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S1. LIGHT-MATTER COUPLING

The light-matter coupling part of the total Hamiltonian under the electric dipole approximation is,

Ĥcav−mol =∑
m

∑
k,α
−µ̂m · Êk,α(rm, 0),

=∑
m

∑
k,α
−
[

∑
α′=±

(µα′ σ̂
†
m,α′ + µ∗α′ σ̂m,α′ )

]
· Êk,α(rm, 0),

(S1)

where µα′ = µm,α′ =
〈
m, α′mol

∣∣ µ̂ |m, G〉 is independent of m since we assume that all porphyrin molecules lie flat in
the x-y plane and are oriented. The electric field operator of the mode labeled by k and α is

Êk,α(r, z) =

√
h̄ωk,α

2Vεε0

(
f∗k,α(r, z)â†

k,α + fk,α(r, z)âk,α

)
. (S2)

Here, V = Lx LyLz is the volume of the box we consider, where as mentioned in the main manuscript, we apply
periodic boundary conditions along the x and y directions. From here on, we will call the in-plane area of the box
A = Lx Ly. Here, fk,α(r, z) is the mode profile and it satisfies [1]∫

dr
∫ Lz

0
dzf∗k,α(r, z)fk,α(r, z) = Lz A. (S3)

For the TE and TM modes [2],

fk,TE(r, z) =eik·r√2 sin

[
nzπ

Lz

(
z +

Lz

2

)]
φ̂,

fk,TM(r, z) =eik·r

√√√√ 2

|k|2 +
( nzπ

Lz

)2

{(nzπ

Lz

)
sin

[
nzπ

Lz

(
z +

Lz

2

)]
ρ̂− i|k| cos

[
nzπ

Lz

(
z +

Lz

2

)]
ẑ

}
.

(S4)

We make the rotating-wave approximation,

Ĥcav−mol =∑
m

∑
k,α
−
[

∑
α′=±

(µα′ σ̂
†
m,α′ + µ∗α′ σ̂m,α′ )

]
·
[√ h̄ωk,α

2Vεε0

(
f∗k,α(rm, 0)â†

k,α + fk,α(rm, 0)âk,α

)]
,

≈ ∑
m,α′

∑
k,α
−

√
h̄ωk,α

2Vεε0

[
µα′ · fk,α(rm, 0)σ̂†

m,α′ âk,α + µ∗α′ · f∗k,α(rm, 0)σ̂m,α′ â†
k,α

]
,

= ∑
m,α′

∑
k,α

[ eik·rm√
Nx Ny

(µα′ · Jk,α)σ̂
†
m,α′ âk,α +

e−ik·rm√
Nx Ny

(µ∗α′ · J∗k,α)σ̂m,α′ â†
k,α

]
,

(S5)

where Jk,α = −
√

Nx Ny

√
h̄ωk,α
2Vεε0

e−ik·rfk,α(r, 0) and µα′ · Jk,α is the collective light-matter coupling strength.
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The annihilation operators of photon modes polarized along the horizontal (H) or x-axis and vertical (V) or y-axis
are âk,H and âk,V, respectively. They are related to α = ± polarized modes through âk,± = 1√

2
(âk,H ∓ iâk,V) [3].

In addition, we assume that they are related to the TM and TE modes through âk,TM = cos φâk,H + sin φâk,V and
âk,TE = − sin φâk,H + cos φâk,V. Using this, we obtain the relationship between âk,TE, âk,TM and âk,+, âk,− modes to
be,

âk,TM =
1√
2

(
eiφ âk,+ + e−iφ âk,−

)
,

âk,TE =
1√
2

(
ieiφ âk,+ − ie−iφ âk,−

)
.

(S6)

It is important to note that, based on these relationships and S4, the α =H/V modes are not completely linearly
polarized and the α = ± modes are not completely circularly polarized when |k| becomes comparable with nzπ/Lz.
We also find,

Jk,+ =
eiφ
√

2

(
Jk,TM + iJk,TE

)
,

Jk,− =
e−iφ
√

2

(
Jk,TM − iJk,TE

)
.

(S7)

To keep the collective coupling strength µα′ · Jk,α constant while taking the a→ 0 limit, we take the magnitude of
the collective transition dipole of the bright state

√
Nx Nyµ0 over square root of the quantization area of the photon

mode
√

A to be a constant; that is, we keep
√

ρAµ0 = µ0/a a constant, where ρA = Nx Ny/A is the areal density of
quantum emitters.

Jk,α =−√ρA

√
h̄ωk,α

2Lzεε0
e−ik.rfk,α(r, 0)

=− 1
a

√
h̄ωk,α

2Lzεε0
e−ik.rfk,α(r, 0).

(S8)

S2. CHERN NUMBER CALCULATION
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Fig. S1. (a) This is a cartoon figure that demonstrates the way Berry flux and Chern number are computed in
our system. The small squares are the plaquettes over which Berry flux is computed. The blue arrows specify the
orientation used for Berry flux computation. Note that the direction is opposite for the small squares and the large
square. (b) Same as (a), but placed on a sphere. Here, it is more clear that the direction of the arrow for the large
square indicates the way Berry flux is computed for the giant plaquette covering the rest of the sphere.

For the Chern invariant to be an integer, it is important that the Berry curvature is integrated over a closed and
bounded surface [4]. For periodic systems with a finite period, the Brillouin zone is a torus which satisfies this
requirement. However, for a continuous system, (kx, ky) lies on an unbounded plane; for such systems, Silveirinha
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Fig. S2. The Stokes parameter, S3(k), of the lowest energy band (Band 1) under pumping with σ+ polarized light
which creates populations (a) f+ = 0.05, f− = 0, (b) f+ = 0.1, f− = 0, and (c) f+ = 0.3, f− = 0.

[5] proposed mapping this infinitely large plane onto a sphere to compute the Chern number. This is the procedure
we follow in our work. We discretize k-space and compute the Berry flux in each plaquette within a square-shaped
region in k-space, −kmax ≤ kx, ky ≤ kmax [4, 6] (Fig. S1a and S1b). The entire region that satisfies the condition
kx, ky > kmax or kx, ky < −kmax is taken as a single giant plaquette (Fig. S1b), and the Berry flux within this region is
computed by taking the Berry phase along the boundary of the plaquette but in a direction opposite to that used
to compute Berry flux for plaquettes within the square −kmax ≤ kx, ky ≤ kmax as indicated in Fig. S1a and S1b. To
ensure that we obtain a converged Chern number, we calculate the Chern number for different kmax and find that,
for our system, once kmax & 100µm−1, the Chern number converges to C1 = ±1, C2 = ∓1, C3 = 0, and C4 = 0 when
f+ 6= f− with | f+ − f−| & 0.11. Smaller differences between f+ and f−, | f+ − f−| . 0.11 require larger kmax for
convergence. This is not a problem for the f+ = f− case because the Chern invariant will always be zero due to
time-reversal symmetry Ωl(k) = −Ωl(−k), and we can use kmax ≈ 100µm−1 to compute it.

S3. OPTICAL PUMPING

The number of excitations in the system Nex = ∑k,α a†
k,αak,α + ∑n,α σ†

n,ασn,α is a conserved quantity of this Hamilto-
nian. Therefore, when we have f+ fraction of molecules in the |+mol〉 state and f− in the |−mol〉 state, we will only
have to look at the ( f+ + f−)Nth excitation manifold. Unfortunately, the dimensions of the Hilbert space of this
manifold scale as ( N

( f++ f−)N), and this quickly becomes computationally intractable as the system size, N, increases.
Using mean-field theory, we reduce this many-body problem to a one-body problem. That is, we derive an effective
Hamiltonian for a single excitation in the mean-field of the remaining ( f+ + f−)N excitations; in this way, we reduce
the dimensions of the Hilbert space to that of the first excitation manifold. To do this, we follow a procedure similar
to that used by Ribeiro et al. [7] and write the Heisenberg equations of motion (EOM) for the operators σ̂m,± and âk,±,

ih̄
dσ̂n,±

dt
=
[
σ̂n,±, Ĥmol

]
+
[
σ̂n,±, Ĥcav

]
+
[
σ̂n,±, Ĥcav−mol

]
=h̄ωeσ̂n,± +

1√
Nx Ny

∑
k

eik·rn
[
(1− σ̂†

n,∓σ̂n,∓ − 2σ̂†
n,±σ̂n,±)

(
Jk,+ · µ± âk,+

+ Jk,− · µ± âk,−
)
− σ̂†

n,∓σ̂n,±
(

Jk,+ · µ∓ âk,+ + Jk,− · µ∓ âk,−
)]

,

ih̄
dâk,±

dt
=
[
âk,±, Ĥmol

]
+
[
âk,±, Ĥcav

]
+
[
âk,±, Ĥcav−mol

]
=
(

E0 +
h̄2|k|2
2m∗

± ζ|k| cos φ
)

âk,± +
(
− β0 + β|k|2e∓i2φ

)
â∓,k

+
1√

Nx Ny
∑
m

eik·rm
(

J∗k,± · µ
∗
+σ̂m,+ + J∗k,± · µ

∗
−σ̂m,−

)
.

(S9)

We make a mean-field approximation to linearize these EOM. For instance, we use mn ≈ m̄n, that is,

σ̂†
n,+σ̂n,+ âk,+ =

(
〈σ̂†

n,+σ̂n,+〉+ σ̂†
n,+σ̂n,+ − 〈σ̂†

n,+σ̂n,+〉
)

âk,+

=〈σ̂†
n,+σ̂n,+〉âk,+ + (σ̂†

n,+σ̂n,+ − 〈σ̂†
n,+σ̂n,+〉)〈âk,+〉

≈〈σ̂†
n,+σ̂n,+〉âk,+,

(S10)

3



where 〈Ô〉 = Tr
[
ρ̂0Ô

]
with ρ̂0 ≈ ∏m ρ̂m ∏k ∏α=+,− ρ̂α,k [8]. Here, we assume that after dephasing of the molecular

amplitudes, ρ̂m = fG |m, G〉 〈m, G|+ f+ |m,+mol〉 〈m,+mol|+ f− |m,−mol〉 〈m,−mol|, ρ̂α,k = |k, αcav, 0〉 〈k, αcav, 0|,
and, therefore, 〈âk,+〉 = 0. The EOM then become

ih̄
dσ̂n,±

dt
≈h̄ωeσ̂n,± +

1√
Nx Ny

(1− f∓ − 2 f±)∑
k

eik·rn
(

Jk,+ · µ± âk,+

+ Jk,− · µ± âk,−
)

,

ih̄
dâk,±

dt
=
(

E0 +
h̄2|k|2
2m∗

± ζ|k| cos φ
)

âk,± +
(
− β0 + β|k|2e∓i2φ

)
â∓,k

+
1√

Nx Ny
∑
m

eik·rm
(

J∗k,± · µ
∗
+σ̂m,+ + J∗k,± · µ

∗
−σ̂m,−

)
.

(S11)

We define rescaled operators σ̂′n,± = σ̂n,±/
√

1− f∓ − 2 f± and rewrite the EOM,

ih̄
dσ̂′n,±

dt
≈h̄ωeσ̂′n,± +

1√
Nx Ny

√
1− f∓ − 2 f±∑

k
eik·rn

(
Jk,+ · µ± âk,+

+ Jk,− · µ± âk,−
)

,

ih̄
dâk,±

dt
=
(

E0 +
h̄2|k|2
2m∗

± ζ|k| cos φ
)

âk,± +
(
− β0 + β|k|2e∓i2φ

)
â∓,k

+ √
Nx Ny

∑
m

eik·rm
(√

1− f− − 2 f+J∗k,± · µ
∗
+σ̂′m,+ +

√
1− f+ − 2 f−J∗k,± · µ

∗
−σ̂′m,−

)
.

(S12)

From these EOM, along with the fact that σ̂′n,± act effectively as bosonic operators in mean-field,
[
σ̂′n,+, σ̂′†n,+

]
=

1−σ̂†
n,− σ̂n,−−2σ̂†

n,+ σ̂n,+
1− f−−2 f+

≈ Î and
[
σ̂′n,+, σ̂′†n,−

]
=
−σ̂†

n,− σ̂n,+
1− f−−2 f+

≈ 0̂, where Î and 0̂ are the identity and zero operators, we can

construct an effective Hamiltonian Ĥeff = Ĥeff
mol + Ĥeff

cav + Ĥeff
cav−mol in σ̂′n,± and âk,±,

Ĥeff
mol =∑

n

(
h̄ωeσ̂′†n,+σ̂′n,+ + h̄ωeσ̂′†n,−σ̂′n,−

)
,

Ĥeff
cav =∑

k

(
E0 +

h̄2|k|2
2m∗

+ ζ|k| cos φ
)

â†
k,+ âk,+

+
(

E0 +
h̄2|k|2
2m∗

− ζ|k| cos φ
)

â†
k,− âk,− +

(
− β0 + β|k|2e−i2φ

)
â†

k,+ âk,−

+
(
− β0 + β|k|2ei2φ

)
â†

k,− âk,+,

Ĥeff
cav−mol =

1√
Nx Ny

∑
m

∑
k

eik·rm

[√
1− f− − 2 f+

(
Jk,+ · µ+σ̂′†m,+ âk,+

+ Jk,− · µ+σ̂′†m,+ âk,−
)
+
√

1− f+ − 2 f−
(

Jk,+ · µ−σ̂′†m,− âk,+

+ Jk,− · µ−σ̂′†m,− âk,−
)]

+ H.c.,

(S13)

which is the mean-field Hamiltonian when the system has f+, f− excitations. Writing this effective Hamiltonian in
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k-space,

Ĥeff
mol =∑

k

[
h̄ωeσ̂′†k,+σ̂′k,+ + h̄ωeσ̂′†k,−σ̂′k,−

]
,

Ĥeff
cav =∑

k

(
E0 +

h̄2|k|2
2m∗

+ ζ|k| cos φ
)

â†
k,+ âk,+ +

(
E0 +

h̄2|k|2
2m∗

− ζ|k| cos φ
)

â†
k,− âk,−

+
(
− β0 + β|k|2e−i2φ

)
â†

k,+ âk,− +
(
− β0 + β|k|2ei2φ

)
â†

k,− âk,+,

Ĥeff
cav−mol =∑

k

[√
1− f− − 2 f+

(
Jk,+ · µ+σ̂′†k,+ âk,+

+ Jk,− · µ+σ̂′†k,+ âk,−
)
+
√

1− f+ − 2 f−
(

Jk,+ · µ−σ̂′†k,− âk,+

+ Jk,− · µ−σ̂′†k,− âk,−
)]

+ H.c.

(S14)

We define states |k,±mol〉′ and |k,±cav〉′ corresponding to operators σ̂′†k,± and â†
k,±, respectively. Writing the

Hamiltonian Ĥeff(k) = 〈k| Ĥeff |k〉 in the above basis we obtain,

Ĥeff(k) = Ĥeff
mol(k) + Ĥeff

cav(k) + Ĥeff
cav−mol(k), (S15)

where,

Ĥeff
mol(k) =h̄ωe |+mol〉′ 〈+mol|′ + h̄ωe |−mol〉′ 〈−mol|′ ,

Ĥeff
cav(k) =

(
E0 +

h̄2|k|2
2m∗

+ ζ|k| cos φ
)
|+cav〉′ 〈+cav|′ +

(
E0 +

h̄2|k|2
2m∗

− ζ|k| cos φ
)
|−cav〉′ 〈−cav|′

+
(
− β0 + β|k|2e−i2φ

)
|+cav〉′ 〈−cav|′ +

(
− β0 + β|k|2ei2φ

)
|−cav〉′ 〈+cav|′ ,

Ĥeff
cav−mol(k) =Jk,+ ·

(√
1− f− − 2 f+µ+ |+mol〉′ +

√
1− f+ − 2 f−µ− |−mol〉′

)
〈+cav|′

+ Jk,− ·
(√

1− f− − 2 f+µ+ |+mol〉′ +
√

1− f+ − 2 f−µ− |−mol〉′
)
〈−cav|′ + H.c.

(S16)

Upon pumping with circularly polarized light, the lowest band gradually changes from containing equal number
of modes of both circular polarizations to overwhelmingly containing modes of a single polarization as | f+ − f−|
increases (Fig. S2).

S4. PARAMETERS

Perylene filled cavity

We take parameters for the perylene filled cavity β0 = 0.1eV, β = 9× 10−4eVµm2, ζ = 2.5× 10−3eVµm, m∗ =

125h̄2eV−1µm−2, and Lz = 0.745µm, where these are similar to those used to model the experiments of Ren et
al. [9] (Fig. 3, 4, and 5 in main manuscript). On the other hand, we modify E0 and nz such that they make the
photon modes in our model near resonant with the transition that is strongly coupled to the cavity. For instance,
we take E0 = 3.80eV and nz = 11 for porphyrin (Fig. 3 and 4); E0 = 2.50eV and nz = 9 for Ce:YAG (Fig. 5b-c);
and E0 = 1.80eV and nz = 5 for MoS2 (Fig. 5e-f). We assume that perylene has a similar effect on these different
photon modes, as it does on modes with E0 ∼ 2.27eV at k = 0 in experiments [9]. This may not necessarily be true,
however, as we consider a perylene filled cavity only to achieve frequency separation of photon modes with different
polarization, and this can instead be easily achieved with an electrically tunable liquid crystal cavity [10], replacing a
perylene filled cavity with a liquid-crystal cavity will not modify the underlying physics of the phenomenon we are
interested in, i.e., the idea of using saturation to break TRS will remain intact.

Porphyrin, Ce:YAG, and monolayer MoS2

We take areal density ρA = 3.55× 105µm−2 (∼ 2000 molecules in 75nm × 75nm) [11], relative permittivity ε = 1.5
[12], frequency h̄ωe = 3.8056eV and transition dipole µ0 = 1.1184au× 2.5417D/au = 2.84D [13] for the porphyrin
film. Also, we consider 100 such porphyrin films stacked one over the other along the z direction within the cavity to
achieve strong light-matter coupling, Nz = 100. Therefore, the effective areal density of molecules ρ′A = NzρA will
be used instead of ρA while computing Jk,α. These are the parameters used to generate Fig. 3 and 4.

Similarly, using density ρYAG = 5.11g cm−3, molar mass MYAG = 738 g mol−1, number of Y3+ per unit cell
nY3+ = 3, and concentration of Ce3+ (relative to Y3+) 1% = 10−2 [14], we obtain the effective areal density of Ce3+
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ions in a L′z = 0.1µm thick layer of Ce:YAG to be ρ′A = 10−2L′znY3+ρYAGNA/MYAG = 1.25× 107µm−2. This will
be used while computing Jk,α in place of ρA. We use relative permittivity ε = 12 [15] and frequency h̄ωe = 2.53eV
(489nm [16]) for the transition in a Ce:YAG crystal. Using the oscillator strength of this transition 0.286 [16], we
calculate the transition dipole µ0 = 5.46D. These are the parameters used to generate Fig. 5c.

For monolayer MoS2, we consider A-excitons at h̄ωe = 1.855eV [17]. From Chen et al. [17], we take the Rabi
splitting at resonance, and use µ0

√
ρA
√

h̄ωe/2Lzεε0 ≈ 39meV/2 = 19.5meV in our calculations (Fig. 5f).
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