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Materials and methods

The time-domain solver of the commercial software COMSOL Multiphysics® has been used
to numerically simulate temporal interfaces. The simulation setup (Fig. 3A) has dimensions
equal to 14\q x 0.7\q, where \q is the wavelength in the dielectric medium. A triangular mesh
is implemented with minimum and maximum dimensions of 3 x 107> m and \4/20. Periodic
boundary conditions are applied at the top and bottom boundaries, to emulate plane waves. The
boundary on the left is assigned to a scattering boundary behaving as a source, and the right
boundary is assigned to a scattering boundary behaving as a perfect absorber. Electric field of
circularly polarized plane waves propagating in the x-direction is excited using an analytical
expression E¥ = % [Sf FJ Z] Iwt=5%2) The temporal interfaces are modeled by inducing fast
but smooth changes in the permittivity and permeability filling the rectangular box. Initially,
the medium has permitivity eg'; and permeability ujﬁl, then they change following a rectangular
shape using analytical functions with smooth transitions with two continuous derivatives, while

the duration of the transient period is 1.1710 s,



Supplementary Note 1

Time-domain material relations in chiral media

To study time-varying chiral media, time-domain constitutive relations are needed. The com-
monly used constitutive equations of chiral media (so called Post and Tellegen relations) (27)
are applicable only in the frequency domain. Because the chirality parameter in these for-
malisms is inherently frequency dispersive, transforming these equations to time domain would
complicate the mathematical formulation, as the material relations would contain convolution
integrals. Thus, Condon model is used (28), which approximately models non-resonant chirality
effects with a non-dispersive parameter g. In chiral media, a linearly polarized plane wave can
be expressed as a combination of RHCP and LHCP waves having the same angular frequency
but propagating at different phase velocities. Splitting the fields of a plane wave into RHCP
and LHCP components, and following the Condon model, we write the constitutive relations of

isotropic chiral media as
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in which e, por, and g are the non-dispersive effective permittivity, effective permeability, and
the chirality parameter (or rotatory parameter as Condon called it). Electric and magnetic fields

of a linearly polarized plane wave propagating in x-direction is considered, and the fields read
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where 7.¢ s the medium effective intrinsic impedance, and F), is the amplitude of the electric

field. Considering the fields derivatives alg—ti = T E* and %L: = dwn.gH*, Egs. (Sla) and
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(S1b) can be expressed as
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which simplifies to
DF = e (1 T \If) Ef, (S4a)
B* — i (17 W) HE, (S4b)
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are in a similar form as the relations for dispersive stationary chiral media, however, the models

. We note that the above relations

where ¥ = gwe, w is the angular frequency, and ¢ =

used to arrive to both relations are different and cannot replace each other.
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Temporal boundary conditions

A. Chiral-dielectric temporal interface

We contemplate a chiral medium supporting a linearly polarized plane wave at frequency w;
when the non-dispersive chirality parameter g rapidly changes to zero, that is, the medium be-
comes nonchiral. In his paper published in 1958, Morgenthaler showed that the electric and
magnetic flux densities are continuous at a temporal interface (29). Using that property, we
write that D¥ = D3 and Bf = BZ, where the subscripts 1,2 correspond to the fields before
(t = t5) and after (¢ = tJ) the temporal discontinuity, respectively (%, is the switching mo-
ment). The flux densities at ¢, equal Df = €off (1 F \I/1>EfE and B{E = Heff (1 F \I/1>HI—L
in which ¥; = w;gc. While at ] they equal D5 = e.sE3 and Bf = p.gHZ. According to
Morgenthaler, after the temporal jump, there are forward and backward waves in analogy with
a spatial interface at which we have transmitted and reflected waves. As a result, the fields after

the temporal interface can be written as

L - . A
Ef = ij?() [cos(wft — BFx)y £ sin(wit — Bfm)z]
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4 TCinEO 4+ + 4 +
Hf = A cos(wyt — f¥x)z Fsin(wyt — 1)y
TNeft

+
e

27763

cos(wit + BEx)z £ sin(wit + 5%);7] : (S5b)

The forward and backward propagation coefficients (for a temporal interface between chiral
and dielectric media) are denoted as Tq and I';q, respectively. The backward propagating

wave is defined by the negative frequency component after the temporal interface. Interestingly,



both the forward and backward waves keep the same polarization state, resulting in handedness

conservation along the temporal interface. Assuming that ¢, = 0, the fields reduce to

Ef = % [cos(ﬁlix)y ¥ sin(ﬁf:c)i] ) (S6a)
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Hi = cos(f )z £sin(f )y |, (S6¢)
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The spatial frequency is conserved at the temporal interface as no spatial boundaries are intro-

F:t

+
duced, leading to 5 = 5. Then we find that —£ = (T la T FC”d) and %f = (T3 cHd)
1
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From D = D and Bf = Bj we get —£ = 1F ¥, and —25 = 1 F U,. Finally, we see that

+
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at FcHd =1F ¥y and T3 = 1 F ¥y, leading to I': 2ia=0.
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B. Chiral temporal slab

To form a chiral temporal slab, another temporal interface between dielectric and chiral me-
dia has to take place. The material parameters after the second temporal interface are €., =

et (1FU3), tleq = tesr (1 F¥3), and g # 0, where U5 = gw3 c. The forward and backward prop-

1

agation coefficients can be calculated by the Morgenthaler equations, leading to Y= dic = T50F
3

and I'% dle = = 0. The angular frequencies wi can be calculated from the conservation of phase

constants Bi = 85 = (5, where 85 = wi\/Jiegeor (1F U5 ). By solving for wi from 35 = B

we get

+ Tl /1TF4dgwyc
Wy =

2cg D



Substituting wi = w; (1 F ¥,) leads to

LI} _
+ (¥ \ (S8a)
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PRk 2‘, (S8b)
cg

in which =+ represent the positive and negative branches of the square root. Considering ¥; < %,

we get
2 . .
2t , for negative solution
Wi =41 (S9a)
2 , for positive solution
cg
-1y, -1 . .
_ 2 Cgl 2 for negative solution (S9b)
Wi =y —lyu+l . .
2714y , for positive solution
cg
which simplifies to
Wi, for negative solution
wy =<, . ) (S10a)
= —w;", for positive solution
cg
_ —é —w; , for negative solution (S10b)
w =
’ wy, for positive solution

The chiral composite considered in the main text had chirality parameter g = 1.0348x1072% 5% /m

and w; /(2m) = 3 GHz. Hence, the solution | = + — w} | results in wi being much larger than

the resonance frequency. At such frequencies the time-domain Condon model is not applicable.

Thus, only solution w?f =

wi is considered and discussed in the main text.



Supplementary Note 3

Effective parameters of uniaxial chiral composite

Here we consider microwave uniaxial chiral media composits in details. Consider a canonical
metal-wire left-handed chiral particle, where the particle is formed by two short straight wires
(the arm length /) connected to an electrically small loop (the loop radius a) (Fig. S1). For

electrically small lossless wire antennas and loops the input impedances can be approximated

1

as Zyire = e, and Zyoop = jwL, where C' and L are the capacitance of the wire and the

inductance of the loop that are approximately equal to (30)

(Slla)

L:ualln <8_a) —2], (S11b)
To

where € and p are the permitivity and permeability of the background medium, and 7, is the

radius of the wire. The polarizability dyadics for this particle are expressed as

=  __ 7755 XX GO VY &8 YZ.358.5 ZY 53
oo = OooZZ + O XX + Yy + . yz + allzy, (S12a)
Q= 772, (S12b)
e = 0% 27 (S12¢)
me me .

By choosing 2a < 2I, o and o) become negligible, and the cross-coupling components

average to zero (30) in uniaxial composites, thus, the particle can be electrically polarized in

the Z direction only. The axial polarizabilities at frequencies well below the resonance equal to

ZQ

0 = - , (S13a)
]W(Zwire + Zloop)
. 2Q2
—Jjwp=S
- , (S13b)
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—uSl
o = o (S13c)

e (Zwire + Zloop) ’



which are simplified to
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where S = 7a? is the loop area. Next we estimate the effective material parameters of the uni-
axial chiral composite using the Maxwell-Garnett model for mixtures of bianisotropic particles

(30,31). By solving for the transversal components we get

P PN NQ( +a.) (S15a)
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where N is the number of particles per unit volume and
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The uniaxial polarizabilities are divided by 2 as only half of the particles are polarized in one

2

direction. Enough small NV is selected, so that the expressions g—; (ozooozmm—i-ozile), % (oo Omm +

a? ), and %’fne become negligible. As a result, switching chirality does not affect the effec-

me

tive permittivity and permeability. In addition, well below the particle resonance the magnetic

polarizability is negligible being a second-order spatial dispersion effect, and a non-magnetic
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Fig. S1: Canonical metal-wire left-handed chiral particle formed by two short straight wires
(arm length /) connected to an electrically small loop (the loop radius a).

background medium is considered, thus, we have u.g = po. Considering these approximations,

the effective parameters reduce to

Notee

ot = €+ ——o, (S17a)
1— 3:6

Heff = Ho, (S17b)
Nte

ot = _1_% (S17¢)
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Supplementary Note 4
Extended numerical results
Figure S2 shows the z-component of electric field and the y- and z-components of the magnetic

field. All field components get affected by the spin-dependent phenomenon, as expected.
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Fig. S2: Extended numerical results for the numerical simulations presented in the main text.
(A)-(B) z-component of electric field. (C)-(F) y- and z-components of the magnetic field.
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