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Abstract: A tunable plexcitonic material that sustains mul-
timode hybridization is highly desirable, which is vital for
advanced quantum devices. However, the research about
regulations of biexcitons-plasmon coherent states has rarely
been reported. Here we apply single-nanoparticle scatter-
ing spectroscopy correlative with SEM imaging to identify
biexcitons-plasmon interaction in a metal-semiconductor
hybrid structure composed of a single Au@Ag nanoparticle,
J-aggregates molecules and tungsten disulfide (WS,) mono-
layer. The mode competition within the localized plasmonic
hotspots (~240 nm?) is revealed by continuously regulat-
ing the J-aggregates spacer. Two distinct anticrossings are
observed at both excitons resonances, and large double
Rabi splittings (137 meV and 124 meV) are obtained suc-
cessfully. We establish experimentally that J-aggregates and
WS, monolayer are responsible for the middle polariton
states, while plasmon rarely contributes. Further calcula-
tions show that plasmonic nanocavity enables coherent
energy exchange with different excitons by providing a
highly enhanced localized E-field. In addition, we find that
the multimode coupling strengths can be efficiently tuned
by changing the cavity morphology and environment tem-
perature, where the tuning spectral accuracy can reach up
to 1 nm. Our findings uncover the distinctive properties of
biexcitons-plasmon polaritons, suggest an easily obtainable
multiqubit states platform, and open up a new way to con-
struct nanoscale photonic devices.
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1 Introduction

Room-temperature strong coupling between quantum emit-
ters (QEs) and plasmon polaritons has raised much attention
in the optics and quantum physics communities, since it
reveals a plethora of intriguing phenomena such as vac-
uum Rabi splitting [1, 2], Bose—Einstein condensation [3, 4],
optical Stark effect [5, 6], entanglement [7, 8], and quan-
tum network [9, 10]. It differs from weak coupling [11],
where only the spontaneous emission rate was modified.
Strong coupling [12] generates mixed states which pos-
sess both photonic and excitonic characters. The coherent
energy transfer rate in the strong coupling regime surpasses
the dissipation and decoherence rates. With the flourish-
ing of nanofabrication technology and quantum electrody-
namics, strong coupling systems exhibit great potential in
many powerful applications, such as quantum light source
[13, 14], ultrafast optical switching [15], superfluidity [16],
single-molecule sensing [17], and quantum computing [18].
Up to now, a variety of plasmonic nanostructures have
been proposed to minimize the mode volumes V4 since the
coupling strength g is inversely proportional to \/E [19].
Recently, even ultrasmall V¢ below 1 nm® has been realized
in the nanoparticle-on-mirror system [20]. The plasmon-
exciton strong coupled system has been successfully demon-
strated at the single emitter level [21-24], building a firm
foundation for functional quantum plasmonic devices. At
the single nanocavity level, strong coupling between plas-
mon modes and 2D materials such as WS, [25, 26] and WSe,
[27, 28] monolayer has been demonstrated, providing novel
routes for active and plasmonics applications.

Despite these remarkable developments, the exist-
ing researches mainly focus on hybrid systems consist-
ing of cavities and homogeneous quantum emitters, which
only generate two coherent states. Considering the pro-
found quantum effects and technological frontiers in the
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multi-mode coupled systems [29-35] (e.g., quantum net-
work, quantum computing, and nanolasers), strong cou-
pling among three excitations is highly desirable. How-
ever, few have been reported in the single QEs-plasmonic
nanocavity system due to the large Ohmic loss of metal
[36]. One major challenge has to be overcome to trig-
ger hiexciton-plasmon strong coupling: The local electric
field at heterogeneous QEs locations must be sufficiently
enhanced to simultaneously empower coherent energy
transfer in two different plasmon-exciton coupling subsys-
tems. Relevant experimental [37, 38] and theoretical work
[39] emerged as the extension of two-mode strong coupling.
Cuadra et al. have successfully demonstrated three inter-
mixed plasmon-exciton—trion coherent states at the single
nanoparticle level under cryogenic conditions, which con-
sist of an individual silver nanoantenna and monolayer WS,
hybrid system [26]. Recently, Lan et al. realized active tun-
ing of strong plasmon-exciton—trion coupling in Si/WS,/Au
nanocavities by increasing the laser power [40]. In another
work, Zhou et al. [41] demonstrated plasmon-assisted coher-
ent energy transfer between far-detuned QEs, setting the
foundation for future quantum networks.

Inspired by these pioneering works, in this study, we
demonstrate strong interactions among plasmons in an
individual Au@Ag nanocavity, Frenkel excitons in TDBC
J-aggregates, and Wannier excitons in monolayer WS,.
Three hybrid states formed by the biexcitons-plasmon
coupling and double Rabi splitting phenomenon (137 meV
and 124 meV) were observed under ambient conditions.
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Furthermore, we reveal the mode competition between two
coupled excitonic modes and optimize the multimode cou-
pling nanosystems by controlling the coated J-aggregates
spacers. Theoretical calculations indicate that the cavity
morphology and environment temperature can tailor the
degree of biexcitons-plasmon coupling. Modification in the
dielectric constant of the WS, monolayer induced by tuning
the temperature has also been extracted, which can well
explain the temperature-resolved scattering spectra.

2 Results and discussion

2.1 Introducing biexcitons-plasmon
coupling in a Au@Ag/J-aggregates/WS,
nanocavity

As depicted in Figure 1a, the coupled system in this work
is composed of Au@Ag core—shell nanocavity coating with
TDBC J-aggregates, which is positioned on the surface of
monolayer WS,. As an essential component, plasmonic
nanocavity plays a critical role in providing a highly-
enhanced local electric field, empowering different strong
coupling channels with heterogeneous QEs. Frenkel-type
excitons are formed in molecular materials, typically with
small exciton radii and asymmetric charge distribution [42].
Therefore, they exhibit strong polar chemical properties.
However, due to their formation inside molecules and weak
interactions between electrons and holes, Frenkel-type
excitons have short lifetimes, and it is challenging to achieve
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Figure 1: Concept of biexcitons-plasmon strong coupling between detuned excitonic materials and an individual metallic nanocavity. (a) Schematic
showing a delicately designed QEs-nanoantenna structure which empowers simultaneous energy exchange with both Frenkel-excitons and
Wannier-excitons. Ultimately, the newly formed biexcitons-plasmon hybrid states can possess the characteristics of both QEs. (b) Measured spectra of
uncoupled components (lower) and multi-mode strong coupled nanosystem (upper) exhibit a distinct double Rabi-splitting signature.
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long-lifetime luminescence. In contrast, Wannier-type exci-
tons formed in crystals typically have longer lifetimes and
larger exciton radii, along with lower charge transfer effi-
ciency [43]. Here we take advantage of multimode coupling
among plasmon, Frenkel-type excitons, and Wannier-type
excitons, which enable the possibility to exhibit the best
features of different excitonic materials (see Figure 1a). The
electromagnetic coupling between the localized plasmon
resonance and J-aggregates/WS, excitons is different due
to their spatial distribution variations. The excitons in J-
aggregates are of Frenkel type, which is characterized by its
strong binding energy (order of 1 eV), large dipole moment
(0.7 e nm), and small Bohr radius (1 nm) [44]. Ultrathin J-
aggregates monolayer is used to realize single-exciton level
strong coupling [19]. It is demonstrated that only the J-
aggregate exciton within the sufficient localized E-field can
be involved in the strong coupling process. In our system,
strong electromagnetic coupling between J-aggregates exci-
tons and plasmon modes mainly happens at the sharp cor-
ners of Au@Ag nanorods. On the other hand, excitons in
WS, are of Wannier type, which is delocalized over sev-
eral unit cells and possess larger scattering cross sections.
Monolayer WS, is a direct bandgap semiconductor, lead-
ing to excitons with enormous binding energies (700 meV)
[45]. Moreover, the optical property of single-crystalline WS,
is uniform across the entire two-dimensional flake, which
is beneficial to form robust pl-exciton systems. To real-
ize biexcitons-plasmon coupling, the spectra properties of
the three uncoupled components are carefully investigated
before sample assembling (as shown in Figure 1b). The PL
spectra measured for the monolayer WS, (under ambient
condition) shows a resonance peak at £, = 2029 meV, while
the measured absorption resonance for the J-aggregates
is E; = 2099 meV. The dark-field scattering spectrum of a
typical Au@Ag nanocavity shows a broad resonance (E,
2075 meV) in the middle of the two excitonic materials. The
decay rate of the WS, excitons is y, = 26 meV (measured
by absorption spectrum in Figure S4) or 19 meV (measured
by photoluminescence spectrum in Figure 1b). It is note-
worthy that the extracted decay rate of J-aggregates (y; =
25 meV) and WS, is relatively small compared to the plas-
mon nanocavity (y, = 144 meV). When two adjacent exci-
tonic modes spectral overlap with the plasmonic nanocav-
ity, it might be possible to form a multi-mode coupling sys-
tem. The top of Figure 1b shows the scattering spectra (solid
purple curves) measured for the WS,/J-aggregates/Au@Ag
nanocavity irradiated using a halogen lamp. Three new
energy branches will be formed if excitons of both the J-
aggregates and WS, interact intensively with the plasmonic
mode, which is marked as the upper polariton branch (UPB),
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the middle polariton branch (MPB), and the lower polariton
branch (LPB).

2.2 The properties of plasmon-exciton
subsystems

Before diving into the complex coupling among nanocavity,
J-aggregates and WS,, we first investigate the properties
of the two plexcitonic sub-systems. By controlling the Ag
shell’s thickness in the growth process, the localized sur-
face plasmon resonance of Au@Ag nanocavity was carefully
tuned from 651 nm to 565 nm, which crosses the exciton
resonance of both J-aggregates and WS,. The fine-tuning
originates from the high sensitivity of LSPR mode to the
aspect ratio [19]. In Figure 2, the scattering spectrum of the
nanocavity/J-aggregates hybrid shows two peaks and a dip
at 592 nm, which is the exciton resonance of J-aggregates.
To attain the dispersion curve, the scattering spectra of
nanocavity/J-aggregates hybrid with different Ag shell thick-
nesses were measured. As shown in Figure 2c, the newly
formed hybrid states’ eigenenergies were extracted, exhibit-
ing a distinct anticrossing phenomenon. A large Rabi split-
ting (~162 meV) was observed at resonant conditions. Com-
pared to the plasmon and exciton linewidths (y,; = 150 meV,

y; = 25 meV), the Rabi splitting energy Q,; > y”l;“ , which
indicates the nanocavity/J-aggregates hybrid has entered
the strong coupling regime. Next, we investigate the strong
coupling between plasmon and the WS, excitons. The WS,
monolayers synthesized by chemical vapor deposition were
transferred to Si/SiO, substrates with a 100 nm thick SiO,
film. In Figure 2d, the dark-field image of the wafer was
demonstrated, showing a firm and direct contact between
nanocavities and WS, monolayers. Two new eigenstates
were formed at the flanks of the WS, excitonic resonance
(1, =612 nm), as shown in Figure 2e.In Figure 2f, the energy
dispersion of the upper polariton branches (UPB) and the
lower polariton branches (LPB) exhibit anticrossing behav-
ior. A Rabi splitting of 110 meV is observed, which close to
satisfy the criteria for strong coupling (€2, > oty

2.3 Mode competition within the localized
plasmonic hotspots

The strong interaction with nanocavity required suffi-
cient electric field enhancement. The mode volume of
Au@Ag nanocavity is extremely small (~240 nm?®), lead-
ing to inevitable mode competition between two exci-
tonic materials within the plasmonic hotspots. Thus, we
can trigger and manipulate the biexcitons-plasmon strong
coupling by optimizing the interaction distance. For the
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Figure 2: Single-mode plasmon-exciton strong coupling. (a) High-resolution TEM image of Au@Ag nanorod coated with 2.7 nm TDBC J-aggregates
layers. (b) Scattering spectra of resonate Au@Ag nanorod and J-aggregates hybrid nanosystem. (c) Dispersion of plexciton with UPB and LPB varied as
a function of plasmon energy, presenting a Rabi splitting up to 162 meV. (d) Bright-field image of WS, monolayer collected by a 100X objective. (e)
Scattering spectra of red-detuned Au@Ag nanorod and monolayer WS, nanosystem. (f) Calculated dispersion of single Au@Ag nanocavity and WS,

strong coupled system, presenting a Rabi splitting of 110 meV.

J-aggregates/Au@Ag nanocavity shown in Figure 3a, the
scattering dip appears at ~592 nm. The Rabi splitting of the
nanocavity/dye hybrid system becomes more significant as
the J-aggregates layers grow. The corresponding plasmonic
cavity E-field distributions in the xz planes are shown in
Figure 3b. It indicates that more J-aggregates excitons par-
ticipate in the coupling process as the dye molecular lay-
ers become thicker; which leads to larger Rabi splitting in
Figure 3a. On the other hand, the dye molecular layers also
serve as the spacer layer in the nanocavity/J-aggregates/Ws,
hybrid system, which significantly impairs the coupling
strength between nanocavity and WS,. As shown in upper
Figure 3c, when the dye molecular layers are rather thin
(d = 1nm), the coupling strength between nanocavity and
J-aggregates is weak, and the MPB leans towards 4;. In
lower Figure 3c, when the dye molecular layers are thick
(d = 15 nm), the interaction between WS, and nanocavity
is almost blocked. The mode competition is well reflected in
the MPB resonance. The pink/orange dashed line indicates
the location of J-aggregates/WS, excitons resonance. As the
J-aggregates layers become thicker, the WS, excitons in the
plasmonic hotspots decrease. Interestingly, the MPB reso-
nance is pushed toward WS, resonance as the J-aggregates
dominate the hybrid system. On the contrary, the MPB reso-
nance would lean toward J-aggregates resonance when WS,

is dominant. We found that MPB would locate at the center
of J-aggregates/WS, resonance when the coating thickness
of J-aggregates is ~3 nm. This particular coating thickness
ensures both J-aggregates and WS, excitons can actively
participate in the strong coupling process, which guides our
subsequent experiments.

2.4 Biexcitons-plasmon coupling in
Au@Agnanocavity/J-aggregates/WsS,
hybrids

To construct a plasmon-biexcitons strong coupling nanosys-
tems, we first coat a uniform J-aggregates layer (~3 nm) on
the surface of the Au@Ag nanocavities, then the hybrids
were facially integrated with a WS, monolayer. Here the
J-aggregates layers were also used as a dielectric spacer
layer, significantly impacting the plasmon-WS, coupling
strength. We use a correlative dark-field and SEM imaging
method to obtain the morphology and spectroscopic infor-
mation of individual nanocavity/]-aggregates/WS, hybrids.
As illustrated in Figure 1a, when both the J-aggregates and
WS, monolayer were within the plasmon E-field hotspots,
coherent energy transfer between plasmon and biexcitons
occurred due to the field enhancement effect of plasmon
mode. Consequently, new hybrid polariton states would be
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Figure 3: Analysis of mode competition for WS,/dye/Au@Ag nanocavity coupled systems. (a) Scattering spectra calculated for Au@Ag nanocavity
coated with different J-aggregate thicknesses. (b) The plasmonic cavity E-field distributions calculated at 592/602/612 nm. The white dashed lines
indicate the outline of the Au@Ag nanorod. The solid orange lines indicate the position of the WS, monolayer. (c) Corresponding scattering spectra
calculated for WS,/dye/Au@Ag nanocavity with different J-aggregate thicknesses.

produced, as shown in Figure 1b, which is more compli-
cated than traditional two-mode coupled nanosystems. We
measured more than 200 dark-field scattering spectra of
different nanocavity/J-aggregates/WS, hybrids, where the
plasmon resonance was tuned by adjusting the thickness
of Ag shells during the synthesis process. Figure 4a shows
the scattering spectra of five representative nanocavity/J-
aggregates/WS, hybrids, demonstrating the spectral evolu-
tion of plasmon-biexcitons coupling in different detuned
conditions. Three scattering peaks appear at the flank of
the J-aggregates/WS, excitons resonance, corresponding to
the three eigenenergies of the plasmon-biexcitons coupling
systems. In Figure 4a, as the Ag shell becomes thicker, the
aspect ratio of Au@Ag nanocavities increased. The plasmon
resonance was tuned to blue-shift, leading to a synchro-
nized blue-shift in all three eigenenergies, while the rel-
ative intensity of three scattering peaks would also vari-
ate. Meanwhile, the two dips of scattering spectra remain
unchanged, corresponding to the exciton resonance of the
J-aggregates/WS, monolayer. It provides strong evidence
that the new hybrid polariton states result from plasmon/J-
aggregates/WS, interaction. For the plasmon-biexcitons cou-
pling in our experiment, the eigenmodes’ energy can be
described using the three-coupled oscillator model (TCOM),

which is written as [46-49].

Y pl
Ep— 1711 8j 8x Py o
Vi _
8x 0 E, — l& v 4
2
where E,;, E,, and E, are the energies for cavity plasmon

resonance, J-aggregates exciton resonance and WS, exci-
ton resonance, respectively. Here, y,;, v, and y, repre-
sent the corresponding dissipation rates, and g;/g, reflects
the plasmon-] excitons/plasmon-WS, excitons coupling
strength. Notably, the J-aggregates/WS, coupled strength is
negligible due to the detuning between two excitons. E
is the hybrid polariton energies of the three-mode cou-
pling system. «, B, and y are the Hopfield coefficients.
| a |?, | B |2 and | y |? indicate the proportion of plasmon,
J-aggregates and WS, excitons in the hybrid polariton states,
which satisfy |«|?> + |B|> + |y|*> = 1. By solving the char-
acteristic equation (1), three unique solutions E,E,, E;
can be obtained for E. In Figure 4b, the theoretical fitting
results are shown by three solid curves, which represent the
hybrid states of three anti-crossed bands, corresponding to
the upper polariton branch (UPB), middle polariton branch
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Figure 4: Manipulating the biextions-plasmon coupling with a structure tuning method. (a) Scattering spectra of different plasmon-biexciton strong
coupling systems constructed by using Au@Ag nanocavities with different aspect ratios. The SEM and corresponding CCD images of the measured

WS, /J-aggregates/Au@Ag nanocavities are shown in the insets. (b) Dispersion of the eigenenergies of the three coherent hybrid states. The
red/green/blue curves represent the theoretical values for UPB/MPB/LPB, while the colored symbols represent the scattering peaks obtained from the
experimental data. (c) Hop-field coefficients for plasmon, J-aggregates exciton, and WS, exciton contributions to UPB, MPB, and LPB states as a

function of the plasmon energy.

(MPB) and lower polariton states (LPB). The resonance
energy of plasmon nanocavity E,; is essential for analyzing
anti-crossing behavior in strong coupling systems. However,
it can not be directly obtained by experimental measure-
ments because the resonance of plasmonic nanocavities
would red-shift after coating with molecule layers. To per-
form the anti-crossing analysis, we first obtain the corre-
sponding energy for the upper (E;), middle (E,,), and lower
(E,) polariton branches from dark-field scattering spectra.
Then the exciton resonance of J-aggregate (E j) and WS, (E,)
is extracted from the absorption measurements. Finally, we
obtain the unknown value of E,; using energy conservation
equality: E; + E; + E, = Ey + E); + E; . The equality origi-
nates from trace invariance of the matrix representation
of the Hamiltonian, which was proposed in recent research
[26, 50] to analyze three-mode coupling systems.

As shown in Figure 4b, the TCOM fits well with
our experimental results, indicating a giant Rabi split-
ting energy of 188 meV at the center of J-aggregates/WS,

excitonic resonances. It is worth noting that the fitting
results in the coupling strengths are g; =68.7meV and
g, = 62.1 meV, respectively. Therefore, when the plasmon
mode is resonant with J-aggragates/WS, excitons, the split-
tings extracted at zero detuning are Q; =137 meV(E, =
E j) and Qy =124 meV(Epl = E,). The coupling strengths are
slightly decreased compared to the plasmon-single exci-
ton coupling situation but still satisfy the strong coupling
criterion of g; > |y —y]-|/4 =3125meV and g, > |y, —
Y, |/4 = 32.75 meV. Figure 4c shows the calculated Hopfield
coefficients, which indicate the proportion of plasmon/J-
aggregates/WS, energy in each hybrid polariton state.
Specifically, the coupling between J-aggregates and plasmon
dominates the UPB, while the coupling between WS, and
plasmon dominates the LPB. It results from the detuning
between plasmon and J-aggregates/WS, excitons. The cou-
pling strength grows as the detuning decrease. The prop-
erties of MPB are more complicated, which contains few
proportions of plasmon compared to its excitonic parts.
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Therefore in Figure 4b MPB shows less disperse than
UPB/LPB. Also, since E; > Ey, J-aggregates excitons show
more impact in MPB regarding the high energy regime. The
strong coupling criterion for three elementary excitations
can be expressed as 2 > a1k, + 0Ky + A3k, [36, 401

Here, oay,ay,anda; represent the fractions of
the UPB/MPB/LPB in the hybrid polariton states;
Kuphs Kmpp> a0 Ky, denote  the linewidths of the
UPB/MPB/LPB. By extracting the zero-detuned data from
Figure 4c, the linewidths of each branch can be expressed
as follows:

Kupp = 52.6 %oy +40.7 %y + 6.7 %y,
Kmpp = 221 %ypl +40.9 %}’j + 37 %}’X 2)
Kypp = 36.7 %oy +7 %ov; +56.3 %y,

The following formula can derive the weight coeffi-
cients of UPB/MPB/LPB [31]:

K,

O = upb
==
Kupb + Kmpb + Klpb

Jay=— fmr &)

Kupb + Kmpb + Klpb

= Kipb
= —+
Kupb + Kmpb + Klpb

By substituting Equations (2) and (3), we can derive
the criterion for the strong coupling of plasmon/J-
aggregates/WS, as Q> ay - Kypy + g - Kppp + a3 - Ky =
74.8 meV. In our case, we measured a relatively large Rabi
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splitting Q2 =~ 188 meV at zero-detuned point (as shown in
Figure 4b), which satisfy the strong coupling criterion. The
detuning Q > a; - Kypp + &g - Kppp + A3 - Ky

2.5 Adjusting the excitonic resonance of
a WS, monolayer by temperature control
and fine-tuning the biexcitons-plasmon

Finally, in Figure 5, we demonstrate that the biexcitons-
plasmon strong coupling nanosystem can be actively
and reversibly manipulated by tuning the environment
temperature. WS, monolayer possesses multidimensional
adjustable optical properties, for example, its band gap
varies with environmental temperature. Figure 5b indi-
cates that the real and imaginary parts of a WS, mono-
layer would regularly red-shift to a longer wavelength with
increasing environmental temperature, which offers us the
opportunity to manipulate the biexcitons-plasmon coupling
strength. The WS, excitonic energy under different temper-
atures can be theoretically described by O’Donnell Model
[51,52]. In Figure S3, we calculate the WS, exciton resonance
in the 200 K-400 K range using O’Donnell model, which
indicates a red-shift from 606 nm to 624 nm. In Figure 5a,
we show the scattering spectra of Au@Ag nanocavity/J-
aggregates/WS, calculated in different temperatures, which
indicates that the middle and lower biexcitons-plasmon
hybrid states could be accurately adjusted via temperature
control. Here, the aspect ratio of the simulated nanoparticle
is set as 1.65 and the plasmon resonance of the nanocavity
is 592 nm, which overlay with the J-aggregates’ excitonic

0 . : . " .
500 550 600 650 700 750 800
Wavelength(nm)

Figure 5: Fine-tuning the biextions-plasmon coupling by temperature control. (a) Normalized scattering spectra calculated for
WS, /J-aggregates/Au@Ag nanocavities in different temperatures. (b) Complex dielectric constants of a WS, monolayer in different temperature

conditions.
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energy. The thickness of the coating J-aggregates is set as
3nm and then facially integrated with monolayer WS,.
The dashed arrows in Figure 5a shows that the UPB rarely
change during the regulation process, while MPB and LPB
gradually redshift as the temperature increase. As a result,
the Rabi splitting between UPB and MPB increases from
191 meV to 226 meV. Notably, the scattering dips between
MPB and LPB (marked with red triangles in Figure 5a) are
in accordance with the calculated WS, exciton resonance.
The tuning accuracy of MPB/LPB resonance wavelength can
reach up to ~1 nm when the variation of temperature is
~10 K, which provides a delicate and reversible method to
control the biexcitons-plasmon coupling system.

3 Conclusions

In summary, we have systematically investigated the
spectral properties and manipulating methods of plasmon-
biexcitons strong coupling in Au@Ag/J-aggregates/WS,
hybrid nanosystems. Three new plexciton branches
formed by multimode hybridization are observed
from the darkfield scattering spectra, which present
a gilant exciton-plasmon-exciton energy splitting of
~188 meV at the center of excitonic resonances. Hopfield
coefficient calculations reveal the plasmon-biexcitons have
properties that are intermediate between plasmons and
J-aggregates/WS, excitons, which enable the possibility to
obtain the best features of both metal and semiconductors.
Furthermore, we have investigated the mode competition
between heterogeneous excitonic materials and proposed
the optimal parameters for J-aggregates spacer, which
is in the middle range of localized plasmonic hotspots.
Accordingly, from the WS, exciton perspective, we have also
demonstrated the dynamic control of plasmon-biexcitons
via thermal regulation. The temperature-resolved spectra
are ascribed to the dielectric constant modification of WS,,
which significantly affect the coupling strength between
plasmon and X, excitons. Our findings offer a versatile
platform to construct and manipulate multiqubit coupling
in room-temperature conditions and pave the way for
developing diverse plexcitonic devices.

4 Methods

4.1 Sample preparation

We fabricated the cuboidal Au@Ag nanocavity with sharp edges using
a seed-mediated growth method (details are provided in Support-
ing Information, Section 1). Figure S1 shows the high-resolution TEM
image of one typical Au@Ag nanocavities with proper dimensions
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(diameter ~48.2 + 1.4 nm and length ~78.3 + 3.1nm). To boost the
plasmon-exciton coupling strength, the curvature radius of the Ag
shell at the edgy is tailored to ~2nm, causing a dramatic small
mode volume down to a few hundred cubic nanometers (see Support-
ing Information, Figure S2). J-aggregates layers were firmly attached
to the surface of Au@Ag nanocavity via electrostatic interaction,
which forms a typical plasmon-exciton strong coupling system. The
nanocavity/J-aggregates hybrid was then transferred to a bare silicon
wafer substrate for subsequent measurements.

4.2 Optical measurements

We use a reflection-type dark-field scattering experiment setup to
investigate the optical properties of the individual nanocavity. Individ-
ual Au@Ag nanocavities were optically characterized using an upright
microscope (BX51, Olympus) combined with an imaging spectrograph
(IsoPlane 160, Princeton Instrument) and an EMCCD camera (Ultra 888,
Andor). The sample surface was illuminated with broadband white
light from a Laser-Driven Light Source (EQ-99X, Energetiq), which was
focused onto the sample surface using a 100X dark-field condenser (NA
= 0.4). In addition, numerical symbols in the silicon wafer were used
to locate individual nanocavity in dark-filed and SEM imaging.
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