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Abstract: Scintillation-based X-ray imaging can provide

convenient visual observation of absorption contrast by

standard digital cameras, which is critical in a variety of

science and engineering disciplines. More efficient scintilla-

tors and electronic postprocessing derived from neural net-

works are usually used to improve the quality of obtained

images from the perspective of optical imaging andmachine

vision, respectively. Here, we propose to overcome the

intrinsic separation of optical transmission process and

electronic calculation process, integrating the imaging and

postprocessing into one fused optical–electronic convolu-

tional autoencoder network by affixing a designable opti-

cal convolutional metasurface to the scintillator. In this

way, the convolutional autoencoder was directly connected

to down-conversion process, and the optical information

loss and training cost can be decreased simultaneously.

We demonstrate that feature-specific enhancement of inco-
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herent images is realized, which can apply to multi-class

samples without additional data precollection. Hard X-ray

experimental validations reveal the enhancement of tex-

tural features and regional features achieved by adjusting

the optical metasurface, indicating a signal-to-noise ratio

improvement of up to 11.2 dB. We anticipate that our frame-

work will advance the fundamental understanding of X-ray

imaging and prove to be useful for number recognition and

bioimaging applications.

Keywords: X-ray optics;metasurface; convolutional autoen-

coder; denoising

1 Introduction

By converting X-rays with attenuation information into vis-

ible light images [1, 2], scintillator-based detectors enable

providing valuable insights into internal structure that are

of utmost importance in many fields such as healthcare

diagnostics, cancer therapy, particle physics, and archeology

[3–5]. Based on the photographs obtained from the detec-

tors, doctors can make an accurate diagnosis of lung infec-

tions, and archaeologists can also examine hidden char-

acters in ancient oil paintings thousands of years ago. In

order to obtain high-quality photographs, on the one hand, a

variety of scintillators with high-efficiency X-ray conversion

capabilities have been evaluated, such as Ce:YAG [6], DPA-

MOF [1], Tb: NaLuF4 [7], CsPbBr3 [8], and CH3NH3PbBr3−xClx
[9]. These novel scintillators usually possess fast activation

dynamics, high X-ray sensitivity, and many other advan-

tages, which are conducive to imaging. On the other hand,

artificial neural networks (ANNs) are introduced to process

digital formats captured by camera to extract features or

improve signal-to-noise ratio (SNR) [10–12]. For example,

in convolutional autoencoder (CAE) as a typical image pro-

cessing ANN, the input is compressed into a dimensionality-

reduced latent-space representation through a convolu-

tional encoder, and then the decoder is used to reconstruct
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and output image. In this way, through the utilization of

scintillator-based light transmission and ANN-based elec-

tronic algorithms, the information that people are inter-

ested in such as tumor tissues or nerve edges will, there-

fore, be highlighted in the output image, which prompts

the framework to be regarded as an effective standard

paradigm.

Nowadays, advanced research aims to achieve fast

and high-quality reconstructed images, which are univer-

sal to all samples, implying the requirement of efficient

optical image acquisition and rapid preparation of neural

networks [13]. However, under the current strategy, the

optical process and the electronic process are separated

from each other, which lead to inherent limitations that are

difficult to address. Specifically, from an optical perspective,

a major problem is the notorious internal reflection caused

by extremely high refractive index of scintillator, which,

together with the attenuation caused by other optics, leads

to massive information loss during the propagation of opti-

cal images (Figure 1a). The number of these lost photons is

as high as 92 % (calculate based on Ce:YAG), which cause

the degradation of images provided to ANN and the decline

of SNR [14], aggravating the requirement of computing cost

(Figure 1b). From the perspective of electronics calculation,

the training of the neural network to the captured image

is usually blind because of the ignorance of the optical

process. A large amount of precollected data (Figure 1c) is

necessary to train the encoder/decoder pair and to ensure

Figure 1: Typical separated X-ray imaging/postprocessing process. (a) The photon conversion process that occurs in the scintillator. Internal reflection

caused by high refractive index. Total reflection angle is calculated based on Ce:YAG. (b) The photon retention caused by the scintillator size (caliber)

and the refractive index (reflection). (c) Schematics of typical indirect X-ray imaging process with CAE postprocessing. The color of blue shows the

realization in the optical process, and red shows realization in the electronic network. The dashed box shows the training process and reconstruction

process. Inset: The input images contain noise (left), and the output images generated from the classic electronic CAE (right) after 800 epochs of

training.
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well-learning for categories, which may take several hours

or even several days (Supplementary Figure 1) and needs to

be reconfigured when the venue or sample changes [15, 16].

Therefore, a suitable strategy for promoting the integration

of optical and electrical processes is essential to help achieve

the synchronous optimization of the imaging process.

Recently, metasurfaces, which constructed by global-

ordered planar subwavelength microstructures with pre-

determined optical properties, have been proposed as an

efficient optical processing element. Benefitting from the

predesigned space layouts and facile nanofabrication tech-

niques, metasurfaces have shown great promise for achiev-

ing effective control of the wavefront of light with low cost

and fast speed. By imparting arbitrary spatial and spec-

tral transformations on incident light waves, metasurfaces

provide a unique ultra-high-speed optical method of imple-

menting the computation or transformation (e.g., convolu-

tion) of the local wavefront matrix at the subwavelength

scale. Therefore, taking advantage of the metasurface, here

we introduce a fused neural network design strategy to

integrate the optical imaging process and electronic post-

processing into a complete fused optical–electronic CAE,

simply affixing an additional optical metasurface to the

scintillator (Supplementary Note 1). The optical encoder of

CAE is realized by imaging with a predesigned metasurface,

and the electronic decoder can reconstruct the image in

computer with enhanced features based on encoder after

training. The predesigned metasurface as a convolutional

kernel is endowed with the ability to extract features, as

well as designable feature enhancement of the image can be

achieved by adjusting the parameters of metasurface. As a

conceptual demonstration, the experimental verification of

two key feature enhancement capabilities using hard X-rays

was implemented and delivered an SNR enhancement of up

to 11.2 dB. Based on this strategy, the neural network will

be directly connected to photon conversion process. The

actual image in the scintillator that has just been converted

into visible light is immediately input into CAE, avoiding the

loss of optical information in the transmission. More impor-

tantly, the light propagation model can be inferred from

the known physical process rather than sample images,

wherefore, the decoder is able to deploy without additional

training, which helps to enhance the generalization ability

andproviding substantial savings on computational cost [16,

17].

2 Design of the fused CAE system

We start with the design principle of the optical encoder

of fused CAE. In scintillation-based X-ray imaging process,

high-energy photons of X-rays will be converted into visible

light in scintillator [18] and diffracted at the exit interface

(usually the scintillator–air interface). Diffraction causes

most of the spatial high-frequency light to be internally

reflected and only a small amount of light continues to prop-

agate and is finally imaged on the detector; in other words,

the original complete image in scintillator is convolved by a

low-pass function based on the numerical aperture. From

the perspective of machine learning, it is very similar to

a convolutional encoder in CAE only in terms of process,

and Supplementary Note 2 verifies the theoretical feasibil-

ity. Therefore, analogous to the encoder in CAE, an opti-

cal regime containing a designable optical metasurface can

realize convolutional optical encoding and perform opera-

tions on the image and the convolutional kernel represented

by the metasurface at the speed of light. In our design, the

metasurface is fabricated by the material with a similar

refractive index to scintillator (e.g., SiNx is suitable for Ce:

YAG) and is affixed to the scintillator surface away from

the X-ray source (Figure 2a). It means that the metasurface

will replace the simple refractive index transition surface

to manipulate the wavefront Φn of the visible light image

Iin and perform a convolutional encode operation based

on the contained convolutional kernel K under the per-

spective of the neural network (Figure 2b). Without loss of

generality, the optical metasurface can be predesigned in

view of Huygens–Fresnel theory, allowing adjustment of

physical parameters to obtain various K as convolutional

kernels with different feature extraction capabilities, which

is consistent with the encoder in CAE. Thereby, the convo-

lutional encoder is realized optically and connected to the

low-attenuation fluorescent image I in directly, avoiding the

destruction of information in optical signal chain by the

internal reflection in scintillator.

We then progress to the solution formulation of the

decoder. The image Ŝ captured by the detector is of lower

quality because it is limited by the number of pixels of the

detector; however, benefiting from the optical convolutional

operation, the captured image Ŝ is composed of the con-

volutional images (P1, . . . , Pn) after feature extraction and

still contains the characteristic information of the original

image Iin and can regarded as the feature vector set in

CAE to be reconstructed in the decoder. It is worth noting

that the training of the encoder/decoder pair in traditional

CAE is specified based on the comparison of massive recon-

structed images/original images of the same category. This

is necessary because it is difficult to predict the feature

extraction effect caused by the selected convolutional ker-

nel,which is attributed to the fact that the convolutional ker-

nel lacks physicalmeaning. Fortunately, in the fused CAEwe
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Figure 2: Illustration of the fused CAE. (a) Schematic illustration of the optical setup. The X-ray with image information is converted into a visible light

image in the scintillator, then interacts with the optical convolutional metasurface and the resulting image is projected onto the image capture system.

The color is only used to symbolize the presence of different wavefront components in the input image and does not represent the actual color of light

(such as red, green, and blue) (see Supplementary Note 2 for details). (b) Schematics of the CAE framework. The color of blue indicates realization in

the optical process, and red indicates realization in the electronic network. (c) Typical fused CAE results. I in on the left is an image obtained with a long

exposure time, which refers to the actual image in the scintillator and cannot actually be obtained under the same measurement time and test

conditions as the images on the right. The upper route shows our proposed fused CAE, and the upper right is a typical fused CAE reconstructed image.

The bottom route shows the normal X-ray imaging process and the obtained low-quality image (bottom right).

constructed, the encoder is predesigned and prepared from

diffraction theory, and the deconvolutional decoder can

be thus inferred by examining the optical behavior of the

encoder physical prototype. Specifically, for the real propa-

gation process of single-channel scintillator excitation, the

obtained spatial amplitude is

Pn = Φn

[
x, y; n

(
𝜆
)]
⊗ Kdes(n)⊗ Ksys(n) (1)

which shows the convolution operation of the wavefront

function and the optical element. Here, Pn is the single

coherent wavefront component collected in front of the

detector.Φn is the coherent wavefront component from the

image Iin, where x and y are the horizontal and vertical

coordinate components, 𝜆 is the wavelength ofΦn.⊗ is the

convolution operation,Kdes(n) andKsys(n) are convolutional

kernel of the designed optical metasurface and other optical

components in the system that response toΦn. And the light

intensity information of the incoherent pattern received on

the detector is

||Pn||
2 =

||||||

∑

n(𝜆)

Φn

(
x, y; n

)
⊗des(n)⊗sys(n)

||||||

2

(2)

∑
is the sum symbol. When the imaging process is only

regarded as incoherent imaging, the whole process should

be considered as

Ŝ =
[
∑

n(𝜆)

|||Φn

(
x, y; n

)2|||

]

⊗

||||||

∑

n(𝜆)

Ksys(n)⊗ Kdes(n)

||||||

2

(3)

∑
n(𝜆)Kdesigned(n)⊗ Ksys(n) Therefore, for the optical

system that the encoder has determined,
∑

n(𝜆)Kdesigned(n)⊗

Ksys(n) is fixed, and the decoder should have the follow-

ing inference target Ω; when this goal is reached, the

decoder completes the learning of the aforementioned opti-

cal encoder, and a deconvolution operation can be used to

reconstruct the enhanced image Iout:

Ω = arg min
(x,y)∈R

‖‖‖Ŝ −
||Pn||

2‖‖‖
2

2
(4)

which ensures the learning of decoder to the optical process,

the (x, y) coordinate point should be in real space R. In

order to demonstrate the simplified learning to the optical

process rather than the image itself, we adopted a simple

recurrent neural network (RNN)-derived method for train-

ing: a known sample is used to perform an imaging through

the optical encoder, and RNN training is implemented to

obtain the deconvolutional decoder based on the captured

image as a feature vector set and the known sample image as

ground truth; see Supplementary Note 3 for details. There-

fore, only one imaging of a known sample is required to

establish a suitable deconvolutional decoder. Nevertheless,

it should be noted that the decoder training has no addi-

tional restrictions on the types of ANNs required.Whenboth
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the encoder and decoder have been prepared, the fused CAE

is established and applied to any category of sample. The X-

ray absorption image of the sample is converted into visible

light and then input to the optical convolutional encoder

and further captured by the detector; the digital image is

transferred to the electronic decoder for reconstruction and

output (Figure 2c). It should be noted that all images pre-

sented in this study are fluorescein images captured by a

visible-light charge-coupled device (CCD), corresponding to

awavelength range of 400–700 nm. Photons in the acquired

wavelength range are then accumulated indiscriminately

by the CCD camera into the brightness of the electronic

image. The output image Iout reconstructed by the training-

completed decoder can demonstrate the enhanced features

and denoising effect, similar to the classic CAE network.

3 Texture feature enhancement

CAE

3.1 Principle and verification

On the basis of the operational concept of system architec-

ture, we propose to execute the design and implementation

of actual device as preliminary proof. Texture enhancement

convolutional kernel is considered beneficial to denoising

and classification and first used to guide the design of

the metasurface. In spatial frequency domain, the texture

information of the image is contained in the high spatial

frequency part of the Fourier pattern and exists as the

light with a large incident angle on the exit surface of the

proposed Ce:YAG [19, 20]. Consequently, light with a large

incident angle needs to be transferred to center exit posi-

tion by convolutional metasurface to increase the propor-

tion of high-frequency information in the image. The finite

difference time domain (FDTD) method based on Maxwell

equations [21, 22] was used to simulate the metasurface to

confirm the metasurface characteristics with single-order

diffraction. The diffraction caused by the designed convo-

lutional metasurface should obey the following constraints

[4]:

−1 < sin 𝜃 <

(
1

𝜉
+ sin 𝜀

)
∕nCe:YAG (5)

where 𝜃 is the angle at which the light in the scintillator

irradiates the interface. 𝜉 is the structure period ofmetasur-

face which can be adjusted. 𝜀 is the acceptance angle of the

optical system, which depends on the size of the metasur-

face. nCe:YAG is the index of refraction of Ce:YAG. As shown in

Figure 3a, the zero-order diffraction light disappears from

the diffraction pattern with an incident angle of 𝜃 = 40◦

for the metasurface with 𝜉 = 300 nm (with convolutional

kernel K𝜉3), and only the first-order diffraction light can

be observed in the receiving region at even up to 𝜃 = 70◦,

covering most of the possible wavelengths of fluorescence.

For the metasurface with 𝜉 = 200 nm, almost no suitable

light can be observed in the diffraction pattern of, implying

that no information can be enhanced as shown in Supple-

mentary Figure 2a. If the period 𝜉 is increased to 400 nm,

the light with a small incident angle is mainly enhanced

and second-order diffraction will appear in the receiving

region (Supplementary Figure 2b). Owing to the above anal-

ysis, K𝜉3 is determined to be mapped to the metasurface to

extract the textural property (Figure 3b).

Next, the X-ray imaging experiments were conducted

at the BL13W1 beamline station at SSRF, where the beam

specifications are as follows: energy resolution (DE/E):<5 ×
10−3; beam size: 45 mm(H) × 5 mm(V). We chose the X-ray

radiation of 15 keV photon energy in the imaging process;

therefore, the flux output is near 5 × 1010 ph∕s∕mm2. The

scintillator with K𝜉3 is placed in the light path to provide

training data for decoder. A photon baffle located at the

X-ray exit end is used to ensure that the stray light in the

scintillator will not be excited outside the hole and use the

proposed framework to collect intensity images (Figure 3c).

Simple RNNapplies to obtain the stable decoder [23], and the

Euclid norm of the error matrix is used as the loss function

of the training. Stability is calculated from the evolution of

the absolute value of the matrix. As shown in Figure 3d,

the loss and accuracy are plotted over 60 training epochs

for the image with capture time of tcap = 20 ms and 100 ms.

The loss is decreasing quickly and reaches a minimum after

60 epochs. The accuracy also quickly approached and sta-

bilized at about 100 % within a few steps. The imperfect

training stability of the 20 ms image may be attributed to

the small number of photons obtained. After the standard

training process with step length = 60 is completed, the

Richardson–Lucy deconvolution algorithm is used to carry

out the back-propagation process of the convolutionalmeta-

surface as the decoder and present a complete fused opti-

cal–electronic CAE as SysK𝜉3 [24]. We demonstrated the

measured image of number “239” etched on the SiNx film

(Figure 3h) at first (Figure 3e), and the image generated by

the normal X-ray imaging system without CAE (NSys) are

also shown in Figure 3f for comparison. The images gener-

ated by our framework possess prominent “239” markings

and better image quality of the edge and texture struc-

ture, which is not observed in the pictures generated by

the NSys and the feature vectors Ŝ collected by the camera

(Figure 3g), verifying the feasibility of the proposed frame-

work. Owing to the learning of the convolutional kernel
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Figure 3: Design and training of texture enhancement convolutional kernel system (SysK𝜉3). (a) The diffraction patterns of the metasurface with

a 300 nm period for each incident angle 𝜃. The longitudinal axis is the fluorescence wavelength, and the transverse axis is the exit angle (the center

is 0◦) for each image. The color scale is independent of each image. (b) The SEM image of the metasurface K𝜉3. (c) Corresponding convolutional kernel

of K𝜉3. (d) Loss function and the stability during training. (e) The number “239” etched on the SiNx film observed by SysK𝜉3 and (f) the normal X-ray

imaging system without CAE (NSys). (g) The feature vectors Ŝ of “239” collected by the camera. (h) Long-exposure images of “239” as a reference.

The straw tissue image observed by (i) SysK𝜉3 and (j) NSys. (k) The feature vectors Ŝ and (l) long-exposure images of the straw tissue as reference.

The fins image observed by (m) SysK𝜉3 and (n) NSys. (o) The feature vectors Ŝ and (p) long-exposure images of the fins as reference.

rather than the information of I in, the training-completed

framework is generally suitable for all kinds of sample

without modification. Therefore, the straw tissue (Figure 3l)

and fins of Danio rerio (Figure 3p) are also employed to

test the proposed neural network. As expected, consist-

ing with the number image, the reconstructed images

showed the obvious fiber structure (Figure 3i) and dark

lepidotrichia (Figure 3m) compared to the Ŝ (Figure 3k and

o) and the NSys product (Figure 3j and n), which illustrates

the broad applicability of fused optical–electronic CAE in

multi-category images.

3.2 Quantitative analysis

Furthermore, we analyzed the feature extraction proper-

ties of SysK𝜉3 quantitatively. The response of fringes with

fixed 3 μm spacing was measured. The intensity ratio of the

stripe region to the blank region is further calculated to be

0.91 and 0.804 for the original image (Figure 4a) and the

image generated by SysK𝜉3 (Figure 4b), respectively. Consid-

ering that the proposed sample is imaged by absorption, a

lower intensity ratio indicates more obvious enhancement

and can be further calculated as a 1.14 times contrast-to-

noise ratio (CNR) improvement in the enhanced area. In

addition, the characteristics of “3 μm” are highlighted in

Figure 4b, and the seven intensity peaks corresponding to

seven bright lines in the region can be also distinguished,

but these characteristics cannot be observed in NSys. The

compressed Ŝ is shown in Supplementary Figure 3. The

Fourier transform spectrum was further obtained, which

indicates the enhancement of the orderly high-frequency

signal (Figure 4c) and consistent with the above analysis.

Therefore, it is necessary to calculate the SNR in the full

frequency domain to provide direct analysis, and long-term

exposure image (capture time > 100 ms, LEI) was used as

ground truth (Figure 4a and b). Owing to the need for sam-

pling accuracy, SNR data were collected from the corre-

sponding large-area images (Supplementary Figure 4) and

normalized based on ultra-high frequency noise. As shown

in Figure 4c, the image generated by SysK𝜉3 provides an

excellent SNR as high as 27.73 dB, which is approximately

11.2 dB higher than that of the original image and very close

to the SNR of the LEI of 29.36 dB at the same spatial fre-

quency (∼10−2 μm−1). Even in the ultrahigh-frequency band
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Figure 4: Measurement of the periodic structural sample by SysK𝜉3. (a) The image observed by NSys and the corresponding strength section.

Inset: LEI was used as ground truth. The detail area is specially enlarged to show the seven iconic peaks. (b) The image generated from SysK𝜉3
and the corresponding strength section. Inset: LEI was used as ground truth. The detail area is specially enlarged to show the seven iconic peaks.

(c) The curves of SNR in the whole spatial frequency range. The light blue area indicates the enhanced spatial frequency region. The 2D Fourier

transform spectra of NSys, SysK𝜉3, and SysK𝜉5 are shown in inset.

(∼10−1 μm−1), the image generated by SysK𝜉3 still indicates

an enhanced SNR, which is 2.56 dB higher than the original

image, similar to the LEI (∼3.52 dB). The increase in high-

frequency components in the spatial spectrum analysis can

be observed as expected, which demonstrates the texture

features enhancement capabilities of the proposed SysK𝜉3.

As a comparison, the decoder trained by the same

RNN process was also applied to the NSys and measured

to exclude the influence of the deconvolution algorithm on

the generator. In this situation, except for the metasurface,

the framework is consistent with the proposed fused CAE.

As shown in Supplementary Figure 5, the image generated

in the NSys with decoder by the same algorithm does not

possess similar feature enhancement to that SysK𝜉3, which

implies that the denoising effect of the Richardson–Lucy

algorithm on the image is limited, and the enhanced high-

frequency contribution is considered to come from the

eigenvector set extracted from the input dataset. Ordinary

image denoising algorithms such as the Gaussian filter

[25], mean filter [26], median filter [27], low-pass filter [28],

and two kinds of wavelet filters [29] were also measured.

As shown in Supplementary Figure 6, the feature enhance-

ment is not obvious compared with the image generated

by the proposed framework. This can be attributed to the

selection of convolutional kernels, and the bias toward light

with a large incidence angle enhances the texture rather

than the entire image.

3.3 Synchrotron X-ray tomography

As a practical exploration of the proposed optical–

electronic CAE applied to X-ray imaging, a tomography

experiment was conducted to verify and demonstrate its

technical applicability. The experiment was carried out at

the BL13W1 beamline station at SSRF, where 900 projection

images of a biological sample were obtained at different
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Figure 5: Tomography results for different X-ray imaging frameworks. Reconstructed slices and the enlarged view of the select area of the vertebra

via (a) Nsys and (b) SysK𝜉3. Reconstructed slices and the enlarged view of the select area of the rib via (c) Nsys and (d) SysK𝜉3. The brightness of

background noise is adjusted to the same level.

angles using the SysK𝜉3 and NSys imaging frameworks,

respectively. The exposure time was set to 100 ms and the

Gridrec reconstruction algorithm [30] was used to realize

the slice reconstruction from the projections. The zebrafish

D. rerio was used as the biological sample, of which

the reconstructed vertebra and rib slices are shown in

Figure 5. As can be seen from the figure, the reconstructed

slice is of extremely high quality as SysK𝜉3 significantly

increases the SNR and CNR of each projection. Compared

with the conventional X-ray imaging system without CAE

(NSys, Figure 5a and c), the reconstructed slices utilizing

SysK𝜉3 (Figure 5b and d) reveal clearer tissue contours and

sharper skeleton edges. The enlarged details of the selected

areas deeply demonstrate that the proposed framework

provides higher quality images with better edge and texture

features, thus achieving high-fidelity reconstruction. The

calculations using the perception-based image quality

evaluator (PIQE) and natural image quality assessment

method (NIQE) corroborated this improvement in image

quality (Supplementary Note 6) [31, 32]. Moreover, as

a contribution of 900 projections achieved by SysK𝜉3,

the reconstructed slice indicates that SysK𝜉3 enhances

the common features of the sample from different

angles, rather than randomly generating artifact signals,

confirming the potential of the proposed framework in

practical application.

4 Regulation of feature

enhancement trends

To further verify the extension and practical application

ability of the proposed framework, convolutional kernels

of regional feature enhancement are also manufactured



H. Shi et al.: Designable meta-feature-enhancer via fused CAE — 3801

to provide various feature extraction capabilities. The

isotropic periodic optical structure with 𝜉 = 500 nm (with

convolutional kernel K𝜉5) was fabricated as shown in Sup-

plementary Figure 7, and corresponding simulation indi-

cates that the increased photons are concentrated in

the low-frequency region (Supplementary Figure 8), which

drives the collective enhancement of adjacent areas, i.e., the

enhancement of regional feature. The fin edge (Figure 6a)

and spine (Figure 7a and b) of D. rerio are used to test the

proposed fused CAE with K𝜉5 (SysK𝜉5). The fin was placed

in a Teflon tube to compare different absorption coefficient

images. Therefore, in contrast to the enhancement of the

region edge (Figure 6b) and spine edge (Figure 7c and d)

by SysK𝜉3, the absorption difference between the material

and the muscle region is clearly distinguished by SysK𝜉5,

as shown in Figures 6c and 7e and f. The corresponding

intensity section reveals the special enhancement trend of

regional feature. The depression on the far right of the curve

is considered the Teflon region, and it can be observed that

the depression in Figure 6c is more obvious and flatter than

those in Figure 6a and b.

Further calculation shows that the intensity ratio of the

texture region represented by the fin to the selected blank

region is 0.881, 0.641, and 0.694 in Figure 6a–c, respectively.

For the region of Teflon, the intensity ratio of Teflon to the

blank area is calculated to be 0.858, 0.756, and 0.532, respec-

tively, showing different enhancement characteristics. The

three deep valleys on the left are attributed to the two

textures and the edge of the Teflon region. Therefore, the

texture features enhanced by SysK𝜉3 shows obvious edges in

Figure 6b, while the deep valleys in Figure 6c areweakened,

indicating different enhancement tendencies. In addition,

as a comparison of imaging enhancement effects, Laplacian

sharpening and low-pass operation are also shown in Sup-

plementary Figure 9. As more complete optical information

Figure 6: Measurement of proposed framework with multiclass convolutional kernels. (a) Image of the fin placed in a Teflon tube observed by NSys,

(b) SysK𝜉3, and (c) SysK𝜉5 with the corresponding strength section. The blue box indicates the contrast between the two different enhancement

features. (d) The curves of SNR in the whole spatial frequency range. The light blue area indicates the enhanced spatial frequency region. The 2D

Fourier transform spectra of NSys, SysK𝜉3, and SysK𝜉5 are shown in inset.
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Figure 7: Spine images observed by different frameworks. (a) The spine image observed by a camera system equipped with a scintillator (direct

imaging) and (b) the corresponding 2D Fourier transform spectrum, (c) by K𝜉3 and (d) the corresponding 2D Fourier transform spectrum, and (e) by K𝜉5
and (f) the corresponding 2D Fourier transform spectrum. The blue box indicates the contrast between the two different enhancement features.

is obtained, the system exhibits a more excellent enhance-

ment effect as expected.

Moreover, SNR (Figure 6d) and CNR data are also col-

lected from the corresponding images. The image gener-

ated by SysK𝜉5 shows an enhanced low-frequency (∼7 ×
10−3 μm−1) SNR as high as 32.93 dB, which is 2.68 dB greater

than that in the original image, but the signalmappedby tex-

ture features is even weaker than that in the original image,

as shown in the high-frequency region. Correspondingly, the

image generated by SysK𝜉3 shows that the high-frequency

SNR is as high as 9.32 dB, as expected, and that the SNR

of the original image in the same position (∼10−1 μm−1)

is only 6.48 dB, indicating the contrast between different

enhancement regions. The CNR comparison based on the

Teflonmaterial area and fin area also shows a reverse trend

for the different convolutional kernels used. For the orig-

inal image, the CNR of the Teflon area and fin area was

calculated to be 1.030, close to 1, while the image gener-

ated by SysK𝜉3 indicated a lower CNR of 0.849 owing to the

enhancement of the area with obvious texture. However,

the image generated by SysK𝜉5 indicated a CNR as high as

1.304, far beyond the original CNR, indicating the inver-

sion caused by enhancement of the regional feature. There-

fore, the regional feature enhancement characteristics of

SysK𝜉5 are confirmed by the above results. In addition, the

corresponding frequency-domain patterns are displayed in

Figure 6d, which further reveals the different enhancement

trends of the low-frequency region and the high-frequency

region attributed to feature enhancement abilities of differ-

ent convolutional kernels.

5 Discussion and conclusion

Therefore, we have developed a fused optical–electronic

CAE applied to X-ray imaging by synergistically combin-

ing optical metasurfaces and neural network methods. Our

framework allows for the generation of feature enhanced

images directly from fluorescent images gained in scintil-

lator and has been successfully validated by implementing

two representative types of application by adjusting the

structure of the metasurface in the experiment. Compared

with the unprocessed image, the reconstructed image has
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distinct texture features (or regional features) and improves

SNR. In addition, benefiting from the learning to the imaging

process instead of the input image, the same device can

be employed for various purposes immediately, without

precollecting large amounts of data for a certain type of

sample [16]. These characteristics greatly broaden the uti-

lization scenarios and potential usefulness of the proposed

framework.

In our current implementation, the design using

diffraction equations can only produce simple periodic

structures. It is still possible to manufacture complex struc-

tured metasurfaces, such as octagon or L-shaped (Supple-

mentary Figure 10), although the effect cannot be accurately

known in advance (Supplementary Figure 11). By break-

ing the structural symmetry of the metasurface and using

higher design degrees of freedom, such as a chiral metasur-

facewith L-shape elements, one can explore the asymmetric

transmission of image information in different polarization

modes, which is an effective approach for further expand-

ing the design of convolutional kernels [33, 34]. Successive

fine control of the optical field information can be achieved

through the expansion of the structural parameter space.

From the perspective of development prospects, further

expansion of convolutional kernel requires the concept of

diffractive neural network to design, that is, the network

can be trained off-line using computer simulations, and the

predetermined photoresponsivity matrix is thenmapped to

the metasurface [35, 36]. In the meantime, more training

time and algorithm design are required, which prolongs

the preparation time. However, compared to conventional

numerical ANNs, proposed fused CAE still has a very low

demand for precollected data and possesses advantages. As

a typical bottleneck in conventional numerical ANNs, the

massive demand for training data is difficult to achieve

in practical applications, especially for synchrotron X-ray

imaging. The main reason is that the uncertainty of the

site and time will directly affect the photon flux and stray

noise, and the scarce synchrotron radiation resources do

not allow long-termdata collection. Under these constraints,

conventional numerical ANNs can only be trained blindly

like “taking a chance,”making it impossible to comparewith

our method in the same scenario. Therefore, we believe

that the proposed fused optical–electronic CAE has unique

application potential in synchrotron radiation sources.

Another issue worth discussing is that although neural

networks with optical physical designs do not offer flexibil-

ity comparable to numerical ANNs, they still have advan-

tages in computational speed due to the unparalleled speed

of light, low power consumption, and potential parallel

computing power [37]. Although it is difficult to compare

optical neural networks and numerical ANNs for speed

and energy consumption due to different physical design

and connection latency, a reliable number is that optical

neural network can achieve ∼6 times the speed of GPUs

(NVIDIA-TitanX) for 4-megapixel images, and it is further

enhanced as the number of pixels increases because the

optical calculation speed is independent of the pixel number

[38]. Such high-speed computation and huge data through-

put allow optical neural networks to overcome some of

the unrealistic computational demands faced by numeri-

cal ANNs; therefore, this kind of neural networks can be

particularly used for those involving huge computational

load and on-the-fly data processing, such as real-time recon-

struction of living images and intraoperative X-ray image

processing [36]. A typical example, aswe describe, is the CAE

processing of synchrotron beamline X-ray imaging, because

of the unavoidable complex convolution and deconvolution

processes therein: if we convolve an input image contain-

ing m × m number of pixels with a kernel of shape, n × n

yields a computational complexity as high as O
(
m2n2

)
. The

amount of data processing caused by convolution opera-

tions on large images is prohibitive let alone achieves real-

time processing; thus, it is very necessary to apply optical

neural networks to solve this difficult problem. We also

realized that, compared to the almost unlimited calculation

speed of light, the decoding calculation on the computer

weakens the image processing speed in the proposed frame-

work. Considering that the image sensor itself canbe trained

as an artificial neural network,we suggest that replacing the

detector with a programmable distributed vision sensor is

expected to lift the restriction on computing speed toward

ultrafast CAE in further research [39, 40].

In conclusion, the neural networkwith designable opti-

cal convolutional metasurface proposed here has been suc-

cessfully used to enhance the features of X-ray images. We

anticipate that the proposed approach will accelerate the

development of imaging modalities as critical support for

fast and accurate modern X-ray imaging technology and

provide various possibilities for dynamic imaging.
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