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Abstract: Strong coupling between electronic excitations in
materials and photon modes results in the formation of
polaritons, which display larger nonlinearities than their
photonic counterparts due to their material component.
We theoretically investigate how to optically control the
topological properties of molecular and solid-state exci-
ton—polariton systems by exploiting one such nonlinearity:
saturation of electronic transitions. We demonstrate modi-
fication of the Berry curvature of three different materials
when placed within a Fabry-Perot cavity and pumped with
circularly polarized light, illustrating the broad applicability
of our scheme. Importantly, while optical pumping leads
to nonzero Chern invariants, unidirectional edge states do
not emerge in our system as the bulk-boundary correspon-
dence is not applicable. This work demonstrates a versatile
approach to control topological properties of novel optoelec-
tronic materials.

Keywords: exciton—polariton; strong light—-matter coup-
ling; topological polaritons

1 Introduction

Exciton—polaritons are hybrid excitations that exist in sys-
tems where photonic modes couple strongly with optical
transitions in materials and their coupling strength exceeds
losses [1]. Electronic strong coupling (ESC), where the opti-
cal transitions correspond to semiconductor excitons or
molecular electronic transitions, has been observed in a
wide variety of inorganic and organic materials. While some
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polariton systems, such as GaAs and CdTe quantum wells in
microcavities [1, 2], often require cryogenic temperatures
for operation, due to their small exciton binding energies,
organic materials [3] along with others such as GaN [4],
Zn0 [5], perovskites [6, 7], and transition metal dichalco-
genides (TMD) [8, 9] can achieve ESC at room temperature
when placed in Fabry—-Perot cavities. In particular, organic
exciton—polaritons have received attention for their ability
to modify chemical reactivity [10], demonstrate polariton
condensation at room temperature [11, 12], improve photo-
conductivity [13], and display topological properties [14, 15].

Exciton-polariton systems are versatile platforms for
topological applications as their hybrid nature provides the
unique opportunity to take advantage of the nonlinearities
and magnetic response of the material component while
still enjoying benefits of the coherence properties of the
photonic part [16—18]. In the presence of photonic lattices,
they also offer the possibility of unidirectional transport
of energy through edge states that are robust to disorder
[19]. A few approaches are frequently used to achieve topo-
logical exciton—polariton bands. In one of the approaches,
the nontrivial topology resides in the winding light—matter
coupling rather than individual photon or exciton compo-
nents [19, 20]. However, it is limited in application due to the
requirement of large magnetic fields to break time-reversal
symmetry (TRS) and low temperatures to achieve Zeeman
splitting in the exciton component, which exceeds the exci-
ton linewidth. In another approach, TRS is preserved and a
quantum spin hall insulator analog is created in a polariton
system [21]. This approach does not require a large magnetic
field; however, there, a topological polariton system is cre-
ated by coupling a topologically nontrivial photonic lattice
with a topologically trivial exciton system and the inter-
esting topology is almost entirely encoded in the photonic
component of the polariton [21, 22]. Both the approaches
mentioned above were experimentally realized in polariton
lattices. More recently, polaritons in Fabry-Perot cavities
have emerged as a viable platform for topological polariton-
ics. Several experiments have demonstrated measurement
and control of the Berry curvature of exciton—polariton and
photon bands in these systems [23—26]. Our work will focus
on these Fabry-Perot cavity systems.
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In this work, we theoretically propose a scheme for
generating topological polaritons that combines advan-
tages of both the approaches mentioned above. Specif-
ically, we exploit the primary nonlinearity of organic
exciton—polaritons, saturation [11], to achieve this. Here,
the light-matter coupling contains the nontrivial topology
instead of the individual photon or exciton components and
optical pumping with circularly polarized light breaks TRS
instead of a large magnetic field.

Breaking TRS in a system using the helicity oflight is an
idea that has been demonstrated in several other contexts; it
has been used to achieve all-optical nonreciprocity [27, 28],
and theoretical results suggest that it can also induce optical
activity in achiral molecules [29]. Additionally, a similar idea
that relies on breaking TRS using circularly polarized light
has been previously proposed for polariton lattices by Bleu
et al. [30].

We focus on the topological properties of polaritons
formed by the coupling of Frenkel excitons hosted in organic
semiconductors with photon modes in a Fabry—Perot cavity.
Here, optical pumping with circularly polarized light satu-
rates certain electronic transitions and breaks TRS in the
system; this results in nonzero Chern numbers of polari-
ton bands. Our scheme relies on the contraction of Rabi
splitting due to saturation, and we find modified Berry cur-
vature and Chern number of the bands under circularly
polarized pumping. The Berry curvature of the more pho-
tonic sections of the bands computed in our work can be
experimentally measured using pump-probe spectroscopy.
Furthermore, the applicability of our scheme is not limited
to organic polariton systems. It only requires certain key
ingredients: transitions that can be selectively excited with
circularly polarized light, saturation effects, and Rabi split-
ting contraction. To highlight this, we compute the Berry
curvature of two other systems under strong coupling and
optical pumping: (a) Ce:YAG and (b) monolayer MoS,. Our
work provides a viable strategy to induce nonreciprocal
behavior in standard microcavity polaritons, leading to the
optical tuning of isolators and circulators [27], as well as
fabrication of elliptically polarized lasers and condensates
[31].

2 Results

2.1 Model

In our theoretical study, we consider a Fabry—Perot cavity
containing a thin film of porphyrin molecules at the center
and a bulk perylene crystal filling the rest of the volume
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(Figure 1). The porphyrin and perylene molecules are not
treated on an equal footing in our model; while the molecu-
lar transitions of porphyrin are considered explicitly in the
Hamiltonian, those of the perylene crystal are not, and they
can be accounted for through effective cavity modes [25].
This is a valid approximation because we focus on photon
modes with frequencies close to those of electronic transi-
tions in porphyrin (~3.81 eV) [32, 33] and far off-resonant
from the transitions of perylene (~2.98 eV) [34]. Here, the
birefringent perylene crystal plays the role of providing
anisotropy and emergent optical activity to the cavity modes
[25].

We model each porphyrin molecule as a three-level
electronic system with a ground state |G) and two excited
states |+,) and |—) (see Figure 2b) [35, 36]. In the
absence of a magnetic field, the two excited states are degen-
erate and the energy difference between the ground and
excited states is hw, = 3.81 eV [37]. The transition dipole
moments for transitions from |G) to |+,4) and |—pq)
are g, = py(X + i§)/V2and p_ = HoX — i§)/V/2, respec-
tively, with p, = 2.84D [37]. Here, X and ¥ are unit vec-
tors along the x and y directions. Using circular polar-
ized light, the |4,,) or |-y, ) states can be selectively
excited.

In our model, we consider a thin film of
metalloporphyrins or metallophtalocyanines arranged
in a square lattice with nearest neighbor spacing a. The
choice of lattice is irrelevant because later we will take
the continuum limit a — 0 as we are only interested in
length scales much larger than the intermolecular spacing.
Additionally, we use periodic boundary conditions along

Figure 1: Illustration of the system under study. Porphyrin (molecules at
the center) and perylene (green blocks) placed within a Fabry-Perot
cavity and pumped with circularly polarized light.
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Figure 2: Three-level model of a metalloporphyrin molecule. (a)
Tllustration of circularly polarized light exciting a metalloporphyrin
molecule. (b) Three-level model of porphyrin with a ground state |G) and
two degenerate excited states [+ ,.), | —mo)- The transition dipole
moment for a transition from |G) to |&,,) is gy = Ho(X + i)?)/\/f. The
number of yellow circles at each state represents the fraction of
molecules in that state. Here, the ratio of the fraction of molecules in the
ground, fs, and |+,,,) excited states, f,, is fg: f,: f_ = 3:1:0. Such
population ratios can be achieved through pumping with circularly
polarized light.

the x and y directions and consider a box of size L, X L.
Each molecule is labeled with the index m = (m,,m,)
that specifies its location in a N, X N, array of molecules
where L, Jy =Ny here, the molecule’s position is
given by ry, = m,aX + m,ay. States of the mth molecule
are then written as |m,G), |m,+,,) and |m,—,;).
The creation operator 8;’ L =m0 (M, Gl @y
excites the mth molecule from |m,G) to |m, +,,,). Here,
|]n =|n, G)(“s G| + |Il, +mol)<n’ +mol| + |n9 _mol><n9 _moll
is the identity operator for nth molecule. These molecular
operators satisfy commutation relations (a generalization
of the commutation relations of paulion operators
[38, 39]),

[avn,i, &jmi] = 5m,,,(1 — 6} e — 261,18,1,1)- )

We model the effective photon modes of a Fabry—Perot
cavity filled with perylene as in Ren et al. [25]. For the pho-
ton modes of a Fabry—Perot cavity, the component of wave
vector orthogonal to the mirrors k, = 2n,z /L, is quantized,
where L, is the effective distance between the mirrors of
the cavity and n, is the mode index [40]. For a given n,, the
modes are labeled by the in-plane wave vector k = k, X +

k,§ and polarization ; the creation operators associated
with these modes are &;a and they satisfy bosonic com-

mutation relations [&k’a, &L’a,]
in-plane translational invariance of the cavity and periodic
boundary conditions along the x and y directions, k, =
2lym /L, and k, =2l 7 /L, take a discrete but infinite set

of values [, l, € Z. Throughout this work, we specify the

= 84Ok x- As a result of
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cavity mode polarization in the circularly polarized basis
a =+
The Hamiltonian of the full system is

H= Hmol + Hcav + Hcav—molv (2)
where
A= Z(hweaj“&m + hwe&fn’_&m’_>
m
N nk|? At A
H.,, = Z [(EO + ZrIn*I + {|K| cos q’)) a£,+ak,+
k

Rk _

E, +
0" omx

+
/

¢ k| cos gb) &L_&k,_

+

—_

—fo + PIkPe™)ay oy

-

+ (=B + Bk _dy .|

ﬁcav—mol = ZZ - IA‘m : Ek,a(rm, 0)

m Kk«

eik-rm

~ ZZ [(I‘+ 'Ik,+)6-jn,+ak,+
m k ‘/NxNy

SN LN RS (TR M AR

+ (U T Bh, | +He ®

Above, H,,, describes the porphyrin molecules, H,,
the effective cavity modes (including contributions from the
perylene crystal), and H,,,_,,, the coupling between the
porphyrin molecules and effective cavity modes. Here, ¢
is the angle between the in-plane wave vector and the x-
axis, i.e., cos ¢ = k, /|k|. Within ﬁcav, P specifies the TE-TM
splitting, f, quantifies the linear birefringence of the pery-
lene crystal which splits the H-V modes, and { describes
the emergent optical activity [25]. Additionally, E, is the
frequency of the cavity modes at |k| = 0 in the absence of
the perylene crystal (f, = 0 and { = 0), and m* is the effec-
tive mass of the photons in the absence of perylene (f, =
0 and ¢ = 0) and TE-TM splitting (f = 0). We have made
the electric dipole approximation and the rotating-wave
approximation in H_,, ;. Here, fi, is the electric dipole
operator associated with the mth molecule and fik’a(r, z)
is the electric field operator of the mode with polarization
« and in-plane wave vector k. In addition, p,/ - Ji , is the
collective coupling strength of the cavity mode labeled by
k, @ and the |G) to |ocr’1[1 01) transition of the molecules (see
Section S1in Supporting Information). In the Hamiltonian,
we only include cavity modes with k that lies within the
first Brillouin zone determined by the porphyrin lattice
—r/a < ky, k, < z/a. We ignore cavity modes with larger
wavevectors (Umklapp terms) as they are off-resonant
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and would have a negligible effect on the bands of our
interest.

The photon modes of an empty cavity experience TE-
TM splitting due to polarization-dependent reflection from
the mirrors [41]. While the TE-TM splitting lifts the degener-
acy between photon modes at |k| # 0, photon modes of both
polarizations remain degenerate at |k| = 0 due to rotational
symmetry of the cavity mirrors about the z-axis. However,
for Berry curvature and Chern invariant to be well defined,
we need the photon/polariton bands to be separated in
energy at all k; to achieve this, we include the perylene
crystal. The anisotropy and emergent optical activity of the
perylene crystal lifts the degeneracy between the photon
modes at all k [25].

To compute the Berry curvature and Chern number,
we focus on the first excitation manifold, which is spanned
by states |m, +,,) = &,Tn, LIvac) and |k, +,) = af{’ilvac).
Here, |vac) is the absolute ground state of the system where
the photon modes are empty and all molecules are in their
ground states. Rewriting the Hamiltonian with operators

A A _ 1 ikTm" . .
Gy q» Where 6, , = TN_Ny Dkepz€ "m6y, and restricting
ourselves to the first excitation manifold, we find H(k) =
(k|H|K) to be

Fl(k) = ﬁmol(k) + ﬁcav(k) + I:Icav—mol(k)’ (4)

where,

ﬁmol(k) = hwe|+mol><+m01| + hwe|_mol><_moll’
hzlklz
2m*

hzlklz
2m*

I:Icav(k) = (EO + + C|k| Cos d)) |+cav)<+cav|

+ <EO + - C|k| CO0S ¢> |_cav><_cav|

+ (=Bo + BIKI*e™) [+0y ) —car|
+ (=Po + PIKIE™ )| ~cay ) Fcay
H ey ® =Tt (M |[Hmol) + B | =) (Feav]
+ - (My|Fmo) + H_|=ma) ) (—cay| + HeC.
(5

Here, k lies within the first Brillouin zone determined
by the porphyrin lattice k,,k, € [-7/a,z/al. As we are
only interested in length scales much larger than a, we
take the continuum limit a — 0 while keeping y,/a a con-
stant. Therefore, terms such as the collective light—matter
coupling strength, J , - M, TEMain constant in this limit
(see Section S1in Supporting Information). Moreover, upon
taking the continuum limit, A(k) does not change; only
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the range of k becomes infinitely large, k,, ky € R, that is,
our system acquires complete translational invariance in
the x—y plane. For such continuous systems, since k,, k, €
R is unbounded, we need to map (kx,ky) onto a sphere,
which is a closed and bounded surface using stereographic
projection before we compute Chern numbers [42] (see
Section S2 in Supporting Information).

When we diagonalize the Hamiltonian in Eg. (5), we
obtain four bands which we label with [=1,2,3,4 in
increasing order of energy. In Figure 3a, we plot the Berry
curvature, €, (k), of the lowest band [ = 1, and in Figure 3e,
we plot the k,, = 0 slice of the band structure of the two
bands lowest in energy, [ = 1, 2. As expected, in the absence
of optical pumping, this system preserves TRS, which can
be verified using the condition on Berry curvature €,;(k) =
—Q,(—k), and the Chern numbers of the all the bands C; =
0. Also, note that, the smallest splitting between the lower
two bands within —13 pm™ < k,, k, < 13 pm~is ~2.8 meV,
which is larger than the linewidth of the transition in por-
phyrin at 4 K (~0.5 meV) [43, 44].

2.2 Optical pumping

Optical pumping can saturate the electronic transitions of a
system. This leads to reduction in the effective light—matter
coupling strength, and, therefore, Rabi splitting contraction
[11, 45, 46]. For instance, when the pump excites a fraction
of molecules, f;, to the excited state and the remaining
population stays in the ground state, f;, it results in Rabi
splitting contraction proportional to \/fg — fy = v/1—2f;
[47].

In our system, when the molecules are optically
pumped, a fraction, f,, of the molecules occupy the |+,4)
state, another fraction, f_, occupy the |—m01) state, and the
remaining fraction, f;;, are in the ground state |G). The
Rabi contraction corresponding to the |G) to |+) transi-
tion should then be proportional to \/f; — f, which equals
V1—f_—2f, since f; + f, + f_ = 1. Similarly, the con-
traction should be proportional to 4/1 — f, — 2f_ for the |G)
to | —p,q) transition. This difference in light—matter coupling
when f, # f_ effectively introduces 2D chirality into the
system [48].

To derive an effective Hamiltonian under
optical pumping, we wuse Heisenberg equations
of motion and make a mean-field approximation
following the approach of Ribeiro etal [47] (see
Section S3 in Supporting Information). We then obtain
the effective Hamiltonian,

A(R) = AT (&) + AT () + AT (K), (6)

cav cav—mol

where,
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Figure 3: Berry curvature and degree of circular polarization of the bands. (a-d) Berry curvature of the lowest energy band, ©,(k), and (e-h) a slice of
the band structure at k, = 0 of the lower two bands, under different levels of optical pumping, which create populations: (a, &) f, = f_ =0, (b, f)
fy=03,f=0,(c,9) f, =0,f_ =0.3,and(d, h) f, = f_ = 0.3. (e-h) The colors of the band indicate the value of the Stokes parameter, S;(k), which
measures the degree of circular polarization of a mode (Eq. (8)). The Chern numbers C, and C, of the bands are also specified and are nonzero under
time-reversal symmetry (TRS) breaking, that is, when f, # f_. We used parameters f, = 0.1eV, f =9 X 107* eV pm?2,{ = 2.5 X 1073 eV pm,

m* =125k eV~" um=2, F, = 3.80 eV, and hw, = 3.81 eV (see Section 4 in Supporting Information for details).

Ierff

mol

(k) = hwe|+m01>,<+m01|, + hwe|_mol)/<_mol|/’

~ hz Kk 2
Heg, M0 = (Eo + I ¢ cos qb) |+ea) (Feav|

h2|k|2
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A= =2 )
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Here, the states |y)’ are different from states |y) in
Eq. (5), where y = +,,1, *cav- AS expected, the light—matter
coupling terms are scaled by factors /1 — f. — 2f,, which
is a consequence of the commutation relation in Eq. (1) (see
Section S3 in Supporting Information).

If the pump pulse is circularly polarized, f, # f_, the
Rabi contraction factor that multiplies the light—matter

coupling differs for transitions to the |+,,) and |—,)
states; as a result, time-reversal symmetry is broken. Con-
sequently, when f, > f_, we find that bands 1 and 2 have
nonzero Chern numbers +1 and —1 (Figure 3f). Under the
opposite condition, f, < f_, the Chern numbers reverse
sign as seen in Figure 3g. When f, = f_, TRS is preserved,
and all bands have Chern number 0 as seen in Figure 3e
and h. In Figure 3b and c, we plot the computed Berry
curvature when f, # f_ and due to broken TRS, we find
€(k) # —€2;(—=k). Nonzero values of Berry curvature are
found at k, ~ +8 pm~", k, ~ 0 pm~" when f, =03, f_ =
0 or f, =0,f_=0.3. To measure the Berry curvature of
the bands at these values of k, the linewidths of the cav-
ity modes and the molecular transitions need to be less
than 10 meV as the energy splittings between the bands are
10 — 15 meV.

We also plot the Stokes parameter, S;(k), for bands 1
and 2, under pumping with circularly polarized light, in
Figure 4. The Stokes parameter, S;(k), provides information
on the degree of circular polarization of the photonic com-
ponent of an exciton—polariton band and is calculated as

|b+,cav(k)|2 - |b—,cav(k)|2
|b+,cav(k)|2 + |b—’cav(k)|2

Sy(K) = ®)

where the eigenvectors of the band are
b+,cav(k)|+cav> + b—,cav(k)|_cav> + b+,mol(k)|+mol> +
b_ 1161(K)| —me1)- In the absence of pumping, we find that

within a band, one half of the modes are predominantly ¢,
polarized and the other half are o_ polarized (Figure 3e).

|“z,k> =
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Figure 4: The Stokes parameter, S;(k), which is a measure of the degree of circular polarization of a mode (Eq. (8)), under pumping with (a, ¢) o,
polarized light, which creates populations f, = 0.3, f_ = 0, and (b, d) o_ polarized light, which creates populations f, = 0, f_ = 0.3 of the two lowest
energy bands (band 1and 2 as indicated in the inset). We used parameters f, = 0.1eV, f =9 X 107 eV um?, ¢ = 2.5 x 1073 eV pm,

m* = 125h% eV~ um=2, £, = 3.80 eV, and hw, = 3.81 eV (see Section S4 in Supporting Information for details).

Upon pumping with circularly polarized light, a large
number of modes within each band gradually become of
the same polarization as |f, — f_| is increased (Figure 3f
and g, Figures 4 and S2).

In experiments, the Berry curvature of photon bands in
a Fabry-Perot cavity can be extracted from the components
of the Stokes vector [25, 26]. In the case of exciton—polariton
bands, the Berry curvature can be measured experimentally
using the Stokes vector when the bands of the system can be
separated into pairs of bands that are effectively described
by separate 2 X 2 Hamiltonians. At each k, the Stokes vector
can describe a state in a two-dimensional Hilbert space;
however, the Stokes vector does not contain enough infor-
mation to fully specify a state in a Hilbert space of dimen-
sions larger than two. Therefore, in our four band model,
the Berry curvature (Figure 3a—d) can be experimentally
measured by pump-probe spectroscopy only when the split-
ting induced by the light-matter coupling is much larger
than that induced by the coupling between cavity modes
because then the four polariton bands can be separated into
two pairs of bands that are effectively described by separate
2 x 2 Hamiltonians as in ref. [49]. This measurement should
be feasible as long as the time delay between the pump
and probe pulses is shorter than the time the system takes

to depolarize and reach a state with f, = f_. The system’s
depolarization time depends only upon the bare molecu-
lar depolarization rate. As the depolarization timescale for
porphyrins ranges from 210 fs to 1.6 ps, this measurement
should be viable [50].

Population imbalances in the molecule or solid-state
system can potentially be experimentally created in a vari-
ety of ways. One possibility is to directly excite higher
energy material transitions with circularly polarized light
that are within the transparency window of the cavity
typically known as “nonresonant” pumping [11, 51]. If
decay from those higher energy transitions into the rele-
vant excited states happens before depolarization ensues,
we will have obtained the desired population imbalances.
Another possibility that bypasses the need of incoherent
processes is a stimulated electronic Raman scattering with
circularly polarized fields, although this scenario might
require X-rays [52, 53]. Finally, the population imbalance
may also be created by pumping resonantly with a circu-
larly polarized laser at |k| = v/f,/8, ¢ = 0. At this angle,
the coupling between the circularly polarized cavity modes
is zero. Additionally, [Jy ;- p_|> ]y - 4yl and [Ji _ -
py| > |Jx_ - p_|forall |k| < n,z /L, Therefore, when the
polariton mode at this k is pumped with circularly polarized
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light, the cavity mode of only the corresponding circular
polarization is excited and population is transferred largely
to only one of the circularly polarized molecular states.
After dephasing into the molecular states (but not depolar-
ization of the latter), the populations of the molecular states
would be unequal f, # f_.

As the Chern numbers of bands 1 and 2 are modified
through pumping with circularly polarized light, if we per-
form a calculation where a region of the system is pumped
with o, polarized light (f, # 0 and f_ = 0) and an adjacent
region is pumped with o _ polarized light (f, =0 and f_ #
0), we expect edge states at the boundary between these
regions. However, as our Hamiltonian does not contain cou-
plings between neighboring molecules, and the position of a
molecule does not enter the Hamiltonian anywhere except
through the phase of the light-matter coupling el*™=, the
standard bulk-boundary correspondence is no longer appli-
cable and we do not observe edge states. We do not include
plots for these calculations in this work and leave it an
open question whether there is an analogous statement for
bulk-boundary correspondence in these types of systems.
On the other hand, for exciton—polariton systems where
nearest-neighbor couplings are present, edge states have
been predicted and observed [19, 20].

b
[5d(1)) |5d(1)T)
Ky K-
[4f(1)4)  [4F(1)T)
¢ 0 )
10 s
5
g 0 » o
>
-5
fi=04
fi=06 _
-10 T—10 10 ’
Ky (um~)
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2.3 Other systems

To emphasize that our scheme of saturating electronic tran-
sitions with circularly polarized light to modify topological
properties is not limited to organic exciton—polariton sys-
tems, we compute the Berry curvature of two other polari-
ton systems where porphyrin is replaced with (i) Ce:YAG
and (ii) MoS, (Figure 5a and d). Other materials can also be
used in place of porphyrins, as long as they have transitions
that can be selectively excited with circularly polarized light
and these transitions have large enough transition dipole
moments that they can couple strongly to the photon modes
of a cavity.

In yttrium aluminum garnet (YAG) doped with cerium,
Ce3* ions replace some Y3+ and Ce®* has transitions that
can be selectively excited with circularly polarized light.
Here, each Ce3* has two possible ground states, one with
the electron in spin up |4f(1)1), and the other with it in
spin down |4f(1)]). Similarly, it has a degenerate pair of
excited spin states |5d(1)1) and |5d(1)}). The [4f(D)|) «
|5d(1)1) transition has ~400 times larger oscillator strength
for excitation with o polarized light than with ¢_ polar-
ized light; therefore, we take the transition dipole moment
to be p, (Figure 5b) [54]. Similarly, we take the transition
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Figure 5: Solid-state polariton systems where population imbalance induces non-trivial topology. (a) Illustration of Ce:YAG (salmon block) and
perylene (green blocks) within a Fabry-Perot cavity. (b) Atomic levels of Ce3* ions embedded in yttrium aluminum garnet (YAG) where the yellow
circles indicate the fraction f, of Ce3* ions in the |4 f(1)]) state and the fraction f; inthe [4f(1)1) state after optical pumping. The transition dipoles
Hy = WX+ i)?)/\/i are also indicated. (c) Berry curvature of the lowest energy band, €, (k), under pumping with circularly polarized which creates
populations f; = 0.4 and f; = 0.6. (d) Illustration of monolayer MoS, and perylene (green blocks) within a Fabry-Perot cavity. (e) Illustration of
A-excitons in the K and K’ valleys of monolayer MoS,. (f) Berry curvature of the lowest energy band, €2,(k), under pumping with circularly polarized
which creates exciton populations f, = 0.3 and f; = 0. We used parameters f, = 0.1eV, f =9 X 107* eV um?, { = 2.5x 1073 eV pm,

m* = 125h% eV~ pm=2,(c) £, = 2.50 eV, hw, = 2.53 eV and (f) £, = 1.80 eV, hw, = 1.855 eV (see Section S4 in Supporting Information for details).
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dipole to be u_ for the [4f(D)1) < |5d(1)}) transition
(Figure 5b). The transitions in Ce:YAG do couple to photon
modes, however, to the best of our knowledge, strong cou-
pling has not been reported in the literature [55, 56]. Nev-
ertheless, strong light-matter coupling has been achieved
with a similar system: Nd** doped YSO and YVO crys-
tals [57, 58], and based on our calculations, with a 0.1 pm
thick sample of Ce:YAG at concentration 1% Ce3* (rel-
ative to Y**), we should be able to attain strong cou-
pling with photon modes in a Fabry-Perot cavity (see
Section $4 in Supporting Information).

Under thermal equilibrium, the populations of the
[4f@)1) and |4f()])) states are equal. However, under
pumping with pulses of o, polarization, in the presence of
a small magnetic field ~0.049 T, the population of |4 f(1)1)
will exceed that of |4f(1)]) because population is selec-
tively removed from |4f(1)|) and added to |5d(1)1) by
the circularly polarized pulses, but decay from the excited
|5d(1)1) state to the two ground states has equal proba-
bility [59]. In principle, a magnetic field is not required,;
however, as we do not know the spin relaxation time in
the absence of the magnetic field, we report the mag-
netic field used in the experimental study [59]. Under
optical pumping with circularly polarized light, the 5d
states will have very small populations, which we take
to be zero, while the |4f(1)|) and |4f(1)1) states will
have unequal populations f, and f,, respectively; here,
fi + f; = 1. Optically pumped Ce:YAG can then be mod-
eled using the effective Hamiltonian in Eqs. (6) and (7),

with |+, = |51/ 1y and \/T= fz — 2, — 1/ f, ;- The
large spin relaxation time of ~4.5 ms makes this system
particularly well suited for our scheme because it main-
tains f|, # f;, and hence nonzero Chern invariants, for an
extended period of time [59]. In Figure 5c, we plot Berry
curvature of the lowest band of a perylene filled cavity
strongly coupled with Ce:YAG, where f, = 0.4 and f, =
0.6 (see Section S4 in Supporting Information for values of
other parameters).

TMDs, such as single-layer MoS,, display optically con-
trollable valley polarization and could also be used in place
of porphyrins [60-62]. Due to lack of inversion symme-
try in these systems, the K and K’ valleys are inequiv-
alent; this results in optical selection rules that allow
selective creation of excitons at K and K’ valleys with
o, and o_ polarized light, respectively [63, 64]. Addi-
tionally, strong light—matter coupling has been observed
when monolayer MoS, is placed within a Fabry—Perot cav-
ity [8, 9]. This system has depolarization times of ~200
fs to 5ps making it possible to measure Berry curva-
ture using pump-probe spectroscopy before depolarization
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occurs [65, 66]. We model this exciton—polariton system
(Figure 5d) using Egs. (6) and (7) (we focus on the A-exciton,
see Section S4 in Supporting Information for parameters)
with |+mol> - |K>’ |_m01> - |K/> and \/1 - fi - Zfi -

1—2fx/x- In Figure 5f, we plot the Berry curvature of
the lowest band when f; = 0.3 and f, = 0. Unfortunately,
significant Rabi contraction upon optical pumping has not
been experimentally observed in these systems, which
will make it challenging to observe Berry curvature as in
Figure 5f since our model relies on saturation effects. How-
ever, for exciton—polaritons formed from monolayer TMDs,
even if Rabi contraction through resonant optical pumping
may not produce the intended effect, off-resonant optical
pumping can break the degeneracy of excitons in the K
and K’ valleys through optical stark effect [67], and this
may have interesting consequences for the Berry curvature.
Additionally, if bilayer MoS, is used in place of monolayer
MoS,, effects on the Berry curvature described in our work
may be more pronounced as bilayer MoS, hosts interlayer
excitons, which possess large optical nonlinearities; specif-
ically, they display saturation and Rabi contraction under
strong coupling [68, 69].

Finally, so far we have only considered replacing por-
phyrin with a different material, such as MoS, or Ce:YAG.
In addition to this, perylene can also be replaced with other
suitable materials. In our work, we choose to use a cavity
filled with perylene because we do not want degeneracy at
any k within the photon bands. Other systems also satisfy
thisrequirement and could be used instead. For instance, we
could use an electrically tunable, highly anisotropic, liquid-
crystal cavity with well-separated H and V polarized pho-
ton modes [24, 70]. A perovskite cavity is another potential
candidate due to its high anisotropy, and optical pumping
may help lift the degeneracy of polariton modes in this
system [49]. Additionally, other photonic structures can also
be used instead of a cavity, as long as the photon bands
are not degenerate at any k and have nonzero light—matter
coupling at all k.

In our analysis, we have disregarded the explicit role
of vibrational modes, which is a reasonable assumption
for rigid molecular systems (such as porphyrins and
phthalocyanines [71]) and solid-state systems as their elec-
tron—phonon (vibronic) couplings tend to be small.

3 Conclusions

In summary, we show that TRS can be broken in organic
exciton—polariton systems through selectively saturating
electronic transitions with a circularly polarized pump and
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that the resulting bands possess nonzero Chern invari-
ants. In particular, we demonstrate this theoretically for a
Fabry—Perot cavity filled with porphyrin and perylene. The
Berry curvature of the more photonic parts of the bands of
this system can be measured experimentally using pump-
probe spectroscopy, as long as the time delay is shorter than
the depolarization time for porphyrin (210 fs to 1.6 ps) [50],
and this will reveal nonzero Berry curvature and Chern
number under circularly polarized pumping. Our scheme
relies on Rabi contraction from saturation of optical transi-
tions. Itisimportant to note that edge states do not emerge in
our system despite nonzero Chern invariants as our model
does not contain sufficient positional information about the
molecules or the unit cells. Bleu et al. [30] have previously
proposed breaking TRS in inorganic exciton-polariton sys-
tems through pumping with circularly polarized light; how-
ever, their work relies on polariton condensation and hav-
ing patterned lattices. Finally, we demonstrate that saturat-
ing electronic transitions to modify topology is not limited
to organic systems. To illustrate this, we calculate the Berry
curvature and Chern numbers of exciton—polariton bands
of two other systems under optical pumping: (a) Ce:YAG and
(b) monolayer MoS,, and find similar results as the organic
exciton—polariton case. In view of recent developments on
electrically tuning the Berry curvature of liquid-crystal and
perovskite-filled cavities [24, 26], our work provides an addi-
tional control knob to optically tune the Berry curvature of
exciton—polariton systems using circularly polarized light.
Additionally, ultrafast control of topological properties of
systems with light may find use in nonreciprocal and non-
linear optoelectronic devices.
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