
, (S42)

where ϵSRM denotes the effective bulk dielectric function of the metal in the SRM, and is expressed in terms of the
in-plane wave vector k∥ and longitudinal dielectric function ϵL as [14, 17][

ϵSRM(k∥, ω)
]−1 =

2k∥

π

ˆ ∞

0

dk⊥

k2
∥ + k2

⊥

[
ϵL

(√
k2

∥ + k2
⊥, ω

)]−1
. (S43)

Invoking the HDM, we write

ϵL(k, ω) = ϵb(ω) −
ω2

p

ω2 + iωγ − β2k2 (S44)
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1 b
3

ϵ ϵ
ϵ

2

h

h

= 25 nma

h = 10 nm

a

h = 10 nm

a= 25 nm

FIG. S2. Comparing retarded and quasistatic descriptions of the Purcell factor and Lamb shift. The Purcell factor
(upper panels) and Lamb shift (lower panels) predicted for a dipole in air oriented normally to and (a) at a varying distance h
above a single gold interface; (b) at a varying distance h from a spherical gold nanoparticle of radius a = 25 nm; (c) at a fixed
distance h = 10 nm from a spherical gold particle with varying radius a; (d) at a fixed distance h = 10 nm above a spherical
nanoparticle with silica core (ϵ = 2.13) of radius a = 25 nm and gold shell of varying outer radius b. In all cases the transition
dipole moment of the emitter is 1 e·nm and the permittivity of gold is given by the model of Ref. [9].

to evaluate the integral in Eq. (S43) and obtain

ϵSRM(k∥, ω) = ϵL(0, ω)
1 − ω2

pβk∥/
{
ϵb(ω)(ω2 + iγω)

√[
ω2

p/ϵb(ω)
]

− ω2 − iγω + β2k2
∥

} . (S45)

For a spherical metal nanoparticle with radius a, the SRM combined with a nonlocal dielectric function ϵ(q, ω) leads
to the polarizability

αl = 4πϵ0ϵda2l+1
1 − ϵd

2a(2l+1)
π

´∞
0

dq
ϵ(q,ω)j

2
l (qa)

1 + l+1
l ϵd

2a(2l+1)
π

´∞
0

dq
ϵ(q,ω)j

2
l (qa)

, (S46)

as reported in Refs. [15, 16].
In Fig. S3, we compare results reported in the main text for semi-infinite metal films and spherical metal nanopar-

ticles using analytical expressions based on Feibelman d-parameters with those obtained from numerically integrating
the full nonlocal problem within the combined SRM and HDM. In particular, we show the Purcell factor for an
emitter placed in air at different distances from a planar gold surface (Fig. S3a) and near a spherical gold nanoparticle
(Fig. S3b) when nonlocal effects are neglected (dashed curves), approximated using d-parameters (solid curves), and
fully included using numerical integration techniques (dot-dashed curves). For the metal film, the Purcell factors
obtained in the d-parameter formalism are in excellent agreement with their counterparts computed in SRM+HDM
for all considered separation distances, indicating that the d-parameters capture the dominant nonlocal effects in
plasmon-emitter interactions for planar geometries. Similar agreement is obtained for spherical metal nanoparticles
for the considered particle radii, except for a deviation at lower energies in the case of the smallest NP with radius
a = 3 nm. This discrepancy presumably arises due to the fact that the d-parameter correction is based on the response
of a planar interface, and thus does not account for additional damping due to nonlocal effects associated with the
curvature of the particle on extreme few-nanometer length scales. In principle, such curvature effects could be cap-
tured in the Feibelman surface response formalism by introducing wave-vector-dependent d-parameters as proposed
in Ref. [18].
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(a) (b)

h

a
h

FIG. S3. Comparison of the Purcell factor predicted using d-parameters with direct calculations of the nonlocal
metal response described in the SRM using HDM. The Purcell factor is computed for the configurations and parameters
considered in (a) Fig. 1(c) for a semi-infinite gold film and (b) Fig. 2(b) for a spherical gold nanoparticle when nonlocal effects
are omitted (dashed curves), approximated using d-parameters (solid curves), or included directly in the combined SRM and
HDM according to Eqs. (S42) and (S46) (dash-dotted curves).
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