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Abstract: The dissipative Kerr soliton combs based on
microresonators have attracted wide attention due to their
high coherence and on-chip integration. Meanwhile, the
soliton microcombs have shown broad applications in
coherent communication, on-chip low-noise microwave
synthesizer, optical clock, etc. However, the performance of
these applications is typically limited by their bandwidth
as the precise tuning of the soliton microcombs usually
relies on the thermoelectric cooler, which is slow and may
increase the system’s complexity. Here, we demonstrate the
observation of dissipative solitons based on the magnesium
fluoride resonator with an ultrahigh-quality (Q) factor of
about 927 million. The ‘power-kicking’ scheme is employed
to lock and stabilize the solitons actively. Also, tuning the
acousto-optical modulator allows changing the bandwidth
and recoil of the solitons. This approach enables more direct
and concise feedback and reduces the system’s complexity.

Keywords: soliton microcombs; ultrahigh-Q; crystalline
resonator

1 Introduction

Optical frequency combs (OFC) based on resonators can
feature high phase and frequency stability which has gained
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wide attention and rapid developments, in both fundamen-
tal science and technology. In particular, the dissipative Kerr
soliton (DKS) in optical resonator corresponds to a broad-
band frequency comb that leads to a variety of applica-
tions in coherent optical communications [1], optical clocks
[2], ultrafast distance measurement [3], dual-comb spec-
troscopy [4], ultra-low noise microwave synthesizer [5-8],
to name a few. Recently studies have centered on generating
soliton microcombs in resonators with different materials,
such as silicon dioxide (Si0,), silicon nitride (SisN,), lithium
niobate (LiNbO,), and magnesium fluoride (MgF,) [9-12].
Especially, for MgF,, with its high nonlinearity from UV to
mid-IR bands, lower thermo-optical coefficient, and smaller
material absorption, is considered to be the ideal platform
for stable soliton microcombs generation. It is worth not-
ing that although the soliton microcombs have made great
progress in many fields, there are still many fundamental
limits on the effective tuning and optimizing the parameters
of the soliton microbomb, such as the soliton bandwidth,
and the soliton recoil, etc.

The thermal effects provide an approach to control
the resonance mode of a resonator which has been widely
used for direct access and tuning of the soliton microcombs.
For example, the auxiliary laser is used to compensate for
power changes in the soliton regime to generate soliton
microcombs [13, 14], and another route is to use the inte-
gration of a thermoelectric cooler (TEC) under the resonator
substrate to directly pump the soliton microcomb at a spe-
cific repetition rate and tune their bandwidth and recoil
[15, 16]. Flexible switching of the repetition rate is realized
by selecting the appropriate mode family [17]. However,
the approach using thermal effects usually exhibits delayed
feedback and additional power consumption. In addition,
broader bandwidth tuning of soliton spectra span and high
sensitivity gas sensing was achieved by altering the Fermi
level of the graphene-based resonator to successively mod-
ulate its second- and higher-order chromatic dispersions
[18-20]. The microcircuit system composed of integrated
piezoelectric actuators also provide additional method for
tuning the mode resonance which is very attractive for
initiating, tuning, and stabilizing the soliton microcombs
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[21], but the above schemes usually require high fabrication
technology and cost, and its comb frequency interval of
hundreds of GHz is still a regret for microwave generation
in X- (10 GHz) and K-bands (20 GHz) [22, 23]. Thus, there are
still challenges to realize highly efficient and widely tunable
soliton combs.

In this work, we demonstrated the active lock and
direct tuning of soliton microcombs in an ultrahigh-Q
MgF, crystalline resonator by utilizing the ‘power-kicking’
scheme and servo feedback [24]. The MgF, resonator with
a diameter of about 2.6 mm is fabricated via fine polish-
ing process, the Q factor approached 927.5 million [25, 26].
The single soliton comb with the repetition rate of about
26.5 GHz from 1520 nm to 1580 nm is generated when the
pump power is around 23 dBm. We investigate the directly
and rapidly tuning on the bandwidth and recoil of the
soliton microcomb by controlling the modulation voltage
and frequency of an acoustic—optic modulator (AOM). In
addition, the smoothly switching from a static single soliton
state to a breathing soliton state is achieved by continuously
increasing the AOM modulation frequency, which facili-
tated easier access to the breathing soliton state for further
studying its dynamics. Compared with the previous results
using TEC, we only need to directly changing the modulation
voltage and frequency of the AOM to obtain fast feedback of
the soliton microcomb.

2 Device fabrication
and the generation of solitons

In this work, we show that the tuning of the pump would
lead to the formation of dissipative solitons microcombs
in resonators, the detailed setup is shown in Figure 1(a).
The MgF, crystalline resonator used here has a high-quality
factor and anomalous dispersion. The fabrication process
of the device could be realized as follows: first, the pur-
chased magnesium fluoride cylindrical crystal is fixed on
the motor spindle, which drives the crystal at high speed.
And the crystal is rotated and shaped by using a custom
diamond turning tool to estimate the edge geometry of the
crystal resonator, which is typically simulated by COMSOL
to ensure it has anomalous dispersion [25]. The resonator
with the diamond turning process completed is shown in
the inset in Figure 1(b), and the corresponding fundamental
transverse magnetic mode profile is also presented. Then,
in order to eliminate the cracks during mechanical shaping,
the edges of the resonator need to be chemically polished
using a diamond slurry, from large particles to small parti-
cles in succession. Especially, aiming to maintain the edge

DE GRUYTER

(@) arc

Feedback control

osc T osAa

(c)

0

Q=927 % 10°

Intensity(a.u.)

o Cavity Exp.
—— Lorentz fitting

00 19.0
Frequency(MH7)

Figure 1: The setup and devices of for micorcombs generation.

(a) Experimental setup for soliton microcombs generation. AFG, arbitrary
function generator; EDFA, erbium-doped fiber amplifier; BPF, bandpass
filter; AOM, acoustic-optic modulator; FPC, fiber polarization controller;
FBG, fiber Bragg grating filter; PD, photodetector; OSC, oscilloscope; OSA,
optical spectrum analyzer. (b) Optical microscope image of an MgF,
resonator with a diameter of about 2.6 mm. The insets on the right show
images of a machined and unpolished resonator and the corresponding
COMSOL simulation of the fundamental transverse magnetic mode
profile. (c) The transmission spectrum of the MgF, resonator and the
quality factor of the mode was measured using a calibrated free spectral
range (FSR) Mach-Zehnder interferometer (MZI) of approximately 927
million.

geometry, the size of the cracks on the crystal requires to be
monitored real-time and the corresponding cracks need to
be treated using diamond slurry with the right size particles
until the edge surface is smooth. Finally, the resonator is
cleaned using an ultrasonic cleaner to ensure that no dia-
mond particles remained on the crystal surface. Figure 1(b)
shows the MgF, resonator that has completed the whole
process, with a diameter of about 2.6 mm. Figure 1(c) illus-
trates the quality factor of this resonator, which approaches
927 million. Furthermore, its second-order group velocity
dispersion is about —20.5 (fs?/mm).

Figure 1(a) shows the experimental setup used to gen-
erate the soliton microcombs, and here we use the ‘power-
kicking’ scheme to actively lock the single soliton or multi-
solitons [24]. The continuous output of the fiber laser is
driven by the AFG for fine scanning and subsequently ampli-
fied by the EDFA and filtered by the BPF to remove noise
from the EDFA. Then, the AOM is used to control the pump
power into the resonator, modulated by the sine wave of
the AFG. At the output, the power of the comb and the
transmitted power are separated by the FBG. Meanwhile,
the power of the microcomb is divided into two parts by
the coupler; 90 % of the microcomb power is attenuated and
recorded by the OSA, and the remaining part is monitored
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by the PD and sent to the servo control box. When the
servo detects the voltage, an error signal is generated by
subtracting the setpoint to adjust the pump frequency in
feedback to maintain the average soliton power.

The basic principle of the ‘power-kicking’ scheme is to
maintain the average soliton power by continuously tuning
the pump frequency to change the pump detuning. Specif-
ically, the pump detuning corresponds with the average
soliton power of the resonator, and the expression could be
expressed as follows [9, 24]:

2MAess |
P, = ey /=2n,cp,6w )
sol nZQ 0~F2

In Eq. (1), 7 denotes the coupling efficiency, and n,(n,) is
the refractive(nonlinear) index. A, represents the effective
mode area. Q is the quality factor, c is the light speed in a
vacuum. The parameter f§, = —n,D,/cD? is the resonator
second-order group velocity dispersion [27], and the 6@ =
@, — w, is the cavity-pump detuning (w, and @, are reso-
nant mode frequency and pump frequency, respectively).

Figure 2(a) demonstrates the locking process of a single
soliton, where the red line indicates the soliton power and
the blue line is the output power of MZI, which is used
as a reference for pump frequency changes. The process
of locking mainly includes three steps, first, the laser fre-
quency is tuned to the blue detuning of the resonant mode,
thus the Turing state is generated. Subsequently, a carefully
designed waveform is sent to the AFG to drive the AOM
to rapidly reduce the pump power, which causes a blue
shift of the resonant mode due to the Kerr nonlinearity and
thermo-optical effects, thus leaving the pump frequency in
the red-detuned soliton regime. The rising edge of the wave-
form then increases the pump power, extending the range of
soliton presence. Unlike silica resonators, due to the smaller
thermal effect of magnesium fluoride, the waveform can

(a) (b)
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be designed more slowly to increase the lock success rate.
Finally, to maintain the average soliton power, the servo hox
generates an error signal to change the pump frequency.
In our experiments, the length of the locked single soliton
step is about 80 ps. According to Eq. (1), the average soliton
power is maintained, and the cavity pump detuning could
be locked.

The spectral evolution during the soliton formation
process can be divided into three stages, including a Turing
state, the modulated instability (MI) state, and the static
single soliton, as shown in the spectra and RF spectra in
Figure 3. We detected low frequency RF evolution, where
low frequency high-noise RF beat note was generated at the
MI state due to the disordered waveform in the resonator.
With the formation of a single soliton, the waveform in the
resonator is ordered and the high-noise RF beat note disap-
pears, and the corresponding low-noise beat RF beat note
corresponds to the FSR of the resonator, which is beyond the
detection range.

3 Results

3.1 Direct tuning of soliton microcombs

The MgF, resonator shown in Figure 1(b) is used to gener-
ate a single soliton microcomb for direct spectral tuning.
After activating the entire digital feedback loop, the soliton
formation exists stably within the resonator as the ther-
mal effects are compensated. Then, by expanding the upper
and lower boundaries of the soliton power setpoint of the
feedback program, we can slowly change the cavity-pump
detuning by adjusting the AOM. The AOM acts as a controller
that modulates the pump light intensity in the whole loop,
and it is directly driven by the sinusoidal signal generated
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Figure 2: The power and spectrum of solitons. (a) Demonstration of the change in soliton power and pumping frequency when a single soliton state is
locked. The blue line denotes the output power of MZI that is used to monitor the change in pump frequency, and the black arrow indicates the locking
position. (b) The locked single soliton state, the red line is the sech? envelope fitting.
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Figure 3: Spectral evolution of the soliton generation process with the corresponding low frequency RF. Turing state (a) and (b). MI state (c) and (d)

and soliton state (e) and (f).

by the AFG to form the dynamic grating. When the pump
light is incident on the acousto-optic medium, diffracted
light will be generated due to the acousto-optic effect. Here,
we directly adjust the signal parameters of the AFG, such
as modulation voltage and modulation frequency, and we
found the intensity of the diffracted light changes according
to the variation of the loaded modulation signal.

Firstly, we locked the soliton at a modulation voltage of
8V and 10 V, respectively, and then gradually increased or
decreased the voltage to 10 V or 8 V in a step of 0.5 V, while
recording the intensity change of the pump light input to the
OSA after attenuation. As shown in Figure 4(c), the charac-
ters ‘Vol/up’ or ‘Vol/down’ indicate the gradually increasing
or decreasing of the modulation voltage, respectively. In
the ‘Vol/up’ operation, the pump light intensity increases
from 0.092 dBm to 1.03 dBm; while in the ‘Vol/down’ oper-
ation, the pump light intensity decreases from 1.071 dBm to
0.392 dBm.

In general, the tuning of the resonant frequency of
optical resonators can be achieved by the thermal effects,
namely the thermo-optical effect and the thermal expan-
sion effect [28, 29]. The former leads to a change in refrac-
tive index (n), and the latter leads to a change in the pho-
ton roundtrip length (L) of the resonator. Specifically, the

relationship between the temperature and the resonant
frequency could be expressed as @ = wy(1 — (a; + a,)67),
here w and w, are thermal shift and ‘cold’ cavity reso-
nance frequencies, respectively. 6T denotes the tempera-
ture change of the mode volume, which is positively related
to the intracavity power. In this experiment, we noticed
that the material of magnesium fluoride has a positive
coefficient of thermal expansion a; = (1/L)(L/dT) and a
thermo-optic coefficient a,, = (1/n)(dn/dT) [29]. This rela-
tion represents a red-shift of the frequency that an increase
in intracavity power leads to a decrease in the cavity reso-
nance frequency.

Figure 4(a) and (b) showed the changes in the spectral
bandwidth of the soliton recorded during the ‘Vol/down’ and
‘Vol/up’ operations, respectively. During ‘Vol/up’ operation,
the pump light is enhanced which heated the whole res-
onator. Thus, the thermal effect leads to a red-shift of the
resonance frequency and a reduction in the cavity-pump
detuning could be achieved. According to Eq. (1), when the
detuning between the resonator and the pump is decreased,
the average soliton power will decrease accordingly. The
servo is used to detect the reduced voltage and drive the
pump on the red-shift frequency band to maintain the set
value of the average soliton power. In addition, it should
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Figure 4: Spectrum evolution of the soliton with the AOM modulation voltage. (a) Variation of soliton spectrum when the AOM modulation voltage is
gradually reduced from 10 V to 8 V. (b) Variation of soliton spectrum when the AOM modulation voltage is gradually increased from 8 Vto 10 V.

(c) The red dot “Vol/up’ indicates an increment in modulation voltage leading to the increase of pump power, and the blue dot ‘Vol/down’ indicates

a decrement in modulation voltage leading to the decrease of pump power. (d) Increasing the modulation voltage leads to a decrease in the effective
cavity-pump detuning. (e) and (f) Show the soliton pulse full-width at half-maximum (FWHM) and soliton recoil versus modulation voltage, the FWHM
is derived from the sech? function fitting. The red and blue lines correspond to the spectral change diagrams (b) and (a), respectively. (g) Variation of

total comb power (derived from a sech® function fitting) with effective cavity-pump detuning.

be noticed that the average soliton power could also be
affected by the local thermal effects of the resonator. For the
microcomb system consisting of an MgF, resonator and a
silica tapered fiber, the thermo-optical effect can enhance
the effective refractive index and coupling efficiency # as
the temperature increases, meanwhile, the thermal expan-
sion effect can affect the effective coupling length more
efficiently, resulting in an enhancement of the coupling
strength [16]. In other words, when the servo drives the
laser to change the pump frequency, due to the increase
of the coupling efficiency, the average soliton power can
reach the setpoint with a relatively smaller detuning than
before. In contrast, the solitons require a larger detuning
to reach the setpoint in a ‘Vol/down’ operation. In fact, not
only the average soliton power, but also the soliton pulse
duration (FWHM) Az, (equivalent to the bandwidth of a
soliton microcomb in the frequency domain) is related to
the cavity-pump detuning, which could be expressed as [30]:

AT, =

_ | =¢h
s 2n,6w

As shown in Figure 4(d) and (e), the modulation voltage
causes the variation of the cavity-pump detuning, which

v

eventually leads to an increase or decrease in the soliton
bandwidth. In fact, since the second-order group velocity
dispersion of the resonator is almost constant, the soliton
duration as Eq. (2) should be an inversely proportional func-
tion of the detuning.

As shown in Figure 4(f), we also observed the dynami-
cal behavior of soliton recoil due to the narrow Raman gain
bandwidth of the MgF, material, which mainly stems from
the avoidance of mode crossing leading to excessive power
of certain combs, causing the spectral center of mass change
[31-33]. As the modulation voltage changes, the excessive
power of specific combs perturbs the center of mass of
the spectrum, appearing to have no strong pattern in the
change of recoil [34]. The total comb power evolves with
the effective cavity-pump detuning, as shown in Figure 4(g),
a larger detuning also implies a wider soliton bandwidth
which brings higher total comb power.

Furthermore, the bandwidth of the soliton microcomb
could be directly tuned by changing the modulation fre-
quency of the AOM, keeping the modulation voltage con-
stant. In our experiment, the solitons are locked at mod-
ulation frequencies of 56 MHz or 55MHz, respectively,
followed by a step of 0.5MHz to gradually decrease or
increase the modulation frequency. Figure 5(a) and (b) show



3762 = H.Wang et al.: Direct tuning of soliton detuning in an ultrahigh-Q MgF,

DE GRUYTER

(a) (b)

—— 56MHz
—— 55.5MHz

55MHz
—— 54.5MHz

Optical power
(40dBm/div)
Optical power
(40dBm/div)

55MHz
55.5MHz
56MHz
56.5MHz
57TMHz
57.5MHz

1525 1550 1575 1525 1550 1575
Wavelength (nm) Wavelength (nm)
© § 5@ §

500 m  Freq/up =S m  Freq/up
- Freq/down :/D 20 Freq/down
ha g
= !

T 400 E 15
= °
= z
5 10
: : : & : : :
55 56 57 = 55 56 57

Modulation frequency (MHz)

Modulation frequency (MHz)

Figure 5: Spectrum evolution of the soliton with the AOM modulation frequency. (a) Variation of the soliton spectrum when the AOM modulation
frequency is gradually reduced from 56 MHz to 54.5 MHz. (b) Variation of the soliton spectrum when the AOM modulation frequency is gradually
increased from 55 MHz to 57.5 MHz. (c) Soliton pulses FWHM versus modulation voltage. (d) Increasing the modulation frequency leads to a decrease

in the effective cavity-pump detuning.

the recorded soliton spectra with the gradually increasing
and decreasing bandwidth, respectively. By measuring the
intensity change of the pump light, we found that the pump
power also gradually decreases when gradually decreas-
ing the modulation frequency, leading to a decrease in
the soliton duration (an increase in the frequency domain
bandwidth), as shown by the orange dot in Figure 5(c). In
the “Freq/up” operation, the increasing of soliton FWHM
exhibits an obvious jump at the last 57.5 MHz, with a trian-
gular shape in the spectrum. The spectral bandwidth and
effective detuning are rapidly reduced (see the last green
point in Figure 5(c) and (d)), which provides the possibility
of direct access to the respiratory solitons.

3.2 Direct access to breathing soliton states

In the experiment, we observed the transition from a sta-
tionary soliton state to a breathing soliton state (the spec-
trum clearly shifted to a triangular character) by continu-
ously increasing the modulation frequency of the AOM so as
to reduce the cavity-pump detuning. A continuous decrease
in detuning leads to an increasing amplitude of oscillations,
as in Figure 6(b), where the servo is unable to keep locking
on to the breathing soliton, at which point re-increasing the
detuning can re-stabilize the soliton. Distinct from the single
static soliton we locked above, the breathing soliton exhibits

periodic oscillation in both amplitude and pulse duration,
resulting from the periodic energy exchange between the
spectrum center and the wings, which is closely related
to the Fermi-Pasta—Ulam recurrence [35]. This method of
accessing breathing soliton states is the essence of the laser
backward tuning method. When the AOM modulation fre-
quency is increased to 57.5 MHz, the sech’-shaped static
soliton spectrum transforms into a triangular spectrum
resulting from the averaging of the periodic broadening and
compression of the comb bandwidth by OSA, as shown in
Figure 6(a) [36, 37]. Figure 6(b) records the pump transmis-
sion when the pump laser scans linearly from short to long
wavelengths, and the inset is a local magnification of the
breathing soliton regime, showing rapid oscillations in the
soliton power. It also illustrates that with the exception of
the intermode breathing soliton [38], the breathing soliton
regime is usually located at a relatively small pump detun-
ing and is between the modulation instability and the static
soliton regime so that accessing the breathing soliton state
requires a continuously decreasing pump detuning while
maintaining a high pump power.

In Figure 6(c), we demonstrate the relation of soliton
FWHM versus the effective detuning when varying the
modulation voltage and modulation frequency. It should
be noted that the ‘Vol/up’ operation changes more soliton
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Figure 6: The spectrum properties of the soliton. (a) Breathing soliton
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soliton FWHM (derived from a sech’ fit) is plotted versus the detuning
(calculated from Eq. (2)), the black dashed line is the fitted curve.

duration than the ‘Vol/down’ operation with the same 2V
modulation voltage. We speculate that this is related to the
precision of the servo and the step position where it was
initially locked. In order to increase the success rate of
locking, we usually allow a certain error in the setpoint
value, which can result in the servo not always locking to the
same point consistently. And it is more difficult to continue
to increase the detuning in a flatter area after locking a
large detuning. At the same time, the existence range of the
soliton is given by 6w, = 2Py, /16Py,, where P,, and Py,
are the pump power and parametric oscillation threshold,
respectively [39, 40]. Therefore, reducing the modulation
voltage leads to a decrease in pump power, which results
in a faster detuning of the pump frequency with the soliton
existence range. Similarly, when decreasing the modulation
frequency, the detuning increases, and the change in the
bandwidth of the soliton spectrum is insignificant due to
the flatter curve, and the pump will move out of the soliton
existence range faster due to the smaller intracavity power
and the shorter steps. Whereas when increasing the mod-
ulation frequency, it can be noticed from the green dot in
Figure 6(c) that the smaller the detuning, the steeper the
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curve is, and the unit detuning brings about a larger change
in the bandwidth, as in Figure 5(a) and (b), which will bring
about a more pronounced change in the bandwidth. And by
gradually increasing the modulation frequency, we can also
directly access the breathing soliton state, corresponding to
a detuning value of about 8.35 MHz (arrow pointing to green
dot in Figure 6(c)).

4 Discussion

In this study, an MgF, resonator with a diameter of about
2.6 mm and a Q factor close to 927.5 million has been fabri-
cated by a precision polishing process. Based on the ‘power-
kicking’ scheme, we experimentally demonstrate the soliton
generation using the resonator and showed the modulation
of the bandwidth of the soliton microcombs directly by
using AOM. The scheme is direct and rapid, reducing the
complexity of the comb system because TEC is not required.
By varying the modulation voltage by 2V, we change the
soliton duration from 347 fs to 499 fs, corresponding to a
change in detuning from 18.68 MHz to 9.03 MHz, for a total
of about 152 fs in the “Vol/up” operation. In the “Vol/down”
operation, the soliton duration was changed by about 86 fs,
from 409 fs to 323 fs, corresponding to a detuning change
from 13.37 MHz to 21.42 MHz. In the “Freq/up” operation, we
change the soliton duration from 339 fs to 422 fs, which cor-
responds to a detuning change from 19.42 MHz to 8.35 MHz.
In the “Freq/down” operation, we change the soliton dura-
tion from 434 fs to 311 fs, which corresponds to a detuning
change from 11.42 MHz to 21.42 MHz.

We illustrated that the principle of the scheme is to
increase or decrease the intracavity power by the AOM
so that the pump detuning is changed, and then the new
detuning is locked by the servo, which will change the soli-
ton bandwidth. We also find that the resonator used for
the experiment allows the static soliton to switch smoothly
to the breathing soliton at detuning at about 8.35 MHz,
enabling us to access the breathing soliton state directly.

This work provides a more immediate tuning scheme
and a simple way to access the breathing soliton state for
future microcombs systems. Power consumption and reli-
ability are key issues that need attention in the tunable
design of future microcombs systems, and the instability of
the breathing soliton is something that should be avoided
in stable working systems, so easy access is beneficial for
subsequent studies.
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