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Supplementary Note 1: MOON training algorithms.
To train the MOON weights while being aware of hardware noises, we adopt a hardware-aware training method where the weights are quantized mapped to the measured MOMZI responses. For each neural network layer, no matter Linear or Convolution, we map it to a general matrix multiplication operation. For each length- vector product , we map  and  to the real chip measurement results during forward propagation,


   Eq. (S1)
where  is the -bit quantization function,  is the look-up tanble (LUT) with 2kb entries that mapps weights and inputs to the real chip measurement results, and  is a fitted proxy of  that enables gradient backpropagation to  and . Parameters  are regressed from the curve fitting.
During backpropagation, the gradients are as follows:

                Eq. (S2)

We also inject Gaussian noises  to MOMZI output to improve the noise robustness of the model. Output deviation  is input-dependent based on Fig. 5(b), i.e., . In this way, we fully consider physical chip responses during training to close the gap of simulation and on-chip deployment accuracy.








Supplementary Note 2: Parameter tables for the delay, propagation loss, and footprint estimation
[bookmark: _Hlk106657388]Table. S1. Device parameters used in our performance estimation based on AIM photonics’ PDK1.
	[bookmark: _Hlk81261500]Optical component
	Length (μm)
	Insertion loss (dB)

	High-speed EO MZI ()
	1600
	3

	High-speed plasmonic EO MZI2
	~220a
	11.2

	Low-speed TO MZI ()
	550
	1

	Microring-based filter
	16
	0.25



a. Based on the layout picture of the MZI in the reference (~200 . The high-speed phase shifter part is only 15 in length, so the size of the modulator can be further optimized with more compact directional couplers.

Table. S2. Parameters to calculate the performance of -op MOMZI-PTC.
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Supplementary Note 3: Energy efficiency. 
The power consumption of n-input, m-output MOMZI-PTC for computing is contributed by lasers, weight configuration, and conversion between electrons and photons, which is obtained by:
              Eq. (S3)
The parameter table for modeling Eq. (S1) is provided in Table. S3. In Eq. (S3),   is the laser power.  represents the energy consumption of modulators,  and  includes the power consumption for photodetection, amplification, and analog-to-digital conversion.  is the operating speed of modulators, as determined by the total delay of the MOMZI-ONN. In the MOMZI-ONN,  is the static power to tune the MOMZI to a bias point. Using thermal phase shifters for bias tuning, . By utilizing energy-efficient active optical components based on nano-opto-electro-mechanical systems or phase change materials3,4, we can eliminate the power consumption for phase maintenance. To carrier-depletion-based silicon MZI modulators,  can achieve ~146 fJ/bit. Using energy-efficient plasmonic-on-silicon modulators ,  fJ/bit. One DAC’s energy consumption can be estimated by 5:
                                                     Eq. (S4)
where  is the DAC figure of merit,  is the DAC resolution,  is the sampling frequency,  is the bit rate. In our estimation,   fJ/step in a 7-nm microprocessor6,   bit, .
The propagation loss, the photodetectors' minimum detectable power, and the outputs' precision dictate the laser power. The total laser power can then be calculated by the following equation7:
                             (Eq. S5)
where ℎ𝜈 is the photon energy at 1.55 μm,  is the wall-plug efficiency of the laser8,  is the number of wavelengths used in the MOMZI-PTC. The precision of output signals is  bits.  is the capacitance of the photodetector while  is the operating voltage. Note that  in some zero-biased energy-efficient photodetectors9,10,  is the baud rate of the intput signals. In this work, we choose  Baud/s and use a  GSPS ADC for reading the output.


Table. S3. Energy consumption of a k-point  MOMZI-PTC – modeling parameters
	Expression
	Value

	
	~146 fJ/bit11 
(0.1 fJ/bit after scaling)2

	
	 (PDK)
0 after scaling
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	 fJ/step 6
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	(10 GSPS)
 
	39 mW/channel 12

	
	0.52 fJ/level13 (1.3 mW/channel)
after scaling
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