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Abstract: Distinguishing between the left- and right-handed
versions of a chiral molecule (enantiomers) is vital, but
also inherently difficult. Traditional optical methods using
elliptically/circularly polarized light rely on linear effects
which arise beyond the electric-dipole approximation, pos-
ing major limitations for ultrafast spectroscopy. Here we
show how to turn an ultrashort elliptical pulse into an
efficient chiro-optical tool: by tilting its polarization plane
towards its propagation direction. This forward tilt can be
achieved by focusing the beam tightly, creating structured
light which exhibits a nontrivial polarization pattern in
space. Using state-of-the-art computational modelling, we
show that our structured field realizes a near-field inter-
ferometer for efficient chiral recognition that separates
the nonlinear optical response of left- and right-handed
molecules in space. Our work provides a simple, yet highly
efficient, way of spatially structuring the polarization of
light to image molecular chirality, with extreme enantio-
efficiency and on ultrafast time scales.

Keywords: attosecond physics; high harmonic generation;
ultrafast chiral spectroscopy.

1 Introduction

Chirality plays key roles in nature, from particle physics to
biology. Something is chiral if it is different from its mirror
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image, with our hands being the typical example. The left-
and right-handed versions of a chiral molecule are called
enantiomers. Their handedness is essential in molecular
recognition, and thus enantio-discrimination is vital. But
it is also hard, as opposite enantiomers behave identically
unless they interact with another chiral ‘object’, e.g. another
chiral molecule or chiral light.

Modern laser technology creates exciting opportunities
for imaging chirality, providing access to the natural tem-
poral and spatial scales of molecules, with sub-femtosecond
and sub-Angstrom resolution [1]. Yet, imaging the 3D chi-
ral currents governing enantio-sensitive photo-chemistry
is still very challenging, as natural chiral light is ill-suited
for this purpose. Indeed, circularly polarized light is chiral
only beyond the electric-dipole approximation, and thus it
produces weakly enantio-sensitive signals, usually below
0.1% [2].

This limitation can be overcome by creating locally
chiral fields [3-9], where the electric-field vector draws a
chiral Lissajous figure in time, or by analysing enantio-
sensitive vectorial observables [10-25] which do not rely
on light’s chirality [26, 27]. This includes the photoelectron
current orthogonal to the polarization plane of circularly
[16—24] or elliptically [25] polarized light, which gives rise to
the forward/backward asymmetry in photoelectron circu-
lar/elliptical dichroism. This current has opposite direction
in opposite enantiomers and it is driven by electric-dipole
interactions. However, if one seeks to record an equiva-
lent asymmetry via nonlinear excitation with an ellipti-
cal field in an all-optical setup, measuring the radiation
emitted by the induced polarization, they will encounter a
fundamental limitation: this asymmetry is not in the right
direction.

Let us consider a laser field E = E,(u, + icu)e~+kz
with ellipticity || < 1. The nonlinear polarization induced
in isotropic chiral media [14] is P = P,u, + P,u, + Pg/ Ruz,
where u,, u, and u, are the laboratory frame unitary vec-
tors. The in-plane components P, and P, are achiral: within
the electric-dipole approximation, they are identical in left-
and right-handed molecules. The out-of-plane component
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Pﬁ/ ®is chiral: it is exclusive of chiral media and has equal
intensity but opposite phase in opposite enantiomers, Pt =
—PR. However, Pﬁ/ Ris completely invisible in the typical
macroscopic harmonic signal, as it is parallel to the laser
propagation direction u,. For this reason, the recent chi-
ral high harmonic generation (HHG) works with ellipti-
cal [28] and two-colour [29-31] fields relied on magnetic
interactions.

Here we show how, by tilting the plane of polarization
of the laser field towards its propagation direction, we can
rotate the chiral component of the induced polarization,
making it visible in the macroscopic far-field signal. Our pro-
posal exploits the potential of structuring the polarization
[32-36] of ultrashort pulses to realize an enantio-sensitive
interferometer that separates the nonlinear response of
opposite molecular enantiomers in space.

2 Proposed optical setup

We consider an ultrashort and tightly focused Gaussian
beam with elliptical polarization, where the pulse duration
is only a few cycles, and the beam waist is only a few times
the wavelength. Such tight focusing creates a strong longi-
tudinal electric-field component [37], along the propagation
direction, which has opposite sign at opposite sides of the
beam’s axis, see Figure 1(a) and Supplementary 1. The conse-
quences of this new component are twofold. First, the plane
of polarization rotates around the x axis, in opposite direc-
tions at opposite sides of the beam axis, and thus it stops
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being orthogonal to the propagation direction z. Second, the
ellipticity increases. The field in one point in space can be
written as

E(t) = Ey a(®)[cos(ot + depp)u, + esin(wt + degpluy, |, (1)

where a(t) is an envelope function, ¢pp is the carrier-
envelope phase (CEP) and u,, = sin(y)u, + cos(y)u,, with
y being the tilt (rotation) angle. Note that, thanks to the
longitudinal component arising upon tight focusing, u,, #
u,. That is, the minor component of the polarization
ellipse of the laser is no longer orthogonal to the prop-
agation direction z, see Figure 1(a). Importantly, both the
tilt angle y and the ellipticity € are spatially structured,
with y(—x) = —y(x) and e(—x) = e(x), see Figure 1(b, c).
The tilt direction (sign of y) is a protected quantity, robust
with respect to experimental fluctuations, because it is con-
nected to the spin-momentum locking [38], which relates
the transverse photon spin to the propagation direction, see
Supplementary 1.

The structured forward tilt of the laser polarization
plane is a key aspect of our proposal. It leads to rotation
of the nonlinear polarization induced in randomly oriented
chiral media

P(©) = P,(0u, + P, (0u,, + PY/*(Ou,. @

That is, the chiral component of the induced polariza-
tion Pﬁ/ R is tilted, no longer orthogonal to the propagation
direction z, see Figure 1(d, e). In the laser reference frame,
defined by the twolaser polarization vectors, u, and u,, and
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Figure 1: Tilting the plane of light’s polarization. (a) A laser field with elliptical polarization (blue arrows) and a Gaussian profile (light pink) acquires a
forward polarization tilt upon tight focusing. The polarization of the laser at each spatial point is contained in a 2D plane (blue rectangles) and its tilt
angle y varies spatially, being maximum at the focus and having opposite signs at opposite sides of the beam’s axis. This tilt angle dictates the rotation
of the laser frame with respect to the laboratory frame. The nonlinear optical emissions from the L enantiomer (green) and the R enantiomer (dark
pink) are spatially separated in the detector, where they are recorded as a function of the emission angle (divergence) f. (b, ¢) Tilt angle y (b) and total
ellipticity € (c) as functions of the transverse coordinate x for a beam’s waist of W = 2.5 pm. (d, e) Schematic representation of the polarization
induced in randomly oriented chiral molecules at each side of the beam’s axis, see Eq. (2). Note that the chiral component of the induced polarization

has opposite orientation in opposite molecular enantiomers.
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u, =u, Xuy, the three components of the induced polar-
ization have exactly the same intensity in opposite enan-
tiomers, and thus |P|; = |P|;. The only enantio-sensitive
quantity is the direction of the chiral component, P- = —PF,
To create an enantio-sensitive intensity, the chiral compo-
nent needs to interfere with a reference signal. We can
achieve this by projecting Pg/ R and one of the two achiral
components (P, and P,) over a common axis that is in the
right direction to produce a phase-matched macroscopic
signal (orthogonal to z). This is exactly what the proposed
optical setup does: by tilting the plane of polarization of
light, we project P, and P, over the common y axis, where
they interfere:

Py(t) =P(t) - u, = P_()cos(y) + Pﬁ/R(t) sin(y). 3)

Equation (3) shows that the tilt angle y and the
molecular handedness (PL = —PF) control the relative
sign between the achiral and chiral components of the
induced polarization, creating an enantio-sensitive interfer-
ometer. Since y(x) = —y(—x), the chiral “arm” of our inter-
ferometer, Pﬁ/ K sin(y), has opposite phase at opposite sides
of the beam axis. Thus, P, () is not only enantio-sensitive but
also spatially structured.

We note that, in a long laser pulse, the chiral polar-
ization component Pg/ B contains even harmonic orders,
whereas the achiral components P, and P, carry odd har-
monic orders [14]. However, these selection rules relax as
we reduce the pulse duration, broadening the spectral band-
width, so the chiral and achiral components can efficiently
overlap in the frequency domain. A recent proposal for
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chiral spectroscopy [39] showed that an ultrashort, linearly
polarized, tightly focused, laser beam can produce har-
monic light with enantio-sensitive polarization. Here, we
realize a near-field interferometer that separates the non-
linear response of opposite molecular enantiomers in space,
using an ultrashort laser field with a spatially structured
polarization plane (Figure 1).

We have modelled the macroscopic electronic response
of randomly oriented propylene oxide, fully accounting
for the spatial structure of our field, using time-dependent
density functional theory, see Supplement 1. We have con-
sidered these laser parameters: peak intensity I = 6 - 1013
W cm~2, incoming ellipticity &, = 0.1, focal diameter 5 pm,
central wavelength 4 =780 nm and 7 fs full-width half-
maximum (FWHM) of pulse duration. Such tight focusing
and short duration conditions can be realized with current
optical instrumentation [40]. Experiments would also bene-
fit from using thin liquid microjets [41], where Gouy phase
effects are negligible.

3 Numerical results

Figure 2 shows the amplitude and phase profiles of the
induced polarization at frequency 6w for ¢opp = 0.257, in
the laser (Figure 2(a—c)) and laboratory (Figure 2(d—e)) ref-
erence frames. In the laser reference frame (Figure 2(a—c)),
the three components of the induced polarization have
the same intensity in opposite enantiomers. The molecular
handedness is encoded in the phase of Pg/ R (Figure 2(c)).
Thanks to our structured tilt, when projecting Pﬁ/ Fand P, on
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Figure 2: Near-field response of randomly oriented propylene oxide. Intensity (solid lines) and phase (dotted) at the 6th harmonic order in laser (a-c)
and laboratory (d-f) reference frames for the R (pink) and L (green) enantiomers (non-enantio-sensitive curves are blue). The enantio-sensitive
component that can be detected in the macroscopic far-field signal P, is highlighted in grey shading (e). Laser parameters: I =6 - 10" W cm=2,

A =780 nm, focal diameter 5 um, £, = 0.1, pulse duration 7 fs (FWHM) and ¢, = 0.257.
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the laboratory-frame vectors, |Py|2 and |P,|* become asym-
metric with respect to the propagation axis and enantio-
sensitive, see Figure 2(d-f). Note that the two reference
frames are rotated around the x axis, and thus P, is iden-
tical in both frames. Note also that, making Py enantio-
sensitive means that the intensity of phase-matched har-
monic emission, proportional to |P,|? + |P,|% can become
enantio-sensitive.

Figure 2(e) shows that the intensity profile of the
y-polarized component of the induced polarization is
asymmetric and different for left- and right-handed
molecules. However, the most relevant asymmetry is in the
phase of this quantity, which is also enantio-sensitive. As
shown in Figure 2(e), the phase of the nonlinear response
at frequency 6w increases with x in the right-handed
molecules, and it decreases in the left-handed molecules.
This behaviour is similar for other harmonic frequencies
(not shown). The phase profile shown in Figure 2(e)
determines the propagation direction of the emitted
harmonic light. For this choice of parameters, the
left-handed molecules emit harmonic light preferentially
to the left, whereas the right-handed molecules radiate
preferentially to the right, see Figure 3.

The direction of harmonic emission is strongly enantio-
sensitive when considering the intensity of the y-polarized
component of the emitted harmonic light I, generated by
P, see Figure 3(a). This component could be separated from
the non-enantio-sensitive component I, using a polarizer.
However, our enantio-sensitive observable remains strong
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Figure 3: Enantio-sensitive harmonic detection. (a, b) Intensity of the
y-polarized component, (a) of the radiation emitted from R (pink) and L
(green) propylene oxide and total intensity I = I, + I, (b) at the 6th
harmonic order, and dissymmetry factor (orange), as a function of the
divergence angle, f = arctan (x/2), at the detector (see Figure 1). (c, d)
Average divergence angle, B,,, in I, (c) and inI (d) as a function of the
enantiomeric excess.
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when considering the total intensity of the harmonic emis-
sion, I, +1 > See Figure 3(b).

To quantify the degree of enantio-sensitivity in the
macroscopic far-field signal, we use an angularly resolved
definition of the dissymmetry factor g =20, —Iz)/U; +
I), where I, is the intensity of harmonic light emit-
ted from the left-/right-handed enantiomer. The enantio-
sensitivity approaches the ultimate efficiency limit (g =
+200%) in the y-polarized component of the emitted har-
monic light (Figure 3(a)) but is also very strong when we
consider the total macroscopic intensity (Figure 3(b)).

Note that, in our setup, changing the sign of the incom-
ing ellipticity g, is equivalent to exchanging the molecular
enantiomer. As a result, the dissymmetry factor is equiv-
alent to the elliptical dichroism g, =2, —1_)/(I, +1_),
where I, ,_ is the intensity in the far field emitted when
using a driving field with right/left elliptical polarization.
Indeed, changing the sign of £, changes the sign of the achi-
ral component of the induced polarization P, cos(y) (the
achiral ‘arm’ of our near-field interferometer, see Eq. (3))
without modifying the chiral component P sin(y), whereas
exchanging the molecular enantiomer changes the sign
of P, without affecting P,. In both cases we are changing
the sign of one of the two components without modifying
the other, which leads to the same intensity profile in the far
field—the only difference is in the phase of the emitted light,
but this quantity is usually not measured experimentally
and it does not enter the expressions of either the dissym-
metry factor or the elliptical dichroism.

The proposed optical setup allows us to unequivo-
cally determine the relative concentration of opposite enan-
tiomers in mixtures, which is usually quantified via the
enantiomeric excess, ee = (Cp — C;)/(Cy + C;), where Cr/r
is the concentration of left-/right-handed molecules. The
average divergence angle in the far-field harmonic intensity
is approximately proportional to the enantiomeric excess,
see Figure 3(c, d).

We can control the enantio-sensitive direction of har-
monic emission by adjusting the laser parameters. In par-
ticular, by adjusting the CEP and the incoming ellipticity, we
can adjust both the amplitude and phase of the achiral com-
ponent of the interferometer P, cos(y), achieving full control
over the enantio-sensitive interference. Figure 4 shows the
dissymmetry factor in the y-polarized component of the
emitted light for harmonic orders 4th, 6th and 8th, at 3
degrees of divergence. As expected, the values of the CEP
and g, that maximize the enantio-sensitive response are
different for different harmonic numbers, reflecting the fact
that the relative amplitude and phase between the achiral
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Figure 4: Maximizing the enantio-sensitive response of propylene oxide.
Dissymmetry factor at a divergence angle of 3° as a function of the CEP
and g, at the 4th (a), 6th (b) and 8th (c) harmonic orders. Reversing the
sign of g, results in a change of sign in g and is equivalent to changing
the CEP by 7.

(P,) and chiral (Pﬁ/ R) components of the induced polariza-
tion are frequency dependent.

Note that the proposed field is not chiral locally: at
each point in space, the polarization of the electric field
is confined to a 2D plane. The field becomes chiral only
when we include its propagation direction. One could think
that, in this scenario, the enantio-sensitive response of the
medium must rely on weak magnetic or quadrupole inter-
actions, as in traditional methods relying on the chirality
of elliptically/circularly polarized light, but we have shown
that this is not necessarily the case. Here, the propagation
vector plays the role of a ‘chiral observer’ [27], dictating
which components of the induced polarization can generate
a phase-matched radiation that propagates to the detector
and which cannot. It acts as a near-field polarizer, projecting
two components of the induced polarization onto a common
axis, where they efficiently interfere thanks the short pulse
duration.

4 Conclusions

The proposed optical method realizes a near-field interfer-
ometer for efficient enantio-discrimination, which enables
measuring the enantiomeric excess in mixtures. Our
approach relies on a very special property of chiral
molecules: their capability to turn in-plane rotation of the
polarization of the electric-field vector of light into an out-
of-plane molecular response. This property is at the core of
efficient methods for chiral discrimination driven by purely
electric-dipole interactions [26, 27]. While this molecular
response remains hidden in the macroscopic optical sig-
nal when using conventional laser beams, here we have
shown how, by tilting light’s polarization plane, we can
convert it into a left/right asymmetry in the far-field signal.
Thus, our work finds an interesting analogy with photo-
electron circular dichroism [16-25], where a somewhat
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similar forward/backward asymmetry is recorded in the
photo-electron angular distributions.

Because of the ultrafast nature of the nonlinear inter-
actions responsible for the enantio-sensitive response,
our method seems to be ideally suited for monitoring
enantio-sensitive chemical reactions in real time, with
sub-femtosecond temporal resolution. Furthermore, the
enantio-sensitive direction of emission is a molecule-
specific quantity, and thus our proposal creates new oppor-
tunities for developing molecular markers of enantio-
sensitive chemical dynamics.

The strong longitudinal electric-field component that
arises when we focus a laser beam tightly is a key ingre-
dient of our proposal: it tilts the polarization plane of the
elliptically polarized wave. Interestingly, such longitudinal
fields also arise naturally in optical nanofibres and other
nano-photonic structures [42], where light is confined in
one or two spatial dimensions. Therefore, this work opens
exciting opportunities for tilting light’s polarization using
nano-photonic structures, and for developing nano-devices
for highly sensitive chiral spectroscopy.
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