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Abstract: Scintillation-based X-ray imaging can provide
convenient visual observation of absorption contrast by
standard digital cameras, which is critical in a variety of
science and engineering disciplines. More efficient scintilla-
tors and electronic postprocessing derived from neural net-
works are usually used to improve the quality of obtained
images from the perspective of optical imaging and machine
vision, respectively. Here, we propose to overcome the
intrinsic separation of optical transmission process and
electronic calculation process, integrating the imaging and
postprocessing into one fused optical-electronic convolu-
tional autoencoder network by affixing a designable opti-
cal convolutional metasurface to the scintillator. In this
way, the convolutional autoencoder was directly connected
to down-conversion process, and the optical information
loss and training cost can be decreased simultaneously.
We demonstrate that feature-specific enhancement of inco-
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herent images is realized, which can apply to multi-class
samples without additional data precollection. Hard X-ray
experimental validations reveal the enhancement of tex-
tural features and regional features achieved by adjusting
the optical metasurface, indicating a signal-to-noise ratio
improvement of up to 11.2 dB. We anticipate that our frame-
work will advance the fundamental understanding of X-ray
imaging and prove to be useful for number recognition and
bioimaging applications.

Keywords: X-ray optics; metasurface; convolutional autoen-
coder; denoising

1 Introduction

By converting X-rays with attenuation information into vis-
ible light images [1, 2], scintillator-based detectors enable
providing valuable insights into internal structure that are
of utmost importance in many fields such as healthcare
diagnostics, cancer therapy, particle physics, and archeology
[3-5]. Based on the photographs obtained from the detec-
tors, doctors can make an accurate diagnosis of lung infec-
tions, and archaeologists can also examine hidden char-
acters in ancient oil paintings thousands of years ago. In
order to obtain high-quality photographs, on the one hand, a
variety of scintillators with high-efficiency X-ray conversion
capabilities have been evaluated, such as Ce:YAG [6], DPA-
MOF [1], Th: NaLuF, [7], CsPbBr, [8], and CH;NH;PbBr,_, Cl,
[9]. These novel scintillators usually possess fast activation
dynamics, high X-ray sensitivity, and many other advan-
tages, which are conducive to imaging. On the other hand,
artificial neural networks (ANNs) are introduced to process
digital formats captured by camera to extract features or
improve signal-to-noise ratio (SNR) [10-12]. For example,
in convolutional autoencoder (CAE) as a typical image pro-
cessing ANN, the input is compressed into a dimensionality-
reduced latent-space representation through a convolu-
tional encoder, and then the decoder is used to reconstruct

B Open Access. © 2023 the author(s), published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 International License.


https://doi.org/10.1515/nanoph-2023-0402
mailto:sunyuanhe@sari.ac.cn
mailto:wuyanqing@zjlab.org.cn
mailto:tairz@sari.ac.cn
https://orcid.org/0000-0002-4935-4147
https://orcid.org/0000-0002-4935-4147

3794 = H.Shiet al.: Designable meta-feature-enhancer via fused CAE

and output image. In this way, through the utilization of
scintillator-based light transmission and ANN-based elec-
tronic algorithms, the information that people are inter-
ested in such as tumor tissues or nerve edges will, there-
fore, be highlighted in the output image, which prompts
the framework to be regarded as an effective standard
paradigm.

Nowadays, advanced research aims to achieve fast
and high-quality reconstructed images, which are univer-
sal to all samples, implying the requirement of efficient
optical image acquisition and rapid preparation of neural
networks [13]. However, under the current strategy, the
optical process and the electronic process are separated
from each other, which lead to inherent limitations that are
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difficult to address. Specifically, from an optical perspective,
a major problem is the notorious internal reflection caused
by extremely high refractive index of scintillator, which,
together with the attenuation caused by other optics, leads
to massive information loss during the propagation of opti-
cal images (Figure 1a). The number of these lost photons is
as high as 92 % (calculate based on Ce:YAG), which cause
the degradation of images provided to ANN and the decline
of SNR [14], aggravating the requirement of computing cost
(Figure 1b). From the perspective of electronics calculation,
the training of the neural network to the captured image
is usually blind because of the ignorance of the optical
process. A large amount of precollected data (Figure 1c) is
necessary to train the encoder/decoder pair and to ensure
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Figure 1: Typical separated X-ray imaging/postprocessing process. (a) The photon conversion process that occurs in the scintillator. Internal reflection
caused by high refractive index. Total reflection angle is calculated based on Ce:YAG. (b) The photon retention caused by the scintillator size (caliber)

and the refractive index (reflection). (c) Schematics of typical indirect X-ray

realization in the optical process, and red shows realization in the electroni

imaging process with CAE postprocessing. The color of blue shows the
ic network. The dashed box shows the training process and reconstruction

process. Inset: The input images contain noise (left), and the output images generated from the classic electronic CAE (right) after 800 epochs of

training.
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well-learning for categories, which may take several hours
or even several days (Supplementary Figure 1) and needs to
be reconfigured when the venue or sample changes [15, 16].
Therefore, a suitable strategy for promoting the integration
of optical and electrical processes is essential to help achieve
the synchronous optimization of the imaging process.

Recently, metasurfaces, which constructed by global-
ordered planar subwavelength microstructures with pre-
determined optical properties, have been proposed as an
efficient optical processing element. Benefitting from the
predesigned space layouts and facile nanofabrication tech-
niques, metasurfaces have shown great promise for achiev-
ing effective control of the wavefront of light with low cost
and fast speed. By imparting arbitrary spatial and spec-
tral transformations on incident light waves, metasurfaces
provide a unique ultra-high-speed optical method of imple-
menting the computation or transformation (e.g., convolu-
tion) of the local wavefront matrix at the subwavelength
scale. Therefore, taking advantage of the metasurface, here
we introduce a fused neural network design strategy to
integrate the optical imaging process and electronic post-
processing into a complete fused optical-electronic CAE,
simply affixing an additional optical metasurface to the
scintillator (Supplementary Note 1). The optical encoder of
CAE is realized by imaging with a predesigned metasurface,
and the electronic decoder can reconstruct the image in
computer with enhanced features based on encoder after
training. The predesigned metasurface as a convolutional
kernel is endowed with the ability to extract features, as
well as designable feature enhancement of the image can be
achieved by adjusting the parameters of metasurface. As a
conceptual demonstration, the experimental verification of
two key feature enhancement capabilities using hard X-rays
was implemented and delivered an SNR enhancement of up
to 11.2 dB. Based on this strategy, the neural network will
be directly connected to photon conversion process. The
actual image in the scintillator that has just been converted
into visible light is immediately input into CAE, avoiding the
loss of optical information in the transmission. More impor-
tantly, the light propagation model can be inferred from
the known physical process rather than sample images,
wherefore, the decoder is able to deploy without additional
training, which helps to enhance the generalization ability
and providing substantial savings on computational cost [16,
17].

2 Design of the fused CAE system

We start with the design principle of the optical encoder
of fused CAE. In scintillation-based X-ray imaging process,
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high-energy photons of X-rays will be converted into visible
light in scintillator [18] and diffracted at the exit interface
(usually the scintillator—air interface). Diffraction causes
most of the spatial high-frequency light to be internally
reflected and only a small amount oflight continues to prop-
agate and is finally imaged on the detector; in other words,
the original complete image in scintillator is convolved by a
low-pass function based on the numerical aperture. From
the perspective of machine learning, it is very similar to
a convolutional encoder in CAE only in terms of process,
and Supplementary Note 2 verifies the theoretical feasibil-
ity. Therefore, analogous to the encoder in CAE, an opti-
cal regime containing a designable optical metasurface can
realize convolutional optical encoding and perform opera-
tions on the image and the convolutional kernel represented
by the metasurface at the speed of light. In our design, the
metasurface is fabricated by the material with a similar
refractive index to scintillator (e.g., SiN, is suitable for Ce:
YAG) and is affixed to the scintillator surface away from
the X-ray source (Figure 2a). It means that the metasurface
will replace the simple refractive index transition surface
to manipulate the wavefront ®,, of the visible light image
I;, and perform a convolutional encode operation based
on the contained convolutional kernel K under the per-
spective of the neural network (Figure 2b). Without loss of
generality, the optical metasurface can be predesigned in
view of Huygens—Fresnel theory, allowing adjustment of
physical parameters to obtain various K as convolutional
kernels with different feature extraction capabilities, which
is consistent with the encoder in CAE. Thereby, the convo-
lutional encoder is realized optically and connected to the
low-attenuation fluorescent image I;, directly, avoiding the
destruction of information in optical signal chain by the
internal reflection in scintillator.

We then progress to the solution formulation of the
decoder. The image $ captured by the detector is of lower
quality because it is limited by the number of pixels of the
detector; however, benefiting from the optical convolutional
operation, the captured image S is composed of the con-
volutional images (P;, ..., P,) after feature extraction and
still contains the characteristic information of the original
image I;, and can regarded as the feature vector set in
CAE to be reconstructed in the decoder. It is worth noting
that the training of the encoder/decoder pair in traditional
CAE is specified based on the comparison of massive recon-
structed images/original images of the same category. This
is necessary because it is difficult to predict the feature
extraction effect caused by the selected convolutional ker-
nel, which is attributed to the fact that the convolutional ker-
nellacks physical meaning. Fortunately, in the fused CAE we
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Figure 2: Illustration of the fused CAE. (a) Schematic illustration of the optical setup. The X-ray with image information is converted into a visible light
image in the scintillator, then interacts with the optical convolutional metasurface and the resulting image is projected onto the image capture system.
The color is only used to symbolize the presence of different wavefront components in the input image and does not represent the actual color of light
(such as red, green, and blue) (see Supplementary Note 2 for details). (b) Schematics of the CAE framework. The color of blue indicates realization in
the optical process, and red indicates realization in the electronic network. (c) Typical fused CAE results. I;, on the left is an image obtained with a long
exposure time, which refers to the actual image in the scintillator and cannot actually be obtained under the same measurement time and test
conditions as the images on the right. The upper route shows our proposed fused CAE, and the upper right is a typical fused CAE reconstructed image.

The bottom route shows the normal X-ray imaging process and the obtained low-quality image (bottom right).

constructed, the encoder is predesigned and prepared from
diffraction theory, and the deconvolutional decoder can
be thus inferred by examining the optical behavior of the
encoder physical prototype. Specifically, for the real propa-
gation process of single-channel scintillator excitation, the
obtained spatial amplitude is

Py =@, [x, y;n(4)] ® Kyes () ® Kys(n) 0))

which shows the convolution operation of the wavefront
function and the optical element. Here, P, is the single
coherent wavefront component collected in front of the
detector. @, is the coherent wavefront component from the
image I;,, where x and y are the horizontal and vertical
coordinate components, A is the wavelength of ®,. ® is the
convolution operation, Ky.,(n) and Ky (n) are convolutional
kernel of the designed optical metasurface and other optical
components in the system that response to ®@,,. And the light
intensity information of the incoherent pattern received on
the detector is

2

Pal* = | ) @, (X, ¥: 1) @ges(M@gy(m) @
n(2)

Y is the sum symbol. When the imaging process is only
regarded as incoherent imaging, the whole process should
be considered as

2

Z|d>n(x, y;n)2|] ® | D Ky @ Kyes)| (3

n(A) n(4)

S$=

Zn( ) Kaesignea (M) @ Ksys(M) Therefore, for the optical
system that the encoder has determined, )’ n(3)Kaesignea() &
K,ys(n) is fixed, and the decoder should have the follow-
ing inference target 2; when this goal is reached, the
decoder completes the learning of the aforementioned opti-
cal encoder, and a deconvolution operation can be used to
reconstruct the enhanced image I,

Q=arg (g%relR”§ - 1P, |§ 4

which ensures the learning of decoder to the optical process,
the (x, y) coordinate point should be in real space R. In
order to demonstrate the simplified learning to the optical
process rather than the image itself, we adopted a simple
recurrent neural network (RNN)-derived method for train-
ing: a known sample is used to perform an imaging through
the optical encoder, and RNN training is implemented to
obtain the deconvolutional decoder based on the captured
image as a feature vector set and the known sample image as
ground truth; see Supplementary Note 3 for details. There-
fore, only one imaging of a known sample is required to
establish a suitable deconvolutional decoder. Nevertheless,
it should be noted that the decoder training has no addi-
tional restrictions on the types of ANNs required. When both
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the encoder and decoder have been prepared, the fused CAE
is established and applied to any category of sample. The X-
ray absorption image of the sample is converted into visible
light and then input to the optical convolutional encoder
and further captured by the detector; the digital image is
transferred to the electronic decoder for reconstruction and
output (Figure 2c). It should be noted that all images pre-
sented in this study are fluorescein images captured by a
visible-light charge-coupled device (CCD), corresponding to
a wavelength range 0f 400-700 nm. Photons in the acquired
wavelength range are then accumulated indiscriminately
by the CCD camera into the brightness of the electronic
image. The output image I, reconstructed by the training-
completed decoder can demonstrate the enhanced features
and denoising effect, similar to the classic CAE network.

3 Texture feature enhancement
CAE

3.1 Principle and verification

On the basis of the operational concept of system architec-
ture, we propose to execute the design and implementation
of actual device as preliminary proof. Texture enhancement
convolutional kernel is considered beneficial to denoising
and classification and first used to guide the design of
the metasurface. In spatial frequency domain, the texture
information of the image is contained in the high spatial
frequency part of the Fourier pattern and exists as the
light with a large incident angle on the exit surface of the
proposed Ce:YAG [19, 20]. Consequently, light with a large
incident angle needs to be transferred to center exit posi-
tion by convolutional metasurface to increase the propor-
tion of high-frequency information in the image. The finite
difference time domain (FDTD) method based on Maxwell
equations [21, 22] was used to simulate the metasurface to
confirm the metasurface characteristics with single-order
diffraction. The diffraction caused by the designed convo-
lutional metasurface should obey the following constraints

[4]:

—1<sin 6 < (% +sin e> /Neevac 6)]

where 0 is the angle at which the light in the scintillator
irradiates the interface. & is the structure period of metasur-
face which can be adjusted. ¢ is the acceptance angle of the
optical system, which depends on the size of the metasur-
face. nge.yaq is the index of refraction of Ce:YAG. As shown in
Figure 3a, the zero-order diffraction light disappears from
the diffraction pattern with an incident angle of 6 = 40°
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for the metasurface with £ =300 nm (with convolutional
kernel K,), and only the first-order diffraction light can
be observed in the receiving region at even up to 6 = 70°,
covering most of the possible wavelengths of fluorescence.
For the metasurface with £ = 200 nm, almost no suitable
light can be observed in the diffraction pattern of, implying
that no information can be enhanced as shown in Supple-
mentary Figure 2a. If the period & is increased to 400 nm,
the light with a small incident angle is mainly enhanced
and second-order diffraction will appear in the receiving
region (Supplementary Figure 2b). Owing to the above anal-
ysis, K is determined to be mapped to the metasurface to
extract the textural property (Figure 3b).

Next, the X-ray imaging experiments were conducted
at the BL13W1 beamline station at SSRF, where the beam
specifications are as follows: energy resolution (DE/E): <5 X
10~3; beam size: 45 mm(H) X 5 mm(V). We chose the X-ray
radiation of 15 keV photon energy in the imaging process;
therefore, the flux output is near 5 X 10" ph/s/mm?. The
scintillator with K, is placed in the light path to provide
training data for decoder. A photon baffle located at the
X-ray exit end is used to ensure that the stray light in the
scintillator will not be excited outside the hole and use the
proposed framework to collect intensity images (Figure 3c).
Simple RNN applies to obtain the stable decoder [23], and the
Euclid norm of the error matrix is used as the loss function
of the training. Stability is calculated from the evolution of
the absolute value of the matrix. As shown in Figure 3d,
the loss and accuracy are plotted over 60 training epochs
for the image with capture time of ¢ ,, = 20 ms and 100 ms.
The loss is decreasing quickly and reaches a minimum after
60 epochs. The accuracy also quickly approached and sta-
bilized at about 100 % within a few steps. The imperfect
training stability of the 20 ms image may be attributed to
the small number of photons obtained. After the standard
training process with step length = 60 is completed, the
Richardson-Lucy deconvolution algorithm is used to carry
out the back-propagation process of the convolutional meta-
surface as the decoder and present a complete fused opti-
cal-electronic CAE as SysK,; [24]. We demonstrated the
measured image of number “239” etched on the SiN, film
(Figure 3h) at first (Figure 3e), and the image generated by
the normal X-ray imaging system without CAE (NSys) are
also shown in Figure 3f for comparison. The images gener-
ated by our framework possess prominent “239” markings
and better image quality of the edge and texture struc-
ture, which is not observed in the pictures generated by
the NSys and the feature vectors $ collected by the camera
(Figure 3g), verifying the feasibility of the proposed frame-
work. Owing to the learning of the convolutional kernel
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Figure 3: Design and training of texture enhancement convolutional kernel system (SysK ;). (a) The diffraction patterns of the metasurface with

a 300 nm period for each incident angle 6. The longitudinal axis is the fluorescence wavelength, and the transverse axis is the exit angle (the center

is 0°) for each image. The color scale is independent of each image. (b) The SEM image of the metasurface K. (c) Corresponding convolutional kernel
of K 3. (d) Loss function and the stability during training. (e) The number “239” etched on the SiN, film observed by SysKes and (f) the normal X-ray
imaging system without CAE (NSys). (g) The feature vectors $ of “239” collected by the camera. (h) Long-exposure images of “239” as a reference.

The straw tissue image observed by (i) SysK -3 and (j) NSys. (k) The feature vectors §and (l) long-exposure images of the straw tissue as reference.

The fins image observed by (m) SysKes and (n) NSys. (o) The feature vectors Sand (p) long-exposure images of the fins as reference.

rather than the information of I;;, the training-completed
framework is generally suitable for all kinds of sample
without modification. Therefore, the straw tissue (Figure 31)
and fins of Danio rerio (Figure 3p) are also employed to
test the proposed neural network. As expected, consist-
ing with the number image, the reconstructed images
showed the obvious fiber structure (Figure 3i) and dark
lepidotrichia (Figure 3m) compared to the § (Figure 3k and
0) and the NSys product (Figure 3j and n), which illustrates
the broad applicability of fused optical-electronic CAE in
multi-category images.

3.2 Quantitative analysis

Furthermore, we analyzed the feature extraction proper-
ties of SysK; quantitatively. The response of fringes with
fixed 3 pm spacing was measured. The intensity ratio of the
stripe region to the blank region is further calculated to be
0.91 and 0.804 for the original image (Figure 4a) and the
image generated by SysK ., (Figure 4b), respectively. Consid-
ering that the proposed sample is imaged by absorption, a
lower intensity ratio indicates more obvious enhancement

and can be further calculated as a 1.14 times contrast-to-
noise ratio (CNR) improvement in the enhanced area. In
addition, the characteristics of “3 pm” are highlighted in
Figure 4b, and the seven intensity peaks corresponding to
seven bright lines in the region can be also distinguished,
but these characteristics cannot be observed in NSys. The
compressed § is shown in Supplementary Figure 3. The
Fourier transform spectrum was further obtained, which
indicates the enhancement of the orderly high-frequency
signal (Figure 4c) and consistent with the above analysis.
Therefore, it is necessary to calculate the SNR in the full
frequency domain to provide direct analysis, and long-term
exposure image (capture time > 100 ms, LEI) was used as
ground truth (Figure 4a and b). Owing to the need for sam-
pling accuracy, SNR data were collected from the corre-
sponding large-area images (Supplementary Figure 4) and
normalized based on ultra-high frequency noise. As shown
in Figure 4c, the image generated by SysK., provides an
excellent SNR as high as 27.73 dB, which is approximately
11.2 dB higher than that of the original image and very close
to the SNR of the LEI of 29.36 dB at the same spatial fre-
quency (~10~2 pm~1). Even in the ultrahigh-frequency band
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(~107" pm™), the image generated by SysK; still indicates
an enhanced SNR, which is 2.56 dB higher than the original
image, similar to the LEI (~3.52 dB). The increase in high-
frequency components in the spatial spectrum analysis can
be observed as expected, which demonstrates the texture
features enhancement capabilities of the proposed SysK ;.
As a comparison, the decoder trained by the same
RNN process was also applied to the NSys and measured
to exclude the influence of the deconvolution algorithm on
the generator. In this situation, except for the metasurface,
the framework is consistent with the proposed fused CAE.
As shown in Supplementary Figure 5, the image generated
in the NSys with decoder by the same algorithm does not
possess similar feature enhancement to that SysK;, which
implies that the denoising effect of the Richardson-Lucy
algorithm on the image is limited, and the enhanced high-
frequency contribution is considered to come from the
eigenvector set extracted from the input dataset. Ordinary

image denoising algorithms such as the Gaussian filter
[25], mean filter [26], median filter [27], low-pass filter [28],
and two kinds of wavelet filters [29] were also measured.
As shown in Supplementary Figure 6, the feature enhance-
ment is not obvious compared with the image generated
by the proposed framework. This can be attributed to the
selection of convolutional kernels, and the bias toward light
with a large incidence angle enhances the texture rather
than the entire image.

3.3 Synchrotron X-ray tomography

As a practical exploration of the proposed optical-
electronic CAE applied to X-ray imaging, a tomography
experiment was conducted to verify and demonstrate its
technical applicability. The experiment was carried out at
the BL13W1 beamline station at SSRE, where 900 projection
images of a biological sample were obtained at different
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Figure 5: Tomography results for different X-ray imaging frameworks. Reconstructed slices and the enlarged view of the select area of the vertebra
via (a) Nsys and (b) SysK ;. Reconstructed slices and the enlarged view of the select area of the rib via (c) Nsys and (d) SysK ;. The brightness of

background noise is adjusted to the same level.

angles using the SysK.; and NSys imaging frameworks,
respectively. The exposure time was set to 100 ms and the
Gridrec reconstruction algorithm [30] was used to realize
the slice reconstruction from the projections. The zebrafish
D. rerio was used as the biological sample, of which
the reconstructed vertebra and rib slices are shown in
Figure 5. As can be seen from the figure, the reconstructed
slice is of extremely high quality as SysK,; significantly
increases the SNR and CNR of each projection. Compared
with the conventional X-ray imaging system without CAE
(NSys, Figure 5a and c), the reconstructed slices utilizing
SysK 5 (Figure 5b and d) reveal clearer tissue contours and
sharper skeleton edges. The enlarged details of the selected
areas deeply demonstrate that the proposed framework
provides higher quality images with better edge and texture
features, thus achieving high-fidelity reconstruction. The
calculations using the perception-based image quality

evaluator (PIQE) and natural image quality assessment
method (NIQE) corroborated this improvement in image
quality (Supplementary Note 6) [31, 32]. Moreover, as
a contribution of 900 projections achieved by SysK,
the reconstructed slice indicates that SysK.; enhances
the common features of the sample from different
angles, rather than randomly generating artifact signals,
confirming the potential of the proposed framework in
practical application.

4 Regulation of feature
enhancement trends
To further verify the extension and practical application

ability of the proposed framework, convolutional kernels
of regional feature enhancement are also manufactured
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to provide various feature extraction capabilities. The
isotropic periodic optical structure with £ = 500 nm (with
convolutional kernel K ) was fabricated as shown in Sup-
plementary Figure 7, and corresponding simulation indi-
cates that the increased photons are concentrated in
the low-frequency region (Supplementary Figure 8), which
drives the collective enhancement of adjacent areas, i.e., the
enhancement of regional feature. The fin edge (Figure 6a)
and spine (Figure 7a and b) of D. rerio are used to test the
proposed fused CAE with K5 (SysK,s). The fin was placed
in a Teflon tube to compare different absorption coefficient
images. Therefore, in contrast to the enhancement of the
region edge (Figure 6b) and spine edge (Figure 7c and d)
by SysK,, the absorption difference between the material
and the muscle region is clearly distinguished by SysK.s,
as shown in Figures 6¢c and 7e and f. The corresponding
intensity section reveals the special enhancement trend of
regional feature. The depression on the far right of the curve

H. Shi et al.: Designable meta-feature-enhancer via fused CAE === 3801

is considered the Teflon region, and it can be observed that
the depression in Figure 6c is more obvious and flatter than
those in Figure 6a and b.

Further calculation shows that the intensity ratio of the
texture region represented by the fin to the selected blank
region is 0.881, 0.641, and 0.694 in Figure 6a—c, respectively.
For the region of Teflon, the intensity ratio of Teflon to the
blank area is calculated to be 0.858, 0.756, and 0.532, respec-
tively, showing different enhancement characteristics. The
three deep valleys on the left are attributed to the two
textures and the edge of the Teflon region. Therefore, the
texture features enhanced by SysK; shows obvious edges in
Figure 6b, while the deep valleys in Figure 6c are weakened,
indicating different enhancement tendencies. In addition,
as a comparison of imaging enhancement effects, Laplacian
sharpening and low-pass operation are also shown in Sup-
plementary Figure 9. As more complete optical information
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Figure 6: Measurement of proposed framework with multiclass convolutional kernels. (a) Image of the fin placed in a Teflon tube observed by NSys,
(b) SysK 5, and (c) SysK .5 with the corresponding strength section. The blue box indicates the contrast between the two different enhancement
features. (d) The curves of SNR in the whole spatial frequency range. The light blue area indicates the enhanced spatial frequency region. The 2D

Fourier transform spectra of NSys, SysK 3, and SysK .5 are shown in inset.
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Figure 7: Spine images observed by different frameworks. (a) The spine image observed by a camera system equipped with a scintillator (direct
imaging) and (b) the corresponding 2D Fourier transform spectrum, (c) by K3 and (d) the corresponding 2D Fourier transform spectrum, and (e) by Kz
and (f) the corresponding 2D Fourier transform spectrum. The blue box indicates the contrast between the two different enhancement features.

is obtained, the system exhibits a more excellent enhance-
ment effect as expected.

Moreover, SNR (Figure 6d) and CNR data are also col-
lected from the corresponding images. The image gener-
ated by SysK.; shows an enhanced low-frequency (~7 X
1073 pm~!) SNR as high as 32.93 dB, which is 2.68 dB greater
than thatin the original image, but the signal mapped by tex-
ture features is even weaker than that in the original image,
as shown in the high-frequency region. Correspondingly, the
image generated by SysK; shows that the high-frequency
SNR is as high as 9.32dB, as expected, and that the SNR
of the original image in the same position (~10~! pm=1)
is only 6.48 dB, indicating the contrast between different
enhancement regions. The CNR comparison based on the
Teflon material area and fin area also shows a reverse trend
for the different convolutional kernels used. For the orig-
inal image, the CNR of the Teflon area and fin area was
calculated to be 1.030, close to 1, while the image gener-
ated by SysK,, indicated a lower CNR of 0.849 owing to the
enhancement of the area with obvious texture. However,
the image generated by SysK,s indicated a CNR as high as

1.304, far beyond the original CNR, indicating the inver-
sion caused by enhancement of the regional feature. There-
fore, the regional feature enhancement characteristics of
SysK 5 are confirmed by the above results. In addition, the
corresponding frequency-domain patterns are displayed in
Figure 6d, which further reveals the different enhancement
trends of the low-frequency region and the high-frequency
region attributed to feature enhancement abilities of differ-
ent convolutional kernels.

5 Discussion and conclusion

Therefore, we have developed a fused optical-electronic
CAE applied to X-ray imaging by synergistically combin-
ing optical metasurfaces and neural network methods. Our
framework allows for the generation of feature enhanced
images directly from fluorescent images gained in scintil-
lator and has been successfully validated by implementing
two representative types of application by adjusting the
structure of the metasurface in the experiment. Compared
with the unprocessed image, the reconstructed image has
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distinct texture features (or regional features) and improves
SNR. In addition, benefiting from the learning to the imaging
process instead of the input image, the same device can
be employed for various purposes immediately, without
precollecting large amounts of data for a certain type of
sample [16]. These characteristics greatly broaden the uti-
lization scenarios and potential usefulness of the proposed
framework.

In our current implementation, the design using
diffraction equations can only produce simple periodic
structures. It is still possible to manufacture complex struc-
tured metasurfaces, such as octagon or L-shaped (Supple-
mentary Figure 10), although the effect cannot be accurately
known in advance (Supplementary Figure 11). By break-
ing the structural symmetry of the metasurface and using
higher design degrees of freedom, such as a chiral metasur-
face with L-shape elements, one can explore the asymmetric
transmission of image information in different polarization
modes, which is an effective approach for further expand-
ing the design of convolutional kernels [33, 34]. Successive
fine control of the optical field information can be achieved
through the expansion of the structural parameter space.
From the perspective of development prospects, further
expansion of convolutional kernel requires the concept of
diffractive neural network to design, that is, the network
can be trained off-line using computer simulations, and the
predetermined photoresponsivity matrix is then mapped to
the metasurface [35, 36]. In the meantime, more training
time and algorithm design are required, which prolongs
the preparation time. However, compared to conventional
numerical ANNs, proposed fused CAE still has a very low
demand for precollected data and possesses advantages. As
a typical bottleneck in conventional numerical ANNs, the
massive demand for training data is difficult to achieve
in practical applications, especially for synchrotron X-ray
imaging. The main reason is that the uncertainty of the
site and time will directly affect the photon flux and stray
noise, and the scarce synchrotron radiation resources do
not allow long-term data collection. Under these constraints,
conventional numerical ANNSs can only be trained blindly
like “taking a chance,” making it impossible to compare with
our method in the same scenario. Therefore, we believe
that the proposed fused optical—electronic CAE has unique
application potential in synchrotron radiation sources.

Another issue worth discussing is that although neural
networks with optical physical designs do not offer flexibil-
ity comparable to numerical ANNs, they still have advan-
tages in computational speed due to the unparalleled speed
of light, low power consumption, and potential parallel
computing power [37]. Although it is difficult to compare
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optical neural networks and numerical ANNs for speed
and energy consumption due to different physical design
and connection latency, a reliable number is that optical
neural network can achieve ~6 times the speed of GPUs
(NVIDIA-TitanX) for 4-megapixel images, and it is further
enhanced as the number of pixels increases because the
optical calculation speed is independent of the pixel number
[38]. Such high-speed computation and huge data through-
put allow optical neural networks to overcome some of
the unrealistic computational demands faced by numeri-
cal ANNs; therefore, this kind of neural networks can be
particularly used for those involving huge computational
load and on-the-fly data processing, such as real-time recon-
struction of living images and intraoperative X-ray image
processing [36]. A typical example, as we describe, is the CAE
processing of synchrotron beamline X-ray imaging, because
of the unavoidable complex convolution and deconvolution
processes therein: if we convolve an input image contain-
ing m X m number of pixels with a kernel of shape, n X n
yields a computational complexity as high as O(m?n?). The
amount of data processing caused by convolution opera-
tions on large images is prohibitive let alone achieves real-
time processing; thus, it is very necessary to apply optical
neural networks to solve this difficult problem. We also
realized that, compared to the almost unlimited calculation
speed of light, the decoding calculation on the computer
weakens the image processing speed in the proposed frame-
work. Considering that the image sensor itself can be trained
as an artificial neural network, we suggest that replacing the
detector with a programmable distributed vision sensor is
expected to lift the restriction on computing speed toward
ultrafast CAE in further research [39, 40].

In conclusion, the neural network with designable opti-
cal convolutional metasurface proposed here has been suc-
cessfully used to enhance the features of X-ray images. We
anticipate that the proposed approach will accelerate the
development of imaging modalities as critical support for
fast and accurate modern X-ray imaging technology and
provide various possibilities for dynamic imaging.
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