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1 Field expansion via vector spherical harmonics

Assume a particle positioned inside an infinite, non-dispersive, linear, homogeneous, and isotropic
medium with an electromagnetic field illuminating it. The total electric field in the spatial domain out-
side and around the particle at an angular frequency ω consists of the incident and scattered fields. Each
of these fields can be expanded using vector spherical harmonics (VSHs) [1] as,

Einc(r) =
∞∑
j=1

j∑
m=−j

qejmN
(1)
jm(kr) + qmjmM

(1)
jm(kr), (S1a)

Esc(r) =

∞∑
j=1

j∑
m=−j

aejmN
(3)
jm(kr) + amjmM

(3)
jm(kr), (S1b)

with qvjm and avjm, j = {1, 2, 3...} - positive interger, m = {−j, ..., j}, v = {e,m}, the electric/magnetic
incident and scattered field expansion coefficients, respectively, or simply the incident and scattering
coefficients. The wavenumber k corresponds to the medium that surrounds the particle, and r > rc, with
rc being the radius of the smallest sphere that circumscribes the particle. Moreover, the VSH are defined
as,

M
(l)
jm = γjm∇×

[
r̂z

(l)
j (kr)Pm

j (cosθ)eimϕ
]
, (S2a)

N
(l)
jm =

1

k
∇×M

(l)
jm, (S2b)

with

γjm =

√
(2j + 1)

4πj(j + 1)

√
(j −m)!

(j +m)!
, (S2c)
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Figure S1: A square lattice of identical particles along with the set-up Cartesian and spherical coordinate
systems. The 2D array is illuminated by an incident wave, Einc, and subsequently emits a scattered wave,
Esc.

with l = 1 for the incident field and l = 3 for the scattered one. Additionally, z(1)j (x) = jj(x) is the

spherical Bessel function of the first kind, while z
(3)
j (x) = h

(1)
j (x) is the spherical Hankel function of

the first kind. Finally, Pm
j (x) is the associated Legendre polynomial.

2 Scattering from 2D arrays via multipolar expansion

Let us assume an infinite square array composed of arbitrary, identical and absorption-less particles, as
displayed in Fig. S1, placed in a homogeneous material with εr and µr being the relative permittivity
and permeability of the medium, respectively. Let us consider, also, an electromagnetic plane wave
impinging onto this 2D array, with an electric field, Einc = E0 e

ikinc·r, with a wavevector, kinc =
kincx x̂ + kincy ŷ + kincz ẑ, and a magnitude, E0 = |E0|. After employing the VSH formulation and the
multipolar expansion method, the scattered fields from each diffraction order, defined by the reciprocal
lattice G, can be expressed as [2, 3, 4]

Esc=
i
√
π

2d2k2
eik

±
G·r

| cos θ|
∑
j

√
2j + 1

i j

[
Wj W

′
j

iW′
j iWj

][
aej
amj

]
, (S3)

where d is the period of the square lattice, k±
G is the wavevector of the respective mode G, θ is the polar

angle of the wavevector and the ± signs refer to transmission or reflection, respectively. The wavevector
k±
G for a square lattice and each of diffraction orders are calculated as [2]

k±
G = kG,x x̂+ kG,y ŷ + k±G,z ẑ, (S4a)

kG,x = kincx +
2πn1

d
, kG,y = kincy +

2πn2

d
, (S4b)

k±G,z =±

√
k2−

(
kincx +

2πn1

d

)2

−
(
kincy +

2πn2

d

)2

= k cosθ, (S4c)
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where n1, n2 ∈ Z are the diffraction orders. The respective elements of the vectors Wj and W′
j are

Wjm = m
cos(θ)P

m
j (cosθ) and W ′

jm = ∂
∂θP

m
j (cosθ), with Pm

j (x) being the associated Legendre polyno-

mial. The vectors a{e,m}
j in (S3) are the effective electric/magnetic scattering coefficients of the particle

inside the lattice, for each multipolar order j, and they are calculated via the effective T matrix, i.e.
the renormalized T matrix of the constituting particle within the lattice, as presented in (3) of the Main
article.

3 Mie angles

Considering an isotropic particle, namely a sphere, made from an absorbing material, its Mie coefficients
can be expressed as[5]

aj =
1

1− i tanθEj + tanθ′Ej
, −π

2
≤ θEj ≤

π

2
, 0 ≤ θ′Ej ≤

π

2
, (S5a)

bj =
1

1− i tanθMj + tanθ′Mj

, −π

2
≤ θMj ≤

π

2
, 0 ≤ θ′Ej ≤

π

2
. (S5b)

where θEj and θMj are the detuning Mie angles, while θ′Ej and θ′Mj are the absorption Mie angles.
Moreover, if, e.g., the electric dipole Mie coefficient is modelled using a Lorentzian dispersion , then

it can be expressed as a function of the respective Mie angle, or [5],

a1 =
iγer/2

(ω − ω0e) + i(γenr + γer)/2
, with tanθE1 =

2 (ω − ω0e)

γer
and tanθ′E1 =

γenr
γer

, (S6)

where ω0e being the resonant frequency and γer and γenr, the radiative and non-radiative (absorption)
losses, respectively, for the specific electric dipole. Other Mie coefficients either magnetic or of higher
order can be modelled in a similar fashion with Lorentz dispersion using Mie angles [5]. Therefore, the
Mie angle formulation can also be useful for the study and design of particles while taking into account
a frequency-dependent scattering response.

Let us now examine a BIC example considering Mie coefficients with Lorentz dispersion. If we
consider an isotropic particle represented by the Mie coefficients a1 and b1, placed on a cubic lattice with
dimension d, we can find the BIC point by using (S3). In particular, assuming no absorption and a non-
dispersive radiative losses, one can sweep the resonant frequencies ω0e and ω0m, for specific operational
normalized frequency, ω̃d = ω d/2πc, and angle of incidence, θd, as goals, and the resulting reflection
coefficient from the corresponding 2D array is depicted in Fig. S2. A BIC is observed for the resonant
frequencies (ω0e, ω0m) · d/2πc = (0.75, 0.55), electric and magnetic, respectively, for ωd/2πc = 0.55
and θd = 35o. Thus, one can, afterward, engineer a particle with the specific parameters using an
optimization method to realize this specific BIC behavior with metasurfaces.

For the case of no losses, the absorption Mie angles turn to θ′Ej = θ′Mj = 0 and (S5) become the
Mie angle expressions for lossless particles [5], as applied in the Main article. In particular, when a
scatterer is isotropic and without absorption, the respective Mie coefficients can be described in terms of
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Figure S2: Reflection coefficient magnitude from a cubic 2D array with identical a1 and b1 dipoles
exhibiting Lorentz dispersion, as demonstrated in (S6), versus the normalized electric and magnetic
resonant frequencies. The scatterers are assumed to be lossless (γnr = 0, while the radiative losses
are, γer = 1100c/d, γmr = 360c/d, the angle of incidence, θinc = 35o, and the normalized frequency,
ωd/2πc = 0.55.

Mie angles as

aj =
1

1− i tanθEj
, −π

2
≤ θEj ≤

π

2
, (S7a)

bj =
1

1− i tanθMj
, −π

2
≤ θMj ≤

π

2
. (S7b)

The Mie angle formulation enables accessing all possible values of the Mie coefficients for an existing
isotropic and without absorption particle, simply by sweeping through all possible angles, θEj and θMj , as
declared in (S7). This versatile formulation can, subsequently, aid the investigation of optical phenomena
and design of novel devices [6, 4], and is further applied in the Main article.

4 From Cartesian to Spherical multipoles

Although the scattering response of a single particle and of the subsequent 2D array is provided in this
work using the spherical coordinates and the T matrix approach, the proposed analysis is valid and
interchangeable with the use of multipoles in cartesian coordinates and the polarizability matrix. In
particular, one can obtain the T matrix of a particle from the polarizability matrix and vice versa using
the appropriate transformation matrices for each multipolar order [7, 4]. Additionally, modifications of
the same matrices can transform multipoles of the same type and order from a spherical to a cartesian
basis and vice versa. For example, in the case of electric dipoles, the transformation between cartesian
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and spherical coordinates is performed as [7], px
py
pz

 =
ε
√
3π

ik3

 1 0 −1
−i 0 −i

0
√
2 0

 ae1−1

ae10
ae11

 , (S8a)

mx

my

mz

 = −
√
3π

ηk3

 1 0 −1
−i 0 −i

0
√
2 0

 am1−1

am10
am11

 . (S8b)

Similarly, the transformation above can be performed for quadrupoles, or j = 2, as [7, 4]
Qe

xy

Qe
yz√

3
2 Qe

zz

Qe
xz

1
2

(
Qe

xx −Qe
yy

)

 =
ε 6

√
5π

ik4


−i 0 0 0 i
0 −i 0 −i 0

0 0
√
2 0 0

0 1 0 −1 0
1 0 0 0 1



ae2−2

ae2−1

ae20
ae21
ae22

 , (S9a)


Qm

xy

Qm
yz√

3
2 Qm

zz

Qm
xz

1
2

(
Qm

xx −Qm
yy

)

 = −6
√
5π

ηk4


−i 0 0 0 i
0 −i 0 −i 0

0 0
√
2 0 0

0 1 0 −1 0
1 0 0 0 1



am2−2

am2−1

am20
am21
am22

 . (S9b)

The vectors on the left side of (S9) represent one irreducible set of quadrupoles on Cartesian coordinates.
The remaining quadrupoles can be calculated using symmetries, i.e. Qij = Qji and Qxx+Qyy+Qzz =
0. A relation between octupoles (j = 3) in Cartesian and spherical coordinates can additionally be found
in [4]. Extending the transformations for higher orders is, afterward, becoming increasingly difficult and
cumbersome, while the intuition provided by the Cartesian coordinates diminishes. Thus, for j > 3 the
use of multipoles represented in spherical coordinates is advised.

When only dipoles are considered, beginning from (S8), the transformation between the polarizabil-
ity and T matrices can be derived as [7, 4]

¯̄αvv′ = − ik3

6π

 1 0 −1
−i 0 −i

0
√
2 0

 ¯̄T vv′

 1 0 −1
−i 0 −i

0
√
2 0

−1

, {v, v′} = {e,m}. (S10a)

with [
p

iηm

]
= ¯̄α

[
εE
iηH

]
(S10b)

with the dipolar polarizabilities defined as in [4]. Moreover, if spherical particles are assumed, as it is
the case in this work, then, the total polarizability matrix becomes diagonal, or ¯̄α = diag

{
¯̄αee ¯̄αmm

}
=

diag
{
αee
xx αee

yy αee
zz αmm

xx αmm
yy αmm

zz

}
= diag

{
αe αe αe αm αm αm

}
. Similarly, the T matrix becomes

diagonal, or ¯̄T = diag
{ ¯̄T ee ¯̄Tmm

}
= diag

{
−a1 −a1 −a1 −b1 −b1 −b1

}
, with a1 and b1 being the

Mie coefficients, as defined above. Therefore, the polarizabilities of a spherical particle can be directly
derived from the Mie coefficients through (S10) as

αe =
ik3

6π
a1 and αm =

ik3

6π
b1. (S11)
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5 BIC identification for a dipole metasurface

After having introduced the theoretical tools to describe the electromagnetic response of 2D arrays com-
posed of isotropic particles, in this section, we will describe the procedure of identifying the presence of
BICs after setting certain goals.

First, let us theoretically acquire the BIC position using the multipolar expansion technique [8, 9,
10, 4]. If we again assume a square array composed of identical and isotropic particles (Fig. S1), its
response to an incident field can be described by substituting (1)-(3) from the Main article into (S3), and,
thus, a linear system of equations is formed. Solving the eigenvalue problem leads to the modes of the
array, including, in this case, the trapped ones that do not couple with radiation channels, i.e., the BICs.
Therefore, if we invert the square matrix of the system to the left side and set the excitation to zero, or
q{e,m} = 0, the resulting homogenous system will have a non-trivial solution if the determinant of the
matrix is zero. In particular, after some algebra, the BIC condition is reduced to,∣∣∣ ¯̄I − ¯̄T0

¯̄Cs

∣∣∣ = 0. (S12)

The equation above is general in nature and can be used for any type of lattice or particle in a homogenous
medium [4]. Due to its complexity, (S12) can only be solved numerically in its general form, i.e. for
higher order multipoles or more diverse lattices. Nevertherless, for specific reduced cases, versatile
analytic solutions can be found, as demonstrated in [4] for the case of the coupled electric dipole -
magnetic quadrupole on a square lattice and for a TM-polarized plan wave at normal incidence.

The matrix ¯̄Cs is the lattice coupling matrix expressed in spherical coordinates, which is a function of
the unit cell dimension, the frequency, and the wavevector, and can be calculated via rapidly converging
summations using Ewald’s method [3, 11, 12].

In this work, we consider a square lattice decorated by isotropic and lossless particle whose response
is expanded only up to dipolar order, or j = 1. Then, because the elements of the lattice interaction
matrix, ¯̄Cs, can be pre-calculated for a specific incident wavevector, kinc, and a normalized lattice di-
mension, d/λ, eventually, (S12) can be solved with the Mie angles of (S7) for j = 1 as the unknowns.
Specifically, for a dipole approximation and an oblique incidence on the lattice, ¯̄Cs is simplified to,

¯̄Cs =



C ee
−1−1 0 C ee

−11 0 C em
−10 0

0 C ee
00 0 C em

0−1 0 C em
01

C ee
1−1 0 C ee

11 0 C em
10 0

0 C me
−10 0 C mm

−1−1 0 C mm
−11

C me
0−1 0 C me

01 0 C mm
00 0

0 C me
10 0 C mm

1−1 0 C mm
11

 =



C1 0 C3 0 C5 0
0 C2 0 C5 0 C5

C3 0 C1 0 C5 0
0 C5 0 C1 0 C3

C5 0 C5 0 C2 0
0 C5 0 C3 0 C1

 . (S13)

Let us now assume an oblique TE (or s-polarized) incident wave. For this specific incidence, a dipole
approximation and an isotropic particle only the mx, py, and mz dipoles are excited, or, if the spherical
coordinates are used, the T matrix turns to ¯̄T0 = diag(−a1, 0,−a1,−b1,−b1,−b1). Therefore, (S12)
turns to

[(C1 − C3)a1 + 1] ·
[
(C2

1 − C2
3 )b

2
1 + 2C1b1 + 1

]
·[

(C1C2 + C2C3 − 2C2
5 )a1b1 + (C1 + C3)a1 + C2b1 + 1

]
= 0.

(S14)

6



The first and second terms are associated with collective lattice resonances, which refer to the collective
response of the 2D identical particle array [13, 14, 4, 15]. These resonances exhibit no BIC behavior as
they radiate in the environment, and their study is out of the scope of this work. The third term describes
the coupling of the py and mz dipoles and, since the accidental BICs rely on the interference between
in-plane and out-of-plane multipoles to suppress the far-field radiation, it will provide the condition
necessary for the appearance of the BIC mode (see Fig. 2(a)). The same procedure can be repeated for
the TM (or p-polarized) incidence, but this time only the px, my and pz dipoles are excited. Thus, one
must insert ¯̄T0 = diag(−a1,−a1,−a1,−b1, 0,−b1) in (S12).

Following the procedure above, the relation between the dipolar magnetic and electric Mie coeffi-
cients is derived for TE or TM incident wave, respectively, from (S12) as,

b1 = − 1 + a1 (C1 + C3)

C2 + a1
(
C1C2 + C2C3 − 2C 2

5

) , (TE / s-polarized incidence) (S15a)

a1 = − 1 + b1 (C1 + C3)

C2 + b1
(
C1C2 + C2C3 − 2C 2

5

) (TM / p-polarized incidence). (S15b)

where C1, C2, C3, and C5, are the dipole-dipole interaction coefficients or the elements of the ¯̄Cs for
j = 1 for a square lattice [3, 4], as demonstrated in (S13). Note that the equations for TE and TM
equations are similar with only the coefficients a1 and b1 swapped, as anticipated due to symmetry. One
should notice from (S15) that the electric-magnetic lattice coupling coefficient is crucial for the existence
of a (a1, b1) solution, indicating the importance of multipolar, electromagnetic coupling for realizing a
BIC. Hence, for the specific aforementioned cases, (S15) gives the exact position of the BIC for given
TE and TM incidences, respectively, and they will greatly aid the design and post-processing analysis,
herein. In this context, it will become evident why the Mie angle representation of the Mie coefficients
is convenient for the identification of the BIC points. For example, for the s-polarized incidence case,
by substituting (S7) into (S15a), and due to the boundaries of θE1 and θM1 between −π/2 and π/2, the
exact solution can be easily obtained via a non-linear equation solver for a given wavelength and lattice
dimension. Alternatively, one can sweep θE1 in (S15a) between between −π/2 and π/2 and keep only
the solutions that satisfy the condition |b1| = 1 for lossless particles[5], as performed in [4].

6 Computation of the lattice coupling matrix ¯̄Cs

In this section, we briefly provide the formulas to calculate the elements of a lattice coupling matrix
for a 2D multipole array. This discussion is entirely based on our previous work [3, 4, 11]. The lattice
coupling matrix ¯̄Cs depends on the dimensions of the 2D array and the relative phase between lattice sites
expressed by the components of wave vector k∥ of the incident plane wave that are tangential with respect
to the lattice. The vectors R = n1u1 + n2u2, n1, n2 ∈ Z cover all lattice sites with the vectors u1 and
u2 describing one unit cell of the lattice. We focus now at the particle at the origin. The response of all
other sites can be obtained by including the correct phase. The matrix ¯̄Cs is calculated after summating
the translation coefficients from all other positions on the 2D array to R = 0. The radiated fields from a
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point R can be reexpanded at the origin using the translation properties of the VSHs [16]

M
(3)
jm(kr− kR) =

∞∑
ι=1

ι∑
µ=−ι

Aιµjm(−kR)M(1)
ιµ (kr) +Bιµjm(−kR)N(1)

ιµ (kr), (S16)

N
(3)
jm(kr− kR) =

∞∑
ι=1

ι∑
µ=−ι

Bιµjm(−kR)M(1)
ιµ (kr) +Aιµjm(−kR)N(1)

ιµ (kr), (S17)

expressed by the translation coefficients

Aιµjm(kr, θ, ϕ) =
γjm
γιµ

(−1)m
2ι+ 1

ι(ι+ 1)
iι−j

√
π
(j +m)!(ι− µ)!

(j −m)!(ι+ µ)!

∑
p

ip
√

2p+ 1h(1)
p (kr)Yp,m−µ(θ, ϕ)×(

j ι p
m −µ −m+ µ

)(
j ι p
0 0 0

)
[j(j + 1) + ι(ι+ 1)− p(p+ 1)] ,

(S18a)

Bιµjm(kr, θ, ϕ) =
γjm
γιµ

(−1)m
2ι+ 1

ι(ι+ 1)
iι−j

√
π
(j +m)!(ι− µ)!

(j −m)!(ι+ µ)!

∑
p

ip
√

2p+ 1h(1)
p (kr)Yp,m−µ(θ, ϕ)×(

j ι p
m −µ −m+ µ

)(
j ι p− 1
0 0 0

)√
[(j + ι+ 1)2 − p2] [p2 − (j − ι)2].

(S18b)

with the Wigner 3j-symbols
(
j1 j2 j3
m1 m2 m3

)
[17, 18]. The sum index p takes all integer values for

which the Wigner 3j-symbols are non-zero. The normalization factor γ is given in (S2c), h(1)p (x) are the
spherical Hankel function of the first kind and Yp,m−µ(θ, ρ) are the spherical harmonics. Expressed in
matrix form and summing up the response of all other lattice sites to R = 0, ¯̄Cs is defined as

¯̄Cs =
∑
R̸=0

( ¯̄A(−kR) ¯̄B(−kR)
¯̄B(−kR) ¯̄A(−kR)

)
eik∥·R, (S19)

with the rows and columns of ¯̄A and ¯̄B given by the translation coefficients with j, ι ∈ N, m ∈ {−j,−j+
1, . . . , j}, and µ ∈ {−ι,−ι+ 1, . . . , ι}. Now, the crucial step for the numerical evaluation of the matrix
coeffiecients is the lattice sum over R. The part of the Cs elements that depends on R is given by

Djm =
∑
R̸=0

h
(1)
j (kR)Yjm (θ−R, ϕ−R) e

ik∥R . (S20)

The direct evaluation of (S20) is generally converging extremely slowely. Therefore, we make use of
the Ewald summation method [19]. By separating short- and long-range contributions, we can sum them
independently in real and Fourier space. This separation leads to two separate quickly converging series.
Conventionally writing these parts as Djm = D

(1)
jm +D

(2)
jm +D

(3)
jm, where the third summand includes a

correction term for the missing origin contribution when converting the long-range part to Fourier space,
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we get by following [20] the expressions

D
(1)
jm =

√
(2j + 1)(j −m)!(j +m)!

Ak i−m

∑
G

( |k∥ +G|
2k

)j
e
imϕk∥+G

k+G,z

j−|m|
2∑

λ=0

(
k+
G,z

|k∥+G|

)2λ

Γ

(
1
2 − λ,− (k+

G,z)
2

4T 2

)
λ!

(
j+m
2 − λ

)
!
(
j−m
2 − λ

)
!

,

(S21a)

D
(2)
jm =

−i(−1)
j+m

2

√
(2j + 1)(j −m)!(j +m)!

2j+1π j−m
2 ! j+m

2 !

∑
R̸=0

eik∥·R+imϕ−R
1

k

(
2R

k

)j
∞∫

T 2

uj− 1
2 e−R2u+ k2

4u du, (S21b)

D
(3)
jm =

δj0
4π

Γ

(
−1

2
, − k2

4T 2

)
. (S21c)

The D
(1)
jm term involves the reciprocal lattice G and the wavenumber k+G,z explained in (S4), while

Γ(12 − λ, z) is the the upper incomplete Gamma function. The parameter T is giving the separation
between the real and the Fourier space summation [3] and A is the area of the unit cell defined by u1

and u2. Finally, the integral in D
(2)
jm is calculated using a recursion relation, while the δij in D

(3)
jm is

the Kronecker delta. After calculating Djm of (S21) with these expressions, one can insert the retrieved
value in (S19) and, thus, obtaining the desired lattice coupling matrix ¯̄Cs.

7 Two BICs in one band

During the analysis of BIC robustness in k-space, we found that there is a combination of Mie angles at
which two BICs on the same mode line can exist. Figure. S3(a) shows the BIC positions for different
angles θ and frequencies ω̃ = ωd/2πc. It turns out that there are BICs in different points of k-space
that are characterized by the same optical response of a single scatterer, which suggests that these two
BICs exist on the same modal line. The first BIC is for θ1 = 43◦ and ω̃ = 0.501, the second BIC is for
θ1 = 52.5◦ and ω̃ = 0.466. There are two points on the blue and orange line for which the combination of
Mie angles is the same (see Fig. S3(b)). The Mie angles for this example are θE1 = −0.915171, θM1 =
0.066822. Fig. S3(c) shows the reflection R as a function of the normalized frequency ωd/2πc and
the incident angle θ = 42◦ − 54◦ for the square lattice with period d = 450 nm and demonstrates that
two BICs can exist on one mode line. The green and purple circles mark the areas where the BICs
appear. Fig. S3(b) shows the dependence of the Q-factor on the angle of incidence θ and how it changes
dramatically for angles θ = 43◦ and θ = 52.5◦.
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