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Materials and methods

The time-domain solver of the commercial software COMSOL Multiphysics® has been used

to numerically simulate temporal interfaces. The simulation setup (Fig. 3A) has dimensions

equal to 14λd × 0.7λd, where λd is the wavelength in the dielectric medium. A triangular mesh

is implemented with minimum and maximum dimensions of 3 × 10−5 m and λd/20. Periodic

boundary conditions are applied at the top and bottom boundaries, to emulate plane waves. The

boundary on the left is assigned to a scattering boundary behaving as a source, and the right

boundary is assigned to a scattering boundary behaving as a perfect absorber. Electric field of

circularly polarized plane waves propagating in the x-direction is excited using an analytical

expression E± = E0

2

[
ŷ ∓ jẑ

]
ej(ωt−β±x). The temporal interfaces are modeled by inducing fast

but smooth changes in the permittivity and permeability filling the rectangular box. Initially,

the medium has permitivity ϵ±eq and permeability µ±
eq, then they change following a rectangular

shape using analytical functions with smooth transitions with two continuous derivatives, while

the duration of the transient period is 1.1−10 s.
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Supplementary Note 1

Time-domain material relations in chiral media

To study time-varying chiral media, time-domain constitutive relations are needed. The com-

monly used constitutive equations of chiral media (so called Post and Tellegen relations) (27)

are applicable only in the frequency domain. Because the chirality parameter in these for-

malisms is inherently frequency dispersive, transforming these equations to time domain would

complicate the mathematical formulation, as the material relations would contain convolution

integrals. Thus, Condon model is used (28), which approximately models non-resonant chirality

effects with a non-dispersive parameter g. In chiral media, a linearly polarized plane wave can

be expressed as a combination of RHCP and LHCP waves having the same angular frequency

but propagating at different phase velocities. Splitting the fields of a plane wave into RHCP

and LHCP components, and following the Condon model, we write the constitutive relations of

isotropic chiral media as

D =
[ D−︷ ︸︸ ︷
ϵeffE

− + g
∂H−

∂t

]
+
[ D+︷ ︸︸ ︷
ϵeffE

+ + g
∂H+

∂t

]
, (S1a)

B =
[ B−︷ ︸︸ ︷
µeffH

− − g
∂E−

∂t

]
+
[ B+︷ ︸︸ ︷
µeffH

+ − g
∂E+

∂t

]
, (S1b)

in which ϵeff , µeff , and g are the non-dispersive effective permittivity, effective permeability, and

the chirality parameter (or rotatory parameter as Condon called it). Electric and magnetic fields

of a linearly polarized plane wave propagating in x-direction is considered, and the fields read

E± =
E0

2

[
cos(ωt− β±x)ŷ ± sin(ωt− β±x)ẑ

]
, (S2a)

H± =
E0

2ηeff

[
∓ sin(ωt− β±x)ŷ + cos(ωt− β±x)ẑ

]
, (S2b)

where ηeff is the medium effective intrinsic impedance, and E0 is the amplitude of the electric

field. Considering the fields derivatives ∂H±

∂t
= ∓ω

ηeff
E± and ∂E±

∂t
= ±ωηeffH

±, Eqs. (S1a) and
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(S1b) can be expressed as

D =
[ D−︷ ︸︸ ︷
ϵeffE

− +
gω

ηeff
E−
]
+
[ D+︷ ︸︸ ︷
ϵeffE

+ − gω

ηeff
E+
]
, (S3a)

B =
[ B−︷ ︸︸ ︷
µeffH

− + gωηeffH
−
]
+
[ B+︷ ︸︸ ︷
µeffH

+ − gωηeffH
+
]
, (S3b)

which simplifies to

D± = ϵeff

(
1∓Ψ

)
E±, (S4a)

B± = µeff

(
1∓Ψ

)
H±, (S4b)

where Ψ = gωc, ω is the angular frequency, and c = 1√
ϵeffµeff

. We note that the above relations

are in a similar form as the relations for dispersive stationary chiral media, however, the models

used to arrive to both relations are different and cannot replace each other.
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Supplementary Note 2

Temporal boundary conditions

A. Chiral-dielectric temporal interface

We contemplate a chiral medium supporting a linearly polarized plane wave at frequency ω1

when the non-dispersive chirality parameter g rapidly changes to zero, that is, the medium be-

comes nonchiral. In his paper published in 1958, Morgenthaler showed that the electric and

magnetic flux densities are continuous at a temporal interface (29). Using that property, we

write that D±
1 = D±

2 and B±
1 = B±

2 , where the subscripts 1, 2 correspond to the fields before

(t = t−0 ) and after (t = t+0 ) the temporal discontinuity, respectively (t0 is the switching mo-

ment). The flux densities at t−0 equal D±
1 = ϵeff

(
1 ∓ Ψ1

)
E±

1 and B±
1 = µeff

(
1 ∓ Ψ1

)
H±

1 ,

in which Ψ1 = ω1gc. While at t+0 they equal D±
2 = ϵeffE

±
2 and B±

2 = µeffH
±
2 . According to

Morgenthaler, after the temporal jump, there are forward and backward waves in analogy with

a spatial interface at which we have transmitted and reflected waves. As a result, the fields after

the temporal interface can be written as

E±
2 = Υ±

c∥d
E0

2

[
cos(ω±

2 t− β±
2 x)ŷ ± sin(ω±

2 t− β±
2 x)ẑ

]

+ Γ±
c∥d

E0

2

[
cos(ω±

2 t+ β±
2 x)ŷ ∓ sin(ω±

2 t+ β±
2 x)ẑ

]
, (S5a)

H±
2 =

Υ±
c∥dE0

2ηeff

[
cos(ω±

2 t− β±x)ẑ∓ sin(ω±
2 t− β±x)ŷ

]

−
Γ±
c∥dE0

2ηeff

[
cos(ω±

2 t+ β±x)ẑ± sin(ω±
2 t+ β±x)ŷ

]
. (S5b)

The forward and backward propagation coefficients (for a temporal interface between chiral

and dielectric media) are denoted as Υc∥d and Γc∥d, respectively. The backward propagating

wave is defined by the negative frequency component after the temporal interface. Interestingly,
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both the forward and backward waves keep the same polarization state, resulting in handedness

conservation along the temporal interface. Assuming that t0 = 0, the fields reduce to

E±
1 =

E0

2

[
cos(β±

1 x)ŷ ∓ sin(β±
1 x)ẑ

]
, (S6a)

E±
2 = (Υ±

c∥d + Γ±
c∥d)

E0

2

[
cos(β±

2 x)ŷ ∓ sin(β±
2 x)ẑ

]
, (S6b)

H±
1 =

E0

2ηeff

[
cos(β±x)ẑ± sin(β±x)ŷ

]
, (S6c)

H±
2 = (Υ±

c∥d − Γ±
c∥d)

E0

2ηeff

[
cos(β±x)ẑ± sin(β±x)ŷ

]
. (S6d)

The spatial frequency is conserved at the temporal interface as no spatial boundaries are intro-

duced, leading to β±
1 = β±

2 . Then we find that E±
2

E±
1

= (Υ±
c∥d + Γ±

c∥d) and H±
2

H±
1

= (Υ±
c∥d − Γ±

c∥d).

From D±
1 = D±

2 and B±
1 = B±

2 we get E±
2

E±
1

= 1 ∓ Ψ1 and H±
2

H±
1

= 1 ∓ Ψ1. Finally, we see that

Υ±
c∥d + Γ±

c∥d = 1∓Ψ1 and Υ±
c∥d − Γ±

c∥d = 1∓Ψ1, leading to Γ±
c∥d = 0.

B. Chiral temporal slab

To form a chiral temporal slab, another temporal interface between dielectric and chiral me-

dia has to take place. The material parameters after the second temporal interface are ϵeq =

ϵeff(1∓Ψ3), µeq = µeff(1∓Ψ3), and g ̸= 0, where Ψ3 = gω±
3 c. The forward and backward prop-

agation coefficients can be calculated by the Morgenthaler equations, leading to Υ±
d∥c =

1
1∓Ψ±

3

and Γ±
d∥c = 0. The angular frequencies ω±

3 can be calculated from the conservation of phase

constants β±
1 = β±

2 = β±
3 , where β±

3 = ω±
3

√
µeffϵeff(1∓Ψ±

3 ). By solving for ω±
3 from β±

2 = β±
3

we get

ω±
3 =

±1±
√

1∓ 4gω±
2 c

2cg
. (S7)
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Substituting ω±
2 = ω1(1∓Ψ1) leads to

ω+
3 =

1
2
± |(Ψ1 − 1

2
|

cg
, (S8a)

ω−
3 =

1
2
± |Ψ1 +

1
2
|

cg
, (S8b)

in which ± represent the positive and negative branches of the square root. Considering Ψ1 <
1
2
,

we get

ω+
3 =

{ 1
2
+Ψ1− 1

2

cg
, for negative solution

1
2
−Ψ1+

1
2

cg
, for positive solution

(S9a)

ω−
3 =

{− 1
2
−Ψ1− 1

2

cg
, for negative solution

− 1
2
+Ψ1+

1
2

cg
, for positive solution

(S9b)

which simplifies to

ω+
3 =

{
ω+
1 , for negative solution

1
cg
− ω+

1 , for positive solution
(S10a)

ω−
3 =

{
− 1

cg
− ω−

1 , for negative solution
ω−
1 , for positive solution

(S10b)

The chiral composite considered in the main text had chirality parameter g = 1.0348×10−20 s2/m

and ω1/(2π) = 3 GHz. Hence, the solution | ± 1
cg

− ω±
1 | results in ω±

3 being much larger than

the resonance frequency. At such frequencies the time-domain Condon model is not applicable.

Thus, only solution ω±
3 = ω±

1 is considered and discussed in the main text.
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Supplementary Note 3

Effective parameters of uniaxial chiral composite

Here we consider microwave uniaxial chiral media composits in details. Consider a canonical

metal-wire left-handed chiral particle, where the particle is formed by two short straight wires

(the arm length l) connected to an electrically small loop (the loop radius a) (Fig. S1). For

electrically small lossless wire antennas and loops the input impedances can be approximated

as Zwire = 1
jωC

and Zloop = jωL, where C and L are the capacitance of the wire and the

inductance of the loop that are approximately equal to (30)

C =
πlϵ

ln( 2l
r0
)
, (S11a)

L = µa

[
ln

(
8a

r0

)
− 2

]
, (S11b)

where ϵ and µ are the permitivity and permeability of the background medium, and r0 is the

radius of the wire. The polarizability dyadics for this particle are expressed as

αee = αzz
eeẑẑ+ αxx

ee x̂x̂+ αyy
ee ŷŷ + αyz

ee ŷẑ+ αzy
ee ẑŷ, (S12a)

αmm = αzz
mmẑẑ, (S12b)

αme = αzz
meẑẑ. (S12c)

By choosing 2a ≪ 2l, αxx
ee and αyy

ee become negligible, and the cross-coupling components

average to zero (30) in uniaxial composites, thus, the particle can be electrically polarized in

the ẑ direction only. The axial polarizabilities at frequencies well below the resonance equal to

αzz
ee =

l2

jω(Zwire + Zloop)
, (S13a)

αzz
mm =

−jωµ2S2

(Zwire + Zloop)
, (S13b)

αzz
me =

−µSl

(Zwire + Zloop)
, (S13c)
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which are simplified to

αzz
ee =

l2C

1− ω2LC
, (S14a)

αzz
mm =

µ2ω2S2C

1− ω2LC
, (S14b)

αzz
em = −αzz

me =
jωµSlC

1− ω2LC
, (S14c)

where S = πa2 is the loop area. Next we estimate the effective material parameters of the uni-

axial chiral composite using the Maxwell-Garnett model for mixtures of bianisotropic particles

(30,31). By solving for the transversal components we get

ϵeff = ϵ+
1

Dtr

[
Nαee −

N2

3µ
(αeeαmm + α2

me)

]
, (S15a)

µeff = µ+
1

Dtr

[
Nαmm − N2

3ϵ
(αeeαmm + α2

me)

]
, (S15b)

αeff = −Nαme

Dtr

, (S15c)

where N is the number of particles per unit volume and

αee =
αzz
ee

2
, (S16a)

αmm =
αzz
mm

2
, (S16b)

αme =
αzz
me

2
, (S16c)

Dtr =

(
1− Nαee

3ϵ

)(
1− Nαmm

3µ

)
+

N2α2
me

9ϵµ
. (S16d)

The uniaxial polarizabilities are divided by 2 as only half of the particles are polarized in one

direction. Enough small N is selected, so that the expressions N2

3µ
(αeeαmm+α2

me),
N2

3ϵ
(αeeαmm+

α2
me), and N2α2

me

9ϵµ
become negligible. As a result, switching chirality does not affect the effec-

tive permittivity and permeability. In addition, well below the particle resonance the magnetic

polarizability is negligible being a second-order spatial dispersion effect, and a non-magnetic
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Fig. S1: Canonical metal-wire left-handed chiral particle formed by two short straight wires
(arm length l) connected to an electrically small loop (the loop radius a).

background medium is considered, thus, we have µeff = µ0. Considering these approximations,

the effective parameters reduce to

ϵeff = ϵ+
Nαee

1− Nαee

3ϵ

, (S17a)

µeff = µ0, (S17b)

αeff = − Nαme

1− Nαee

3ϵ

. (S17c)
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Supplementary Note 4

Extended numerical results

Figure S2 shows the z-component of electric field and the y- and z-components of the magnetic

field. All field components get affected by the spin-dependent phenomenon, as expected.
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Fig. S2: Extended numerical results for the numerical simulations presented in the main text.
(A)-(B) z-component of electric field. (C)-(F) y- and z-components of the magnetic field.
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