Supplementary Material: Molecular and
solid-state topological polaritons induced by
population imbalance

SINDHANA PANNIR-SIVAJOTHI', NATHANIEL P. STERN?, AND JOEL
YUEN-ZHou'

1 Department of Chemistry and Biochemistry, University of California San Diego , La Jolla, California 92093, USA
2 Department of Physics and Astronomy, Northwestern University, Evanston, lllinois 60208, USA

S1. LIGHT-MATTER COUPLING

The light-matter coupling part of the total Hamiltonian under the electric dipole approximation is,
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where pry = pimo = (m, ol | #|m,G) is independent of m since we assume that all porphyrin molecules lie flat in
the x-y plane and are oriented. The electric field operator of the mode labeled by k and « is
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Here, V = LyLyL; is the volume of the box we consider, where as mentioned in the main manuscript, we apply
periodic boundary conditions along the x and y directions. From here on, we will call the in-plane area of the box
A = LyLy. Here, fi (1, z) is the mode profile and it satisfies [1]
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For the TE and TM modes [2],
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We make the rotating-wave approximation,
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where Ji o = —1/NxNyy/ ;‘};“% e*"k'rfk/a(r,()) and py - Ji 4 is the collective light-matter coupling strength.
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The annihilation operators of photon modes polarized along the horizontal (H) or x-axis and vertical (V) or y-axis
are Ay py and dy v, respectively. They are related to « = + polarized modes through 4y . = % (A Fidy) [3].
In addition, we assume that they are related to the TM and TE modes through @y t\ = cos ¢pdy i + sin ¢y v and
Ay TE = — sin ¢pdy 1y + cos ¢y y. Using this, we obtain the relationship between @y 1, 4 v and dy o, 4 — modes to
be,
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It is important to note that, based on these relationships and S4, the x =H/V modes are not completely linearly

polarized and the « = £ modes are not completely circularly polarized when |k| becomes comparable with n,7t/L;.
We also find,
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To keep the collective coupling strength g, - Ji , constant while taking the a — 0 limit, we take the magnitude of
the collective transition dipole of the bright state /Nx Ny o over square root of the quantization area of the photon

mode v/A to be a constant; that is, we keep \/papo = po/a a constant, where p4 = NxNy/ A is the areal density of
quantum emitters.
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S2. CHERN NUMBER CALCULATION
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Fig. S1. (a) This is a cartoon figure that demonstrates the way Berry flux and Chern number are computed in
our system. The small squares are the plaquettes over which Berry flux is computed. The blue arrows specify the
orientation used for Berry flux computation. Note that the direction is opposite for the small squares and the large
square. (b) Same as (a), but placed on a sphere. Here, it is more clear that the direction of the arrow for the large
square indicates the way Berry flux is computed for the giant plaquette covering the rest of the sphere.

For the Chern invariant to be an integer, it is important that the Berry curvature is integrated over a closed and
bounded surface [4]. For periodic systems with a finite period, the Brillouin zone is a torus which satisfies this
requirement. However, for a continuous system, (ky, ky) lies on an unbounded plane; for such systems, Silveirinha
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Fig. S2. The Stokes parameter, S3(k), of the lowest energy band (Band 1) under pumping with oy polarized light
which creates populations (a) f1 = 0.05, f- =0, (b) f+ =0.1, f- =0,and (c) f+ =03, f- =0.

[5] proposed mapping this infinitely large plane onto a sphere to compute the Chern number. This is the procedure
we follow in our work. We discretize k-space and compute the Berry flux in each plaquette within a square-shaped
region in k-space, —kmax < kx,ky < kmax [4, 6] (Fig. Sla and S1b). The entire region that satisfies the condition
kx,ky > kmax Or kx, ky < —kmax is taken as a single giant plaquette (Fig. S1b), and the Berry flux within this region is
computed by taking the Berry phase along the boundary of the plaquette but in a direction opposite to that used
to compute Berry flux for plaquettes within the square —kmax < kx, ky < kmax as indicated in Fig. Sla and S1b. To
ensure that we obtain a converged Chern number, we calculate the Chern number for different kmax and find that,
for our system, once kmax 2 lOOym_l, the Chern number converges to C; = +1,Cy = F1,C3 = 0, and C4 = 0 when
f+ # f— with |fy — f_| 2 0.11. Smaller differences between f1 and f_, |f4 — f—| < 0.11 require larger kmax for
convergence. This is not a problem for the f; = f_ case because the Chern invariant will always be zero due to
time-reversal symmetry () (k) = —(;(—k), and we can use kmax ~ 100ym~" to compute it.

S3. OPTICAL PUMPING

The number of excitations in the system Nex = Yy o aL WMoa T Lng a;/,xtrn,,x is a conserved quantity of this Hamilto-
nian. Therefore, when we have f. fraction of molecules in the |+,,)) state and f_ in the | —,) state, we will only
have to look at the (f; + f— )N excitation manifold. Unfortunately, the dimensions of the Hilbert space of this
manifold scale as (( i +I\]]’, ) N)» and this quickly becomes computationally intractable as the system size, N, increases.
Using mean-field theory, we reduce this many-body problem to a one-body problem. That is, we derive an effective
Hamiltonian for a single excitation in the mean-field of the remaining (fy + f—)N excitations; in this way, we reduce
the dimensions of the Hilbert space to that of the first excitation manifold. To do this, we follow a procedure similar
to that used by Ribeiro et al. [7] and write the Heisenberg equations of motion (EOM) for the operators 0 + and dy 1,
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We make a mean-field approximation to linearize these EOM. For instance, we use mn ~ 1n, that is,
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where (O) = Tr[poO] with pg ~ [T fm [Tk [Ta—r,— Pux [8]. Here, we assume that after dephasing of the molecular
amplitudes, pm = fg ‘m, G> <m, G‘ +f+ ‘mr +m01> <mr +mol| +f- |mr _m01> <mr _mol|/ Pak = |kr o‘caV/O> <kr Xcav, 0‘!
and, therefore, (A ;) = 0. The EOM then become
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We define rescaled operators &, y = 0n+/+/1 — f+ — 2f+ and rewrite the EOM,

Yl N 1 ” .

in dnt' ~hwedy,+ + NN,V = fr —2fx gelk r“ <Jk,+ Pl y

+ Ji— 'V:l:ﬁkﬁ)r
da 12 |k|? (S12)
o At 5 _ 2,529 5
il it <Eo+ P i§|k|cos¢>ak¢+( Bo + Blk|e )aij

\/W elkrm<\/1_f* 2f+Jki I’l*+6—1/11,++ \/1_ +_2f ]ki Il* i )
m
Alt } —
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which is the mean-field Hamiltonian when the system has f, f_ excitations. Writing this effective Hamiltonian in



k-space,
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We define states |k, :I:mol)/ and |k, :I:cav)' corresponding to operators [71? L and ﬁlt ., respectively. Writing the

Hamiltonian A (k) = (k| A°f |k) in the above basis we obtain,
A (1) = A () + HE, (k) + g (K), (S15)
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Upon pumping with circularly polarized light, the lowest band gradually changes from containing equal number
of modes of both circular polarizations to overwhelmingly containing modes of a single polarization as |f1 — f—|
increases (Fig. 52).

S4. PARAMETERS

Perylene filled cavity

We take parameters for the perylene filled cavity By = 0.1eV, = 9 x 10~*eVum?, { = 2.5 x 10~ 3eVum, m* =
125h2eV’1ym*2, and L, = 0.745um, where these are similar to those used to model the experiments of Ren et
al. [9] (Fig. 3, 4, and 5 in main manuscript). On the other hand, we modify Ey and n, such that they make the
photon modes in our model near resonant with the transition that is strongly coupled to the cavity. For instance,
we take Ey = 3.80eV and n, = 11 for porphyrin (Fig. 3 and 4); Ey = 2.50eV and n, = 9 for Ce:YAG (Fig. 5b-c);
and Ey = 1.80eV and n, = 5 for MoS, (Fig. 5e-f). We assume that perylene has a similar effect on these different
photon modes, as it does on modes with Ey ~ 2.27eV at k = 0 in experiments [9]. This may not necessarily be true,
however, as we consider a perylene filled cavity only to achieve frequency separation of photon modes with different
polarization, and this can instead be easily achieved with an electrically tunable liquid crystal cavity [10], replacing a
perylene filled cavity with a liquid-crystal cavity will not modify the underlying physics of the phenomenon we are
interested in, i.e., the idea of using saturation to break TRS will remain intact.

Porphyrin, Ce:YAG, and monolayer MoS,

We take areal density p4 = 3.55 X 10°um~2 (~ 2000 molecules in 75nm X 75nm) [11], relative permittivity e = 1.5
[12], frequency fiwe = 3.8056eV and transition dipole yg = 1.1184au x 2.5417D/au = 2.84D [13] for the porphyrin
film. Also, we consider 100 such porphyrin films stacked one over the other along the z direction within the cavity to
achieve strong light-matter coupling, N, = 100. Therefore, the effective areal density of molecules p/, = N;p will
be used instead of p4 while computing Ji . These are the parameters used to generate Fig. 3 and 4.

Similarly, using density pyag = 5.11g cm~3, molar mass Myag = 738 g mol~!, number of Y3* per unit cell
nys+ = 3, and concentration of Ce?* (relative to Y3*) 1% = 1072 [14], we obtain the effective areal density of Ce3*



ionsina L, = 0.1um thick layer of Ce:YAG to be o/, = 1072L.nys+ pyagNa/Myag = 1.25 x 10" ym~2. This will
be used while computing Jy , in place of p 4. We use relative permittivity ¢ = 12 [15] and frequency iwe = 2.53eV
(489nm [16]) for the transition in a Ce:YAG crystal. Using the oscillator strength of this transition 0.286 [16], we
calculate the transition dipole yg = 5.46D. These are the parameters used to generate Fig. 5c.

For monolayer MoS,, we consider A-excitons at fiwe. = 1.855eV [17]. From Chen et al. [17], we take the Rabi

splitting at resonance, and use pg./pavHwe /2L e€) = 39meV /2 = 19.5meV in our calculations (Fig. 5f).
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