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[bookmark: _Hlk139287522][bookmark: _Hlk139295079]Text S1 Transmission Jones Matrix of Metasurfaces

In this section, we will investigate the physical mechanisms underlying the functionality of metasurface structures based on linear polarization analysis. The linear polarization transmission Jones matrix can be represented as . Accordingly, the linear Jones matrix of the metasurface can be expressed as:





Here,  represents the rotation matrix, and  and represent the transmission coefficients of the electric field propagating along the x and y axes, respectively. Txx and Tyy denote the amplitudes, while φxx and φyy represent the phases of the electric field along the x and y axes, respectively. The rotation angle of the unit cell structure is denoted as θ. By calculation, the expression of Jones matrix can be obtained as 



               (S1)








Let  and . We know that and  Therefore, we have ,,,and . Assuming the transmission amplitudes of the unit cell are Txx=Tyy=1, the transmitted field distribution can be expressed as Equation (S2) when the incident wave is Ein



                     (S2)


According to Equation (S2), we know that Eout1 is independent of the rotation angle θ of the metasurface structure, and the polarization distribution of the transmitted field is the same as that of the incident field. The rotation angle θ of the metasurface structure introduces a geometric phase in Eout2, resulting in a change in the polarization distribution of the transmitted field. When LCP is incident, a geometric phase of 2θ is introduced, and the transmitted field becomes RCP. When RCP is incident, a geometric phase of −2θ is introduced, and the transmitted field becomes LCP.
[bookmark: _Hlk138193961]The physical mechanism for achieving the desired functionalities is investigated based on circular polarization analysis of metasurface structures. In this scenario, the circular transmission coefficients “co” and “cross” represent the relative circular polarization (CP) states. The Jones matrix of the metasurface can be expressed as：



            (S3)

Combining equations (S1) and (S3), we obtain:




[bookmark: _Hlk138928979]Where, .
[bookmark: _Hlk144730074]Text S2 Design Principles of Spin-Decoupling Structures
We require the co-polarization component tco to be zero for the spin-coupling metasurface structure to achieve independent polarization distributions in the cross-polarization channel. This can be achieved by introducing a propagation phase through variations in the size of anisotropic meta-atoms, such that the phase difference ∆φ1=kπ(k=±1,±2,±3…). We select ∆φ1=π to design the spin-coupling structure. In this case, the transmitted field can be represented as:



               (S4)
Where TLR, TRL, φLR, and φRL represent the transmission amplitudes and phases. The first subscript denotes the polarization state of the transmitted wave, and the second subscript indicates the incident polarization. According to Equation (S1), we can infer that in this case Ecross=Eout2.



              (S5)
Combining equations Equation (S4) and (S5), we can obtain φLR=φxx+2θ and φRL=φxx−2θ. Furthermore, considering the propagation phase difference of the spin-decoupling structure, ∆φ1=φxx−φyy=π, we can derive the design method for anisotropic meta-units on the metasurface.


	
[bookmark: _Hlk138877762]Text S3 Design Principles of Isotropic Structures
[bookmark: _Hlk138929193][bookmark: _Hlk138929145]To achieve independent polarization distribution in the co-polarization channel, it is necessary to set the cross-polarization component tcross of the isotropic structure to 0. According to Equation (S1), we can infer that in this case Eco=Eout1. This can be achieved by modifying the dimensions of the anisotropic meta-atoms to introduce a propagation phase and make the phase difference ∆φ2=2kπ,(k=0, ±1, ±2, …). In this study, we choose ∆φ2=0 to design an isotropic structure Eco=Eout1. Consequently, the transmitted field can be expressed as follows:


[bookmark: _Hlk138929239]Where TLL, TRR, φLL, and φRR represent the transmission amplitudes and phase, where the first subscript indicates the polarization state of the transmitted wave and the second indicates the incident polarization.
[bookmark: _Hlk138929097][bookmark: _Hlk138929117][bookmark: _Hlk138929127][bookmark: _Hlk138929083]Based on this, we obtain φLL=φxx and φRR=φyy. Furthermore, according to the phase difference introduced by the spin-decoupling structure, ∆φ2=φxx−φyy=0, which leads to the design requirement for isotropic metaunits: φLL=φRR=φxx=φyy.
Text S4 Coherent synthesis method of vortex beams for generation of vector beams
A vector beam with a vortex-type polarization distribution in the cross-section can be expressed as a Jones vector as:


where A(r) is the complex amplitude, l is the topological charge (order) of polarization, and θ0 is the initial polarization direction. The vector beams can be obtained by superposition of orthogonal circularly polarized vortex beams, and let the phase difference between them be Δφ we get:


This means that the initial polarization angle θ0 of the vector beam is determined by Δφ. If Δφ varies along the transmission direction. It can be seen that the coherent synthesis method produces the longitudinal evolution of the polarization state mainly by designing the longitudinal phase difference of the wave components, and by introducing different phase differences in the two vortex beams, different vector beams can be obtained. 
Text S5 Transmittance and Bandwidth of Metasurface Devices
We choose two structures in the isotropic and Spin-Decoupling decoupled structure of the metasurface, and use the simulation software to arrange them periodically to show their transmittance in the case of LCP and RCP incidence points, in which the Isotropic Structures structure is shown in Fig. S1 a, with a radius of (22.2 μm), and its transmittance is shown in Fig. S1 c, which shows that the transmittance of the metasurface at 1 THz is about 0.75, which can satisfy the requirements of the design and the suppression of cross-polarization generation is also strongest at this frequency point.
The spin decoupled structure is shown in Fig. S1 b. Its parameters are chosen as dx=126 μm and dy=60 μm, and its transmittance is also simulated under LCP and RCP incidence, respectively, to obtain Figs. S1 d and e. The transmittance is slightly lower than that of the co-polarization compared to the Isotropic Structures at 1 THz, but it also stays above 0.67, which also meets the design requirements.
[image: ]
Fig. S1 (a), (b) Structures selected by the simulation software; (c) Transmittance of the isotropic structure at LCP and RCP incidence; (d), (e) Transmittance of the metasurface structure for the spin-decoupled structure at RCP and LCP incidence situations.
We also simulated the metasurface at different frequency points near the operating frequency of 1 THz, and obtained the intensity maps of the electric field along the y-axis of the metasurface at 0.8-1.2 THz (Fig. S2 a-e), and the simulations were performed using the x-polarization incidence to obtain the intensity of the electric field in the y-direction. From the results, it can be seen that experimental results consistent with the theory are obtained at 0.8-1.1 THz.
[image: ]
Fig. S2 (a) Metasurface structures; (b)-(f) Ey intensity maps of the metasurface structure for linearly polarized incidence along the x-axis from 0.8 to 1.2 THz
Table Parameters of Isotropic and Spin-Decoupling Structures
Table S1 The spin-decoupling structure with a propagation phase of 180 degrees and a phase gradient of 22.5 degrees.
	
	dx(μm)
	dy(μm)
	Txx
	φxx(°)
	Tyy
	φyy(°)

	No.1
	50
	90
	0.690
	-172.911
	0.675
	-5.238

	No.2
	48
	82
	0.682
	-155.113
	0.693
	25.194

	No.3
	42
	80
	0.704
	-133.841
	0.685
	46.869

	No.4
	40
	76
	0.729
	-123.504
	0.676
	74.942

	No.5
	126
	60
	0.664
	-82.742
	0.696
	89.338

	No.6
	118
	58
	0.658
	-63.252
	0.691
	108.831

	No.7
	106
	56
	0.625
	-43.096
	0.689
	132.152

	No.8
	94
	54
	0.657
	-20.024
	0.691
	156.882

	No.9
	80
	80
	0.699
	1.778
	0.699
	1.778

	No.10
	82
	48
	0.693
	25.195
	0.682
	-155.115

	No.11
	80
	42
	0.686
	46.864
	0.701
	-133.843

	No.12
	76
	40
	0.676
	74.942
	0.729
	-123.504

	No.13
	60
	126
	0.696
	89.341
	0.664
	-82.735

	No.14
	58
	118
	0.691
	108.833
	0.649
	-63.250

	No.15
	56
	106
	0.689
	132.155
	0.625
	-43.097



Table S2 The isotropic structure with a propagation phase of 0 degrees and a phase gradient of 45 degrees.
	
	dr(μm)
	Txx= Tyy
	φxx=φyy(°)

	No.1
	30.6
	0.686
	-179.749

	No.2
	27.8
	0.686
	-134.852

	No.3
	22.2
	0.757
	-89.728

	No.4
	42.6
	0.612
	-45.008

	No.5
	38.7
	0.704
	-0.194

	No.6
	36.1
	0.702
	45.224

	No.7
	34.1
	0.674
	90.347

	No.8
	32.4
	0.671
	135.827
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